-
It is well known that, when facing annihilation type contributions, in collinear factorization such as QCD factorization, the singularities destroy the perturbative calculations, and then, parametrization is adopted to evaluate this type of contribution, which leads to a decrease in predictive ability. Using the PQCD approach [21, 22] based on
$ k_T $ factorization, one can calculate the annihilation diagrams perturbatively, because the end-point singularities are smeared by keeping the intrinsic transverse momenta of the inner quarks. The pure annihilation decay$ B_s\to \pi\pi $ was first calculated in 2004 [23] and the predicted branching fraction was confirmed by LHCb in 2006 [24], which implies that the results of pure annihilation decays based on the PQCD approach are reliable.In this study, we work in light-cone coordinates. In the B meson rest frame, the momenta of the initial B meson, the final vector meson (V), and the photon are expressed as
$ \begin{aligned}[b] P_B=&\frac{m_B}{\sqrt{2}}(1,1,\vec{0}_{\perp}),\,\,\,\,\,\\ P_V=&\frac{m_B}{\sqrt{2}}(r^2,1,\vec{0}_{\perp}),\,\,\,\,\, P_{\gamma}=\frac{m_B}{\sqrt{2}}(1-r^2,0,\vec{0}_{\perp}),\end{aligned} $
(1) with
$ r=m_V/m_B $ ,$ m_V $ and$ m_B $ being the masses of the vector meson and the B meson, respectively. For the light quark in the B meson, we denote its momentum as$ k_1=\left(x_1\frac{m_B}{\sqrt{2}},0,\mathbf{k}_{1T}\right), $
(2) where
$ x_1 $ is the momentum fraction of the light quark, and$ \mathbf{k}_{1T} $ is the transverse momentum of the light quark. Similarly, the momentum of the quark of the final vector can be written as$ k_2=\left(0,x_2\frac{m_B}{\sqrt{2}},\mathbf{k}_{2T} \right). $
(3) In this study, we do not regard the photon as a point-like particle any more and consider its hadronic structure; then, the momentum of the light quark in the photon can be written as
$ k_3= \left(\frac{m_B}{\sqrt{2}}(1-r^2)x_3,0,\mathbf{k}_{3T}\right). $
(4) In PQCD, the decay amplitude of the process
$ B\to M_1M_2 $ is factorized into the convolution of the Wilson coefficients (WCs)$ C(t) $ , the hard kernel$ H(x_i,b_i,t) $ , and the wave functions of the initial and final states, which can be expressed as$ \begin{aligned}[b] \mathcal{A}=&\int_0^1 {\rm d} x_1{\rm d}x_2 {\rm d}x_3\int_0^{\infty}b_1{\rm d} b_1b_2 {\rm d}b_3b_3 {\rm d}b_3 C(t)\Phi_B(x_1,b_1) \\&\times \Phi_2(x_2,b_2)\Phi_3(x_3,b_3)H(x_i,b_i,t)\exp[-S(x_i,b_i,t)], \end{aligned} $
(5) with
$ b_i $ being the conjugate variable of the transverse momentum$ k_{iT} $ . The physics above the scale ($ m_b $ ) have already been absorbed into the WCs$ C(t) $ . The hard kernel$ H(x_i,b_i,t) $ is governed by exchanging one hard gluon and can be calculated perturbatively. The parameter t is the largest scale appearing in the hard kernel$ H(x_i,b_i,t) $ . The wave functions describing the soft physics below the factorization scale are not perturbatively calculable but universal, which can be studied in some nonperturbative approaches. The last exponential term is the so-called Sudakov form factor, which arises from the resummation on the double logarithmic terms containing the additional energy scale introduced by the transverse momentum.In PQCD, the most important inputs are the wave functions, which describe the inner dynamics of the initial and final particles. In the past decades, the wave functions of the B meson and vector mesons have been well studied in two-body nonleptonic B decays, such as in Refs. [21–23, 25–28]. In general, the wave function
$ \Phi_{M,\alpha\beta} $ with Dirac indices$ \alpha,\beta $ are decomposed into 16 independent components,$ 1_{\alpha\beta} $ ,$ \gamma^\mu_{\alpha\beta} $ ,$ \sigma^{\mu\nu}_{\alpha\beta} $ ,$ (\gamma^\mu\gamma_5)_{\alpha\beta} $ , and$ \gamma_{5\alpha\beta} $ . For the heavy pseudo-scalar B meson, the structure$ (\gamma^\mu\gamma_5)_{\alpha\beta} $ and$ \gamma_{5\alpha\beta} $ components remain as leading contributions. Therefore,$ \Phi_{B,\alpha\beta} $ is written as$ \Phi_{B,\alpha\beta} = \frac{\rm i}{\sqrt{2N_c}}\left\{ (\not P_B \gamma_5)_{\alpha\beta} \phi_B^A + \gamma_{5\alpha\beta} \phi_B^P \right\}, $
(6) where
$ N_c = 3 $ is the color's degree of freedom, and$ \phi_B^{A,P} $ are Lorentz scalar wave functions. According to the heavy quark effective theory, we obtain$ \phi_B^P \simeq m_B \phi_B^A $ . Hence, the B meson's wave function can be simplified as$ \Phi_{B,\alpha\beta}(x,b) = \frac{\rm i}{\sqrt{2N_c}} \left[ (\not P_1 \gamma_5)_{\alpha\beta}+ m_B \gamma_{5\alpha\beta} \right] \phi_B(x,b). $
(7) For the Lorentz scalar wave function
$ \phi_B(x,b) $ , there is a sharp peak at the small x region; we use$ \phi_B(x,b) = N_B x^2(1-x)^2 \exp \left[-\frac{m_B^2\ x^2}{2 \omega_b^2} -\frac{1}{2} (\omega_b b)^2\right], $
(8) which is adopted in Refs. [21, 22]. It is noted that
$ \phi_B $ is normalized by the decay constant$ f_B $ ,$ \int_0^1 {\rm d}x\ \phi_B (x, b=0)= \frac{f_B}{2\sqrt{2N_c}}. $
(9) As mentioned above, the parameters
$ \omega_b=0.40\pm0.08 $ for the$ B^0 $ meson and$ \omega_b=0.50\pm0.10 $ for the$ B^0_s $ meson are almost best fits from the well measured results of the$ B_{d,s}\to K\pi $ ,$ \pi \pi $ decays [21, 22, 28, 29], including the branching fractions and the$ CP $ asymmetries. For the vector mesons ϕ,$ \rho^0 $ , and ω, we also pursue the same strategy and adopt the same wave functions obtained in QCD sum rules [30]. Very recently, the Gegenbauer moments in the wave functions of the light mesons have been fitted to available data of branching fractions and direct$ CP $ asymmetries globally [31], and the fitted results are in good agreement with those in [30].When studying the hard exclusive processes involving photon emission in QCD, a specific feature is that a real photon contains both a pointlike, electromagnetic (EM) component and a soft, hadronic component. Similar to a transversely polarized vector meson, the two-particle distribution amplitudes of a final state photon can be defined as [32]
$\begin{aligned}[b]& \langle \gamma(p,\lambda)|\bar q(z)\sigma_{\alpha\beta}q(0)|0\rangle \\=& {\rm i} Q_q\chi(\mu)\langle\bar qq\rangle(p_\beta\varepsilon_{\gamma\alpha}^*-p_\alpha\varepsilon_{\gamma\beta}^*)\int_0^1 {\rm d} u {\rm e}^{{\rm i} up\cdot z}\phi_\gamma(u,\mu),\end{aligned}$
(10) $\langle \gamma(p,\lambda)|\bar q(z)\gamma_{\alpha}q(0)|0\rangle =-Q_qf_{3\gamma}\varepsilon_{\gamma\alpha}^* \int_0^1 {\rm d} u {\rm e}^{{\rm i}up\cdot z}\psi^{(v)}_\gamma(u,\mu), $
(11) $ \begin{aligned}[b]& \langle \gamma(p,\lambda)|\bar q(z)\gamma_{\alpha}\gamma_5q(0)|0\rangle \\=&{\frac{1}{4}}Q_qf_{3\gamma}\epsilon_{\alpha\beta\rho\sigma}p^\rho z^\sigma\varepsilon_\gamma^{*\beta}\int_0^1 {\rm d}u {\rm e}^{{\rm i}up\cdot z}\psi^{(a)}_\gamma(u,\mu), \end{aligned} $
(12) where λ and
$ \varepsilon_\gamma $ denote the polarization and the related polarization vector. The Lorentz scalar wave functions$ \phi_\gamma(u,\mu) $ and$ \psi^{(a,v)}_\gamma(u,\mu) $ are twist-2 and twist-3 distribution amplitudes (DAs), respectively.$ \langle\bar q q\rangle $ and$ \chi(\mu) $ are the quark condensate and the corresponding magnetic susceptibility.$ f_{3\gamma} $ is the decay constant of the photon, which appears in the twist-3 DAs. It should be emphasized that$ \langle\bar q q\rangle $ ,$ \chi(\mu) $ and$ f_{3\gamma} $ are all scale dependent, and their evolution equations can be found in Refs. [18, 19]. Finally, we write the momentum space projector for the two-particle LCDAs (up to twist-3) as$ \begin{aligned}[b] M^\gamma_{\alpha\beta}=&\frac{1}{4}Q_q\bigg\{-\langle\bar qq\rangle(\not \varepsilon_\gamma^*\not p)\chi(\mu)\phi_\gamma(u,\mu) -f_{3\gamma}(\not \varepsilon^*)\psi^{(v)}_\gamma(u,\mu)\\& -{\frac{1}{8}}f_{3\gamma}\epsilon_{\mu\nu\rho\sigma}(\gamma^{\mu}\gamma^5){\bar n}^\rho \varepsilon^{*\nu}\Big[n^\sigma{\frac{{\rm d}}{{\rm d}u}}\psi^{(a)}_\gamma(u,\mu) \\& -2E_\gamma\psi^{(a)}_\gamma(u,\mu){\frac{\partial}{\partial k_{\perp\sigma}}}\Big]\bigg\}_{\alpha\beta}, \end{aligned} $
(13) and
$ n=(1,0,{\bf 0}_T) $ and$ \bar n=(0,1,{\bf 0}_T) $ are two unit vectors with opposite directions. In our numerical calculations, the contributions from transverse momentum dependence of the photon wave functions are very small, which indicates that the last part in the third term can be neglected safely.The distribution amplitudes
$ \phi_{\gamma}(u,\mu) $ ,$ \psi^{v}(u,\mu) $ and$ \psi^{a}(u,\mu) $ have been systematically studied in Ref. [32], and their expressions are written as$ \phi_\gamma(u,\mu) = 6u\bar u \left[1+\sum\limits_{n=2}^\infty b_n(\mu_0)C^{3/2}_n(\xi)\right], $
(14) $ \psi^{(v)}(u,\mu)= 10 P_2(\xi)+\frac{15}{8} \left [ 3\omega_{\gamma}^{V}(\mu)- \omega_{\gamma}^{A}(\mu)\right ]P_4(\xi), $
(15) $\psi^{(a)}(u,\mu) = \frac{5}{3}C_2^{3/2}(t) \left [ 1 + \frac{9}{16}\omega_{\gamma}^{V}(\mu) -\frac{3}{16} \omega_{\gamma}^{A}(\mu) \right ] \,, $
(16) with
$ \xi=2u-1 $ .$ C_n^{3/2}(\xi) $ and$ P_n(\xi) $ are Gegenbauer polynomials and Legendre polynomials, respectively. Since the scale dependence of the parameters$ b_n(\mu) $ ,$ \omega_{\gamma}^{V}(\mu) $ and$ \omega_{\gamma}^{A}(\mu) $ have been well studied in Refs. [19, 32], we do not show them here. Typically, when$\mu=1~ {\rm GeV}$ , we have$ \begin{array}{*{20}{l}} b_2=0.07\pm0.07, \,\,\omega_{\gamma}^{V}=3.8\pm1.8,\,\,\omega_{\gamma}^{A}=-2.1\pm1.0. \end{array} $
(17) Because the massless photon is transverse polarized only, the decay amplitude of the radiative decay
$ B\to V\gamma $ can only be decomposed into two parts as$ \mathcal{A}=(\varepsilon_V^*\cdot\varepsilon_{\gamma}^*)\mathcal{A}^S+\frac{1}{P_V\cdot P_{\gamma}}\epsilon_{\mu\nu\rho\sigma}\varepsilon_{\gamma}^{\mu*}\varepsilon_{V}^{\nu*}P_{\gamma}^{\rho}P_V^{\sigma}\mathcal{A}^P, $
(18) with the polarization vectors of the vector meson and the photon
$ \varepsilon_V^* $ and$ \varepsilon_{\gamma}^* $ , respectively. With the calculated$ \mathcal{A}^S $ and$ \mathcal{A}^P $ in the PQCD approach, the branching fraction of the$ B\to V\gamma $ decay is$ \mathcal{B}=\tau_B\frac{\mid \mathcal{A}^S\mid^2+\mid\mathcal{A}^P\mid^2}{8\pi m_B}(1-r^2), $
(19) where
$ \tau_B $ is the lifetime of the B meson. At the leading order and the leading power, the decay amplitudes$ \mathcal{A}^S $ and$ \mathcal{A}^P $ have been calculated in detail in Ref. [10], and we do not present them further.Now, we study the contributions from the HSP to decays
$ B\to\phi\gamma $ and$ B_s\to(\rho^0,\omega)\gamma $ . In the following, we take$ B^0\to \phi\gamma $ as an example for illustration, which is governed by the$ b\to d \bar s s $ transition. According to the effective Hamiltonian [33], the corresponding diagrams are plotted in Fig. 1. The decay amplitude with the contribution of the HSP can be expressed asFigure 1. (color online) Leading order Feynman diagrams of
$B^0\to \phi \gamma$ decay with the hadronic structure of the photon in PQCD.$ \begin{aligned}[b] \mathcal{A}^{i}_{H}(B\to\phi\gamma)=&-V_{td}V^*_{tb}\bigg[\left(a_3+a_5-\frac{a_7}{2}-\frac{a_9}{2}\right)\mathcal{A}^{i(LL)}_{H,ef}\\ &+\left(C_4-\frac{C_{10}}{2}\right)\mathcal{A}^{i(LL)}_{H,enf}\\ &+\left(C_6-\frac{C_{8}}{2}\right)\mathcal{A}^{i(SP)}_{H,enf}\\ &+\left(a_3-\frac{a_9}{2}\right)\left(\mathcal{A}^{i(LL)}_{H,af1}+\mathcal{A}^{i(LL)}_{H,af2}\right)\\ &+\left(a_5-\frac{a_7}{2}\right)\left(\mathcal{A}^{i(LR)}_{H,af1}+\mathcal{A}^{i(LR)}_{H,af2}\right)\\ &+\left(C_4-\frac{C_{10}}{2}\right)\left(\mathcal{A}^{i(LL)}_{H,anf1}+\mathcal{A}^{i(LL)}_{H,anf2}\right)\\ &+\left(C_6-\frac{C_{8}}{2}\right)\left(\mathcal{A}^{i(SP)}_{H,anf1}+\mathcal{A}^{i(SP)}_{H,anf2}\right)\bigg], \end{aligned} $
(20) with
$ i=S,P $ . The combined coefficients$ a_i $ are defined as$ \begin{aligned}[b] a_3=C_3+C_4/3,&\;\; a_5=C_5+C_6/3,\\ a_7=C_7+C_8/3,&\;\; a_9=C_9+C{10}/3. \end{aligned} $
(21) The subscripts "
$ ef $ " and "$ enf $ " stand for the factorizable and nonfactorizable diagrams with the emission of a ϕ meson, respectively. Similarly, "$ af1(2) $ " and "$ anf1(2) $ " mean the factorizable and nonfactorizable annihilation diagrams, where the number "1 (2)" means the case in which the produced strange quark enters the ϕ meson (γ). The superscripts "$ LL $ ," "$ LR $ ," and "$ SP $ " represent the inserted$ (V-A)\otimes(V-A) $ ,$ (V-A)\otimes (V+A) $ , and$(S-P)\otimes (S+P)$ currents. The expressions of the diagrams with different operators are given in the Appendix. Combining Eqs. (19) and (20), we calculate the branching fraction of this decay. -
In this section, we first list some parameters in our numerical calculations as [11, 30]
$ \begin{aligned}[b]& f_{B} = 210\pm20 \rm{ MeV},\ \ f_{B_s} = 230\pm20\rm{ MeV}, \\& f_{\phi}^T = 186\pm9 \rm{ MeV},\ \ f_{\rho}^T = 165\pm9 \rm{ MeV},\\& f_{\omega}^T = 151\pm9 \rm{ MeV}, \;\; V_{tb}=0.999172_{-0.000035}^{+0.000024}, \ \ \\& V_{ts}=0.03978_{-0.00060}^{+0.00082},\;\; V_{td}=0.00854_{-0.00016}^{+0.00023}, \\& \tau_{B}=1.519\times10^{-12}s,\ \ \tau_{B_s}=1.527\times10^{-12}s. \end{aligned} $
(22) Using the above input parameters, we calculate the branching fractions of
$ B^0 \to \phi \gamma $ ,$ B_s \to \rho^0\gamma $ , and$ B_s \to \omega\gamma $ including corrections from the HSP at leading order and list the results in Table 1. In addition, the results of the leading power are presented for comparison. In our calculations, three types of errors have been studied, which are from uncertainties of the nonperturbative physics, unknown QCD corrections, and CKM matrix parameters. The first errors are from the uncertainties of the parameters in the wave functions, such as the decay constants and the inner parameters in the distribution amplitudes of the initial and final mesons. It should be emphasized that these types of errors are dominant, and more precise results from nonperturbative approaches are needed in future. The second uncertainty comes from the QCD scale$\Lambda_{\rm QCD}$ and the hard kernel scale t, whose variants reflect the effects of the higher order QCD corrections. In this study, we set$\Lambda_{\rm QCD}=(0.25\pm 0.05)~{\rm GeV}$ and vary t from$ 0.8t $ to$ 1.2t $ . The final errors are caused by the CKM matrix elements.Decay modes LO( $ 10^{-12} $ )IBR( $ 10^{-11} $ )$ B^0 \to \phi \gamma $ $ 0.9^{+0.2+0.3+0.0}_{-0.2-0.4-0.0} $ $ 3.57^{+2.12+0.25+0.19}_{-1.58-0.31-0.14} $ $ B_s \to \rho^0 \gamma $ $ 72.8^{+26.5+4.6+2.4}_{-21.0-4.4-3.3} $ $ 12.4_{-3.87-0.55-0.60}^{+4.98+1.04+0.70} $ $ B_s \to \omega\gamma $ $ 8.6^{+5.3+6.9+0.2}_{-3.4-4.2-0.2} $ $ 35.1_{-21.2-4.14-1.90}^{+31.8+2.13+1.70} $ Table 1. Leading order (LO) branching ratios and improved branching ratios (IBR) of the pure annihilation type
$ B\to V\gamma $ decays in the PQCD approach.From Table 1, one finds that, at the leading order, the branching fractions of the
$ B_s\to (\rho^0,\omega)\gamma $ decays are much larger than that of$ B^0\to\phi\gamma $ ; this is because the former decays have the$ \bar uu $ component and thus gain contributions from the tree operators with larger WCs. It is important to note that, when the contributions from HSP are included, the branching fractions of all concerned decays are enhanced remarkably, and the branching fraction of$ B\to \phi\gamma $ increases by approximately 40 times compared with that of leading power. At leading power,$ B\to \phi\gamma $ is governed by the transition$ b\to d \bar s s $ , and the produced$ \bar s $ and s quarks form the final ϕ meson. The photon can be radiated from any quark participating in the weak interaction. Due to the symmetry, the contributions of the photon radiated from the strange and anti-strange quarks are canceled by each other; therefore, only the diagrams with photons emitted from the beauty and down quarks contribute to the amplitudes. The explicit amplitudes are given in Ref. [10]. When the contributions of the HSP are included, more diagrams contribute to the amplitudes$ \mathcal{A}^S $ and$ \mathcal{A}^P $ , as shown in Fig. 1. Compared with diagrams of leading power, both factorizable and nonfactorizable emission diagrams contribute to the amplitudes without cancellations. Furthermore, for the nanfactorizable diagrams, besides the$ (V-A)(V-A) $ operators, the$ (S-P)(S+P) $ operator that results from the Fierz transformation of the$ (V-A)(V+A) $ takes large contributions. This picture is very similar to that of the$ B \to \rho^0\phi $ decay. After summing all contributions, we find that the amplitude from the HSP is much larger than that of the leading power, leading to a larger branching fraction.Generally, the power expansion (
$ 1/m_B $ ) in B meson decays is an effective expansion in most decay modes, such as two-body non-leptonic decays. As stated in Sec. I, there are many sources of power corrections, such as the high-twist DAs of B and light mesons, the soft corrections to the leading twist contributions, and the subleading power “hadronic” photon correction. For the power corrections from B and light mesons, their contributions are less than$ 20 $ %. Such corrections could be plagued by large theoretical uncertainties, and we have not discussed these effects yet in the current work. However, for the pure annihilation radiative$ B\to V\gamma $ decays, the leading power contributions (annihilation diagrams) are already power suppressed compared with decays dominated by the emission type diagrams. When the HSP is taken into account, the emission diagrams are involved, which enhances the next-to-leading power contributions and makes the higher power corrections significantly larger than those of the leading power. All these can be summarized as follows: for some special decay modes, if the leading power contributions are suppressed by some mechanism, the higher power contributions could be larger than those of the leading power, which may lead to the branching fraction being enhanced significantly.We also note that the branching fractions of
$ B_s \to \rho^0\gamma $ and$ B_s \to \omega\gamma $ are on the order of$ {\cal O}(10^{-10}) $ , and that of$ B \to \phi\gamma $ is on the order of$ {\cal O}(10^{-11}) $ . Unfortunately, such small branching fractions cannot be measured in current experiments. To highlight the effects of the corrections from HSP, we define a ratio as follows:$ \mathcal{R}_{\rho\omega}=\frac{\mathcal{B}(B_s\to\rho^0\gamma)}{\mathcal{B}(B_s\to\omega\gamma)},\;\; $
(23) which can reduce of the dependence on the nonperturbative parameters effectively. At leading power,
$ \mathcal{R}_{\rho\omega}\sim 8 $ is much larger than 1, whereas this ratio becomes 0.35 when the HSP is involved. It is apparent that this ratio decreases by approximately 40 times; thus, it may be a good probe for testing the effects of HSP when the data are available. At leading order, because of the interference between the$ u\bar{u} $ and$ d\bar{d} $ components,$ B_s \to \rho^0\gamma $ has larger penguin contributions than$ B_s \to \omega\gamma $ , leading to the branching fractions of$ B_s \to \rho^0\gamma $ being much larger than that of$ B_s \to \omega\gamma $ . When including the HSP corrections, although they are suppressed by the CKM matrix elements and the power, the newly introduced tree contributions by the$ \bar u u $ component in the photon are comparable with those of penguin contributions, due to the large WCs, especially in the nonfactorizable diagrams. Because the signs of$ \bar dd $ in$ \rho^0 $ and ω are different, the interferences between contributions of tree operators and penguin ones are different for$ B_s \to \rho^0\gamma $ and$ B_s \to \omega\gamma $ decays. Again, due to the interference between the tree and penguin contributions, the HSP corrections to$ B_s\to\rho^0\gamma $ are much smaller than those to$ B_s\to\omega\gamma $ , leading to a small$ R_{\rho\omega} $ .As mentioned above, the HSP corrections could increase the branching fractions of these pure annihilation decays remarkably. In Ref. [19], it is found that the contribution of the HSP plays an important role in the
$ B\to\gamma l \nu $ decay and the branching faction can be decreased by$20$ %. In Ref. [34], the contributions of electromagnetic penguin operators to$ B_s\to (\rho^0,\omega)\gamma $ decays have also been examined in QCDF, and the results indicate that they are suppressed by the electromagnetic coupling constant$ \alpha_e $ . Very recently, these three decays have been comprehensively analyzed at leading power in the framework of soft-collinear effective theory in [35], where the authors found that the$ \phi-\omega-\rho^0 $ mixing effect could enhance the branching fractions of$ B^0 \to \phi\gamma $ and$ B_s\to \omega \gamma $ by approximately three orders of magnitude. If their conclusion holds in PQCD, the branching fractions of$ B^0 \to \phi\gamma $ and$ B_s\to \omega\gamma $ are roughly estimated to be on the order of$ 10^{-8} $ and$ 10^{-7} $ , respectively, which might be measurable in Belle-II and LHCb experiments. Future measurements on these decays will be helpful in discerning all the above physics mechanisms. -
The amplitudes of factorizable emission diagrams (a and b) with the
$ (V-A)(V-A) $ current are given as$ \begin{aligned}[b] \mathcal{A}^{S(LL)}_{H,ef}=&\sqrt{\frac{3}{2}}\pi C_Ff_{\phi}^T r_V Q_d m_B^3V_{tb}V_{td}^*\int_0^1{\rm d}x_1{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_3{\rm d}b_3\phi_B(x_1,b_1)\\&\times \Bigg\{\Big[f_{3\gamma}\Big(x_3\phi_{\gamma}^a(x_3)+4(x_3+2)\phi_{\gamma}^v(x_3)\Big) -4m_B\chi(\mu)\langle \bar{d}d\rangle\phi_{\gamma}(x_3)\Big]C(t_a)E_{ef}(t_a)h_{ef}[x_1,x_3(1-r_V^2),b_1,b_3]\\& -f_{3\gamma}\Big[\phi_{\gamma}^a(x_3)-4\phi_{\gamma}^v(x_3)\Big]C(t_b)E_{ef}(t_b)h_{ef}[x_3,x_1(1-r_V^2),b_3,b_1]\Bigg\}, \end{aligned}\tag{A1} $ $ \begin{aligned}[b] \mathcal{A}^{P(LL)}_{H,ef}=&\sqrt{\frac{3}{2}}\pi C_F f_{\phi}^T r_V Q_d m_B^3V_{tb}V_{td}^*\int_0^1{\rm d}x_1{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_3{\rm d}b_3\phi_B(x_1,b_1)\\&\times \Bigg\{\Big[f_{3\gamma}\Big((2+x_3)\phi_{\gamma}^a(x_3)+4x_3\phi_{\gamma}^v(x_3)\Big) +4m_B\chi(\mu)\langle\bar{d}d\rangle\phi_{\gamma}(x_3)\Big]C(t_a)E_{ef}(t_a)h_{ef}(x_1,x_3(1-r_V^2),b_1,b_3)\\& +f_{3\gamma}\Big[\phi_{\gamma}^a(x_3)-4\phi_{\gamma}^v(x_3)\Big]C(t_b)E_{ef}(t_b)h_{ef}[x_3,x_1(1-r_V^2),b_3,b_1]\Bigg\}, \end{aligned}\tag{A2} $
with the color factor
$ C_F=4/3 $ and the$ \phi(1020) $ meson decay constant$ f_{\phi}^T $ .$ Q_d $ is the charge of the down quark in the hadronic structure of the photon. The Sudakov form factors$ E_{ef} $ , hard functions$ h_{ef} $ , and scales$ t_{a,b} $ can be found in Ref. [27] because the behaviors of the photon are very similar to a vector.For the nonfactorizable emission diagrams (c and d), not only the
$ (V-A)(V-A) $ current but also the$ (S-P)(S+P) $ current can be inserted, and the corresponding amplitudes are written as$ \begin{aligned}[b] \mathcal{A}^{S(LL)}_{H,enf}=&\pi C_Fr_Vm_B^3Q_d\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1) \\&\times \Bigg\{\left[8(x_2-1)\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big)\right] E_{enf}(t_a)h_{enfa}[x_1,x_2,x_3,b_1,b_2] \\ &-4\left[2 x_2\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big) -f_{3\gamma}(x_2+x_3)\Big(\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)-4\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)\Big) \right] \\ &\times E_{enf}(t_b)h_{enfb}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A3} $ $ \begin{aligned}[b] \mathcal{A}^{P(LL)}_{H,enf}=&\pi C_Fr_Vm_B^3Q_d\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1) \\&\times \Bigg\{\left[8(1-x_2)\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big)\right] E_{enf}(t_a)h_{enfa}[x_1,x_2,x_3,b_1,b_2] \\& +4\left[2 x_2\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big) +f_{3\gamma}(x_2+x_3)\Big(4\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)-\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)\Big) \right] \\ &\times E_{enf}(t_b)h_{enfb}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A4} $
$ \begin{aligned}[b] \mathcal{A}^{S(SP)}_{H,enf}=&\pi C_Fr_Vm_B^3Q_d\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1) \\&\times \Bigg\{4\left[2(x_2-1)\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle \Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big) -f_{3\gamma}(x_2-x_3-1)\Big(4\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)+\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)\Big) \right] \\& \times E_{enf}(t_a)h_{enfa}[x_1,x_2,x_3,b_1,b_2] +\left[8 x_2\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^v(x_2)-\phi_{\phi}^a(x_2)\Big)\right] E_{enf}(t_b)h_{enfb}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A5} $
$ \begin{aligned}[b] \mathcal{A}^{P(SP)}_{H,enf}=&\pi C_Fr_Vm_B^3Q_d\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2\phi_B(x_1,b_1) \\&\times \Bigg\{4\left[2(1-x_2)\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle \Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big) +f_{3\gamma}(1-x_2+x_3)\Big(4\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)+\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)\Big) \right] \\ & \times E_{enf}(t_a)h_{enfa}[x_1,x_2,x_3,b_1,b_2] +\left[8 x_2\phi_{\gamma}(x_3)\chi(\mu)m_B\langle\bar{d}d\rangle\Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big)\right] E_{enf}(t_b)h_{enfb}[x_1,x_2,x_3,b_1,b_2]\Bigg\}. \end{aligned}\tag{A6} $
For the annihilation diagrams (e-h), because the produced strange quark can enter not only the ϕ meson but also the photon, we have to discuss two cases. If the strange quark enters the photon, the corresponding factorizable and nonfactorizable annihilation amplitudes with possible currents are given as
$ \begin{aligned}[b] \mathcal{A}^{S(LL)}_{H,af1}=&-\sqrt{\frac{3}{2}}\pi C_F f_b Q_s r_V f_{3\gamma}m_B^3\int_0^1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_2{\rm d}b_2b_3{\rm d}b_3 \\&\times \Bigg\{\left[x_3\Big(\phi_{\gamma}^a(x_3)+4\phi_{\gamma}^v(x_3)\Big)\Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big) -2\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)+8\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)\right] E_{af}(t_e)h_{afe}[x_2,x_3,b_2,b_3]\\&+\left[x_2\Big(\phi_{\gamma}^a(x_3)-4\phi_{\gamma}^v(x_3)\Big)\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big) +\Big(\phi_{\gamma}^a(x_3)+4\phi_{\gamma}^v(x_3)\Big)\Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big)\right] E_{af}(t_f)h_{aff}[x_2,x_3,b_2,b_3]\Bigg\},\\[-10pt] \end{aligned} \tag{A7}$
$ \begin{aligned}[b] \mathcal{A}^{P(LL)}_{H,af1}=&\sqrt{\frac{3}{2}}\pi C_F f_b Q_s r_V f_{3\gamma}m_B^3\int_0^1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_2{\rm d}b_2b_3{\rm d}b_3 \\&\times \Bigg\{\left[\phi_{\gamma}^a(x_3)\Big((x_3-2)\phi_{\phi}^v(x_2)-x_3\phi_{\phi}^a(x_2)\Big) -4\phi_{\gamma}^v(x_3)\Big((x_3-2)\phi_{\phi}^a(x_2)-x_3\phi_{\phi}^v(x_2)\Big)\right]E_{af}(t_e)h_{afe}[x_2,x_3,b_2,b_3] \\& +\left[x_2\Big(\phi_{\gamma}^a(x_3)-4\phi_{\gamma}^v(x_3)\Big)\Big(\phi_{\phi}^a(x_2)+\phi_{\phi}^v(x_2)\Big)-\Big(\phi_{\gamma}^a(x_3) +4\phi_{\gamma}^v(x_3)\Big)\Big(\phi_{\phi}^a(x_2)-\phi_{\phi}^v(x_2)\Big)\right] E_{af}(t_f)h_{aff}[x_2,x_3,b_2,b_3]\Bigg\},\\[-10pt] \end{aligned}\tag{A8} $
$ \mathcal{A}^{S(LR)}_{H,af1}=\mathcal{A}^{S(LL)}_{H,af1}, \tag{A9} $
$ \mathcal{A}^{P(LR)}_{H,af1}=-\mathcal{A}^{P(LL)}_{H,af1}; \tag{A10} $
$ \begin{aligned}[b] \mathcal{A}^{S(LL)}_{H,anf1}=&4\pi C_F Q_s r_V m_B^3\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1)\\&\times \Bigg\{\left[f_{3\gamma}\Big(\phi_{\gamma}^a(x_3)\phi_{\phi}^a(x_2)-4\phi_{\gamma}^v(x_3)\phi_{\phi}^v(x_2)\Big) +2(x_2-1)r_V\phi_{\gamma}(x_3)\phi_{\phi}^t(x_2)\chi(\mu)m_B\langle\bar{s}s\rangle\right] \\&\times E_{anf}(t_g)h_{anfg}[x_1,x_2,x_3,b_1,b_2] -2\left[x_2 r_V\phi_{\gamma}(x_3)\phi_{\phi}^t(x_2)\chi(\mu)m_B\right]E_{anf}(t_h)h_{anfh}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A11} $
$ \begin{aligned}[b] \mathcal{A}^{P(LL)}_{H,anf1}=&4\pi C_F Q_s r_V m_B^3\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1)\\&\times \Bigg\{\left[f_{3\gamma}\Big(4\phi_{\gamma}^v(x_3)\phi_{\phi}^a(x_2)-\phi_{\gamma}^a(x_3)\phi_{\phi}^v(x_2)\Big) +2(x_2-1)r_V\phi_{\gamma}(x_3)\phi_{\phi}^t(x_2)\chi(\mu)m_B\langle\bar{s}s\rangle\right]\\&\times E_{anf}(t_g)h_{anfg}[x_1,x_2,x_3,b_1,b_2] -2\left[x_2 r_V\phi_{\gamma}(x_3)\phi_{\phi}^t(x_2)\chi(\mu)m_B\right]E_{anf}(t_h)h_{anfh}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A12} $
$ \mathcal{A}^{S(SP)}_{H,anf1}=\mathcal{A}^{S(LL)}_{H,anf1}, \tag{A13} $
$ \mathcal{A}^{P(SP)}_{H,anf1}=-\mathcal{A}^{P(LL)}_{H,anf1}. \tag{A14}$
When the strange quark enters the ϕ meson, the amplitudes are expressed as
$ \mathcal{A}^{S(LL)}_{H,af2} =\mathcal{A}^{S(LR)}_{H,af2} =\mathcal{A}^{S(LL)}_{H,af1}, \tag{A15} $
$ \mathcal{A}^{P(LL)}_{H,af2} =-\mathcal{A}^{P(LR)}_{H,af2} =-\mathcal{A}^{P(LL)}_{H,af2}, \tag{A16} $
$ \begin{aligned}[b] \mathcal{A}^{S(LL)}_{H,anf2}=&4\pi C_F Q_s r_V m_B^3\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1) \\&\times \Bigg\{\left[f_{3\gamma}\Big(\phi_{\gamma}^a(x_2)\phi_{\phi}^a(x_3)-4\phi_{\gamma}^v(x_2)\phi_{\phi}^v(x_3)\Big) -2x_3 r_V\phi_{\gamma}(x_2)\phi_{\phi}^t(x_3)\chi(\mu)m_B\langle\bar{s}s\rangle\right] E_{anf}(t_g)h_{anfg}[x_1,x_2,x_3,b_1,b_2] \\& +2\left[(x_3-1)r_V\phi_{\gamma}(x_2)\phi_{\phi}^t(x_3)\chi(\mu)m_B\right] E_{anf}(t_h)h_{anfh}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A17} $
$ \begin{aligned}[b] \mathcal{A}^{P(LL)}_{H,anf2}=&4\pi C_F Q_s r_V m_B^3\int_0^1{\rm d}x_1{\rm d}x_2{\rm d}x_3\int_0^{\infty}b_1{\rm d}b_1b_2{\rm d}b_2 \phi_B(x_1,b_1) \\&\times \Bigg\{\left[f_{3\gamma}\Big(4\phi_{\gamma}^v(x_2)\phi_{\phi}^a(x_3)-4\phi_{\gamma}^a(x_2)\phi_{\phi}^v(x_3)\Big) +2x_3 r_V\phi_{\gamma}(x_2)\phi_{\phi}^t(x_3)\chi(\mu)m_B\langle\bar{s}s\rangle\right]E_{anf}(t_g)h_{anfg}[x_1,x_2,x_3,b_1,b_2] \\& -2\left[(x_3-1)r_V\phi_{\gamma}(x_2)\phi_{\phi}^t(x_3)\chi(\mu)m_B\right] E_{anf}(t_h)h_{anfh}[x_1,x_2,x_3,b_1,b_2]\Bigg\}, \end{aligned}\tag{A18} $
$ \mathcal{A}^{S(SP)}_{H,anf2} =\mathcal{A}^{S(LL)}_{H,anf2}, \tag{A19} $
$ \mathcal{A}^{P(SP)}_{H,anf2} =-\mathcal{A}^{P(LL)}_{H,anf2}. \tag{A20} $
Effects from hadronic structure of photon on $ {\boldsymbol B\boldsymbol\to\boldsymbol\phi\boldsymbol\gamma }$ and ${\boldsymbol B_{\boldsymbol s}\boldsymbol\to(\boldsymbol\rho^{\bf 0},\boldsymbol\omega)\gamma }$ decays
- Received Date: 2022-09-30
- Available Online: 2023-02-15
Abstract: Using the perturbative QCD approach, we studied the effects of the hadronic structure of photons on the pure annihilation rediative decays