-
In this section, we will discuss the development of the modified metric corresponding to the emergent spacetime, which is related with a general background geometry and a very general K-essence scalar field. The K-essence scalar field, ϕ, has action [30–34]
$ \begin{array}{*{20}{l}} S_{k}[\phi,g_{\mu\nu}]= \int {\rm d}^{4}x {\sqrt -g} L(X,\phi), \end{array} $
(1) which has a minimal coupling with the background space-time metric,
$ g_{\mu\nu} $ , and$ X={1\over 2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi $ represents the canonical kinetic term. The energy-momentum tensor is$ \begin{aligned}[b] T_{\mu\nu}\equiv & {-2\over \sqrt {-g}}{\delta S_{k}\over \delta g^{\mu\nu}}=-2\frac{{\partial} L}{{\partial} g^{\mu\nu}}+g_{\mu\nu}L \\=&-L_{X}\nabla_{\mu}\phi\nabla_{\nu}\phi+g_{\mu\nu}L, \end{aligned} $
(2) with
$L_{\rm X}= {{\rm d}L\over {\rm d}X},\; L_{{\rm{X}}X}= {{\rm d}^{2}L\over {\rm d}X^{2}},\; L_{\phi}={{\rm d}L\over {\rm d}\phi}$ , and the symbol$ \nabla_{\mu} $ standing for the covariant derivative with respect to the gravitational metric,$ g_{\mu\nu} $ .The EOM of a scalar field is
$ -{1\over \sqrt {-g}}{\delta S_{k}\over \delta \phi}= G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi +2XL_{X\phi}-L_{\phi}=0, $
(3) where
$ G^{\mu\nu}\equiv \frac{c_{s}}{L_{X}^{2}}[L_{X} g^{\mu\nu} + L_{XX} \nabla ^{\mu}\phi\nabla^{\nu}\phi], $
(4) with
$ 1+ {2X L_{XX}\over L_{X}} > 0 $ and$ c_s^{2}(X,\phi)\equiv{(1+2X{L_{XX}\over L_{X}})^{-1}} $ .The inverse metric,
$ G^{\mu\nu} $ , can be written in the following form:$ G_{\mu\nu}={L_{X}\over c_{s}}[g_{\mu\nu}-{c_{s}^{2}}{L_{XX}\over L_{X}}\nabla_{\mu}\phi\nabla_{\nu}\phi]. $
(5) Applying a conformal transformation further [40, 41],
$ \bar G_{\mu\nu}\equiv {c_{s}\over L_{X}}G_{\mu\nu} $ gives$ \bar G_{\mu\nu} ={g_{\mu\nu}-{{L_{XX}}\over {L_{X}+2XL_{XX}}}\nabla_{\mu}\phi\nabla_{\nu}\phi}. $
(6) Using Eq. (2), the effective emergent metrics (6) can be written as [32, 33]
$ \bar G_{\mu\nu}=\left[1-\frac{LL_{XX}}{L_{X}(L_{X}+2XL_{XX})}\right]g_{\mu\nu}+\frac{L_{XX}}{L_{X}(L_{X}+2XL_{XX})}T_{\mu\nu}. $
(7) We should always keep it in mind that,
$ L_{X}\neq 0 $ when$ c_{s}^{2} $ is positive, and only then, Eqs. (1) – (4) will yield meaningful physics.Evidently, if ϕ has a non-trivial space-time configuration, then usually the emergent metric,
$ \bar G_{\mu\nu} $ , is not conformally equivalent to$ g_{\mu\nu} $ . So ϕ has dissimilar characteristics as ompared with canonical scalar fields with the locally defined causal structure. Further, if there is no explicit dependency of L on ϕ, the reformed EOM (3) becomes$ -{1\over \sqrt {-g}}{\delta S_{k}\over \delta \phi} = \bar G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi=0. $
(8) The authors [33, 34, 37–42, 74] take the Dirac-Born-Infeld (DBI) type non-canonical Lagrangian as
$ L(X,\phi)=V(\phi)[ 1-\sqrt{1-2X}] $ , where$ V(\phi) $ is a constant potential and kinetic energy of the K-essence scalar field and is much greater than the potential part of the Lagrangian. In this article, we choose the DBI type non-canonical Lagrangian to be an explicit function of X only as$ L(X,\phi)\simeq L(X) $ [43], without any loss of generality and dimensionality since in the K-essence theory, the kinetic energy dominates over the potential energy of the system. Therefore, we can write the Lagrangian as$ \begin{array}{*{20}{l}} L(X,\phi)\simeq L(X)= V\big[1-\sqrt{1-2X}\big], \end{array} $
(9) where V is a constant potential term.
Then
$ c_{s}^{2}(X,\phi)=1-2X $ , and hence, the effective emergent metric (6) turns out to be$ \begin{array}{*{20}{l}} \bar G_{\mu\nu}= g_{\mu\nu} - \nabla_{\mu}\phi\nabla_{\nu}\phi\equiv g_{\mu\nu} - {\partial}_{\mu}\phi{\partial}_{\nu}\phi, \end{array} $
(10) since ϕ is a scalar.
Eqs. (2) and (10) can be rewritten in terms of
$ T_{\mu\nu} $ and$ \nabla_{\mu}\phi $ as$ \begin{array}{*{20}{l}} \bar G_{\mu\nu}L =L_{X}\nabla_{\mu}\phi\nabla_{\nu}\phi+T_{\mu\nu}-L\nabla_{\mu}\phi\nabla_{\nu}\phi. \end{array} $
(11) Following [40, 75], the relation between the new Christoffel symbols and the old ones is
$ \begin{aligned}[b] \bar\Gamma ^{\alpha}_{\mu\nu} =&\Gamma ^{\alpha}_{\mu\nu} + (1-2X)^{-1/2}\bar{G}^{\alpha\gamma}\\&\times[\bar{G}_{\mu\gamma}\partial_{\nu}(1-2X)^{1/2} +\bar{G}_{\nu\gamma}\partial_{\mu}(1-2X)^{1/2}-\bar{G}_{\mu\nu}\partial_{\gamma}(1-2X)^{1/2}]\\ =&\Gamma ^{\alpha}_{\mu\nu} -\frac {1}{2(1-2X)}[\delta^{\alpha}_{\mu}\partial_{\nu}X + \delta^{\alpha}_{\mu}\partial_{\nu}X]. \end{aligned} $
(12) Therefore, using the new Christoffel connections,
$ \bar\Gamma $ , the geodesic equation for the K-essence becomes$ \frac {{\rm d}^{2}x^{\alpha}}{{\rm d}{\lambda}^{2}} + \bar\Gamma ^{\alpha}_{\mu\nu}\frac {{\rm d}x^{\mu}}{{\rm d}{\lambda}}\frac {{\rm d}x^{\nu}}{{\rm d}{\lambda}}=0, $
(13) where
$ {\lambda} $ is an affine parameter.Now introducing the covariant derivative,
$ D_{\mu} $ [32, 33], corresponding to the emergent metric$ \bar G_{\mu\nu} $ $ (D_{{\alpha}}\bar G^{{\alpha}{\beta}}=0) $ as$ \begin{array}{*{20}{l}} D_{\mu}A_{\nu}={\partial}_{\mu} A_{\nu}-\bar \Gamma^{{\lambda}}_{\mu\nu}A_{{\lambda}}, \end{array} $
(14) and the inverse of the emergent metric is
$ \bar G^{\mu\nu} $ such that$ \bar G_{\mu{\lambda}}\bar G^{{\lambda}\nu}=\delta^{\nu}_{\mu} $ .Ultimately, the "emergent" Einstein's equation becomes
$ \bar{E}_{\mu\nu}={\bar{R}}_{\mu\nu}-\frac{1}{2}\bar{G}_{\mu\nu}{\bar{R}}={\kappa} T_{\mu\nu}, $
(15) where
$ {\kappa}=8\pi G $ is a constant,$ {\bar{R}}_{\mu\nu} $ is emergent gravity's Ricci tensor, and${\bar{R}}(={\bar{R}}_{\mu\nu}\bar{G}^{\mu\nu}) $ is the Ricci scalar of the emergent space-time. -
We now consider the action of modified gravity in the context of K-essence emergent space-time, which takes the following form (
$ {\kappa}=1 $ )$ S= \int {\rm d}^{4}x \sqrt{-\bar{G}}\; f({\bar{R}},L(X)), $
(16) where
$ f({\bar{R}},L(X)) $ is an arbitrary function of the Ricci scalar$ {\bar{R}} $ , the non-canonical Lagrangian density,$ L(X) $ , corresponding to the K-essence theory, and$ \sqrt{-{\bar{G}}}=\sqrt{-{\rm det}({{\bar{G}}_{\mu\nu}})}. $
Based on the following work [18], varying the action, S, with respect to the K-essence emergent gravity metric,
$ \bar{G}^{\mu\nu} $ , we obtain$ \begin{aligned}[b] \delta S =& \int \Bigg[f_{{\bar{R}}}({\bar{R}}, L)\delta {\bar{R}} + f_{L}({\bar{R}}, L)\frac{\delta L}{\delta \bar{G}^{\mu\nu}}\delta \bar{G}^{\mu\nu}\\&- \frac{1}{2}\bar{G}_{\mu\nu}f({\bar{R}}, L)\delta \bar{G}^{\mu\nu} \Bigg] \times\sqrt{-\bar{G}}\; {\rm d}^{4}x, \end{aligned} $
(17) where we have denoted
$ f_{{\bar{R}}}({\bar{R}}, L)=\frac{{\partial}{f({\bar{R}}, L)}}{{\partial} {\bar{R}}} $ and$ f_{L}({\bar{R}}, L)= \frac{{\partial}{f({\bar{R}}, L)}}{{\partial} L} $ .Now, we obtain the variation of the Ricci scalar for the K-essence emergent gravity metric
$ \begin{aligned}[b] \delta {\bar{R}} =& \delta ({\bar{R}}_{\mu\nu}\bar{G}^{\mu\nu}) = \delta {\bar{R}}_{\mu\nu}\bar{G}^{\mu\nu} + {\bar{R}}_{\mu\nu}\delta \bar{G}^{\mu\nu}\\ =&{\bar{R}}_{\mu\nu}\delta \bar{G}^{\mu\nu}+{\bar{G}}^{\mu\nu}(D_{{\lambda}}\delta\bar{\Gamma}^{{\lambda}}_{\mu\nu}-D_{\nu}\delta\bar{\Gamma}^{{\lambda}}_{\mu{\lambda}}), \end{aligned} $
(18) where
$ \begin{array}{*{20}{l}} {\bar{R}}_{\mu\nu} = \partial_{\mu}\bar{\Gamma}^{\alpha}_{\alpha\nu} - \partial_{\alpha}\bar{\Gamma}^{\alpha}_{\mu\nu} + \bar{\Gamma}^{\alpha}_{\beta\mu}\bar{\Gamma}^{\beta}_{\alpha\nu} - \bar{\Gamma}^{\alpha}_{\alpha\beta}\bar{\Gamma}^{\beta}_{\mu\nu}, \end{array} $
(19) $ \bar{\Gamma}^{\alpha}_{\mu\nu} = \frac{1}{2}\bar{G}^{\alpha\beta}[\partial_{\mu}\bar{G}_{\beta\nu} + \partial_{\nu}\bar{G}_{\mu\beta} - \partial_{\beta}\bar{G}_{\mu\nu}], $
(20) and the variation of
$ \delta\bar{\Gamma}^{{\lambda}}_{\mu\nu} $ is$ \delta\bar{\Gamma}^{{\lambda}}_{\mu\nu}=\frac{1}{2}{\bar{G}}^{{\lambda}{\alpha}}[D_{\mu}{\delta}{\bar{G}}_{\nu{\alpha}}+D_{\nu}{\delta}{\bar{G}}_{\mu{\alpha}}-D_{{\alpha}}{\delta}{\bar{G}}_{\mu\nu}]. $
(21) Thus, the expression for the variation of the Ricci scalar,
$ {\delta}{\bar{R}} $ , is$ \begin{array}{*{20}{l}} {\delta}{\bar{R}}={\bar{R}}_{\mu\nu}{\delta}{\bar{G}}^{\mu\nu}+{\bar{G}}_{\mu\nu}D_{{\alpha}}D^{{\alpha}}{\delta}{\bar{G}}^{\mu\nu}-D_{\mu}D_{\nu}{\delta}{\bar{G}}^{\mu\nu}. \end{array} $
(22) Therefore, variation of Eq. (17) is
$ \begin{aligned}[b] \delta S=& \int \Big[f_{{\bar{R}}}({\bar{R}}, L){\bar{R}}_{\mu\nu}\delta \bar{G}^{\mu\nu} + f_{{\bar{R}}}({\bar{R}}, L)\bar{G}_{\mu\nu}D_{{\alpha}}D^{{\alpha}}\delta \bar{G}^{\mu\nu}\\&- f_{{\bar{R}}}({\bar{R}}, L)D_{\mu}D_{\nu}\delta \bar{G}^{\mu\nu} + f_{L}({\bar{R}}, L)\frac{\delta L}{\delta \bar{G}^{\mu\nu}}\delta \bar{G}^{\mu\nu}\\&- \frac{1}{2}\bar{G}_{\mu\nu}f({\bar{R}}, L)\delta \bar{G}^{\mu\nu}\Big]\sqrt{-\bar{G}}d^{4}x.\; \; \; \; \; \end{aligned} $
(23) After partially integrating second and third terms of the above Eq. (23), we get
$ \begin{aligned}[b] \delta S =& \int \Big[f_{{\bar{R}}}({\bar{R}}, L){\bar{R}}_{\mu\nu} + \bar{G}_{\mu\nu}D_{\mu}D^{\mu}f_{{\bar{R}}}({\bar{R}}, L) \\&- D_{\mu}D_{\nu}f_{{\bar{R}}}({\bar{R}}, L) + f_{L}({\bar{R}}, L)\frac{\delta L}{\delta \bar{G}^{\mu\nu}} \\&- \frac{1}{2}\bar{G}_{\mu\nu}f({\bar{R}}, L)\Big]\delta \bar{G}^{\mu\nu}\sqrt{-\bar{G}}{\rm d}^{4}x. \end{aligned} $
(24) Therefore, using the principle of least action, i.e.
$ \delta S = 0 $ , we have the modified field equation for$ f({\bar{R}}, L(X)) $ theory$ \begin{aligned}[b] &f_{{\bar{R}}}({\bar{R}}, L){\bar{R}}_{\mu\nu} + \bar{G}_{\mu\nu}D_{{\alpha}}D^{{\alpha}}f_{{\bar{R}}}({\bar{R}}, L) - D_{\mu}D_{\nu}f_{{\bar{R}}}({\bar{R}}, L) \\&\quad- \frac{1}{2}\bar{G}_{\mu\nu}f({\bar{R}}, L) + f_{L}({\bar{R}}, L)\frac{\delta L}{\delta \bar{G}^{\mu\nu}} = 0. \end{aligned} $
(25) Now, we evaluate the term
$ \frac{\delta L}{\delta \bar{G}^{\mu\nu}} $ as$ \frac{\delta L}{\delta \bar{G}^{\mu\nu}}=\frac{{\delta} L}{{\delta} X}\frac{{\delta} X}{{\delta} g^{\mu\nu}}\frac{{\delta} g^{\mu\nu}}{{\delta}{\bar{G}}^{\mu\nu}}=\frac{1}{2}L_{X}D_{\mu}\phi D_{\nu}\phi(1+D_{{\alpha}}\phi D^{{\alpha}}\phi), $
(26) since for the scalar field
$ \nabla_{\mu}\phi\equiv{\partial}_{\mu}\phi\equiv D_{\mu}\phi $ .Using Eqs. (11), (25), and (26), we obtain the expression for the modified field equation for the
$ f({\bar{R}}, L(X)) $ theory in terms of$ T_{\mu\nu} $ as$ \begin{aligned}[b] &f_{{\bar{R}}}({\bar{R}}, L){\bar{R}}_{\mu\nu} +\left(\bar{G}_{\mu\nu}{\bar{\square}} - D_{\mu}D_{\nu}\right)f_{{\bar{R}}}({\bar{R}}, L)\\&- \frac{1}{2}\left [f({\bar{R}}, L)-Lf_{L}({\bar{R}}, L)(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)\right]\bar{G}_{\mu\nu}\\ &+\frac{1}{2}Lf_{L}({\bar{R}}, L)D_{\mu}\phi D_{\nu}\phi\left[1+D_{{\alpha}}\phi D^{{\alpha}}\phi\right] \end{aligned} $
$ \begin{aligned}[b] \quad=\frac{1}{2}f_{L}({\bar{R}}, L)T_{\mu\nu}\left[1+D_{{\alpha}}\phi D^{{\alpha}}\phi\right]=\frac{1}{2}f_{L}({\bar{R}}, L){\bar{T}}_{\mu\nu},\; \; \; \; \end{aligned} $
(27) where
$ {\bar{\square}}=D_{\mu}D^{\mu} $ and$ {\bar{T}}_{\mu\nu}=T_{\mu\nu}[1+D_{{\alpha}}\phi D^{{\alpha}}\phi] $ .The above Eq. (27) is different from the usual Eq. (104) of
$ f(R,L_{m}) $ theory in the presence of the K-essence scalar field (vide the Appendix). If we consider the emergent gravity metric,$ {\bar{G}}_{\mu\nu} $ , is conformally equivalent to the gravitational metric,$ g_{\mu\nu} $ , and L can be matter Lagrangian, then we get back to the usual$ f(R,L_{m}) $ theory in the absence of the K-essence scalar field. Further, if we consider$ f({\bar{R}},L(X))\equiv f(R,L_{m})\equiv \frac{1}{2}R+L_{m} $ , i.e., the Hilbert-Einstein Lagrangian form, then from Eq. (27), we lead to the standard Einstein field equation$ R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=T_{\mu\nu} $ .Contracting the above field equation, Eq. (27), with
$ {\bar{G}}^{\mu\nu} $ , we have the modified trace equation for the$ f({\bar{R}}, L(X)) $ theory as$ \begin{aligned}[b] f_{{\bar{R}}}({\bar{R}}, L){\bar{R}} + 3{\bar{\square}} f_{{\bar{R}}}({\bar{R}}, L)-2\Big[f({\bar{R}}, L)-f_{L}({\bar{R}}, L)L(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)\Big]+\frac{1}{2}Lf_{L}({\bar{R}}, L)D_{\mu}\phi D^{\mu}\phi[1+D_{{\alpha}}\phi D^{{\alpha}}\phi]=\frac{1}{2}f_{L}({\bar{R}}, L){\bar{T}}, \\ \end{aligned} $ (28) where
$ {\bar{T}}={\bar{T}}^{\mu}_{\mu} $ is trace of the energy-momentum tensor.Subtracting Eq.
$ (28)\times {\bar{G}}_{\mu\nu} $ from Eq.$ (27)\times 3 $ , we get$ \begin{aligned}[b] &f_{{\bar{R}}}({\bar{R}}, L)({\bar{R}}_{\mu\nu}-\frac{1}{3}{\bar{G}}_{\mu\nu}{\bar{R}})+\frac{1}{6}{\bar{G}}_{\mu\nu}[f({\bar{R}}, L)-Lf_{L}({\bar{R}}, L)(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)]+\frac{1}{3}Lf_{L}({\bar{R}}, L)D_{\mu}\phi D_{\nu}\phi[1+D_{{\alpha}}\phi D^{{\alpha}}\phi]\\=&\frac{1}{2}f_{L}({\bar{R}}, L)({\bar{T}}_{\mu\nu}-\frac{1}{3}{\bar{G}}_{\mu\nu}{\bar{T}})+D_{\mu}D_{\nu}f_{{\bar{R}}}({\bar{R}}, L), \end{aligned} $
(29) which is an another form of the modified field equation in the presence of the K-essence scalar field, ϕ.
By taking covariant divergence with respect to
$ D^{\mu} $ of Eq. (27), we have$ \begin{aligned}[b] &D^{\mu}\Big[f_{{\bar{R}}}({\bar{R}}, L)\Big]{\bar{R}}_{\mu\nu}-({\bar{\square}} D_{\nu}-D_{\nu}{\bar{\square}})f_{{\bar{R}}}({\bar{R}}, L)+f_{{\bar{R}}}({\bar{R}}, L)D^{\mu}\Big({\bar{R}}_{\mu\nu}-\frac{1}{2}{\bar{G}}_{\mu\nu}{\bar{R}}\Big)+\frac{1}{2}{\bar{G}}_{\mu\nu}f_{{\bar{R}}}({\bar{R}},L)D^{\mu}({\bar{R}})\\&-\frac{1}{2}D^{\mu}\Big[f({\bar{R}},L)\Big]{\bar{G}}_{\mu\nu}+\frac{1}{2}D^{\mu}\Big[Lf_{L}({\bar{R}}, L)(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)\Big]{\bar{G}}_{\mu\nu} +\frac{1}{2}D^{\mu}\Big[Lf_{L}({\bar{R}}, L)D_{\mu}\phi D_{\nu}\phi(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)\Big]\\=&\frac{1}{2}D^{\mu}\Big[f_{L}({\bar{R}}, L){\bar{T}}_{\mu\nu}\Big]. \end{aligned} $
(30) Using identities on purely geometrical grounds [76–78] ,
$ D^{\mu}({\bar{R}}_{\mu\nu}-\frac{1}{2}{\bar{G}}_{\mu\nu}{\bar{R}})=D^{\mu}\bar{E}_{\mu\nu}=0 $ ,$ D^{\mu}[f_{{\bar{R}}}({\bar{R}}, L)]{\bar{R}}_{\mu\nu}= ({\bar{\square}} D_{\nu}- D_{\nu}{\bar{\square}})f_{{\bar{R}}}({\bar{R}}, L) $ , and also Eqs. (11) and (26), the above Eq. (30) becomes$ \begin{aligned}[b] D^{\mu}[f_{L}({\bar{R}}, L){\bar{T}}_{\mu\nu}]=&-f_{L}({\bar{R}}, L)D^{\mu}[{\bar{G}}_{\mu\nu}L] +D^{\mu}\left[Lf_{L}({\bar{R}}, L)(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)({\bar{G}}_{\mu\nu}+D_{\mu}\phi D_{\nu}\phi)\right]\\ &\Rightarrow D^{\mu}{\bar{T}}_{\mu\nu}=D^{\mu}\; {\rm ln}[f_{L}({\bar{R}},L)]\times\left[L_{X}D_{\mu}\phi D_{\nu}\phi (1+D_{{\alpha}}\phi D^{{\alpha}}\phi)\right]+D^{\mu}\left[L D_{\mu}\phi D_{\nu}\phi (1+D_{{\alpha}}\phi D^{{\alpha}}\phi)+L{\bar{G}}_{\mu\nu}D_{{\alpha}}\phi D^{{\alpha}}\phi\right]\\ &\Rightarrow D^{\mu}{\bar{T}}_{\mu\nu}=2D^{\mu}\; {\rm ln}[f_{L}({\bar{R}},L)]\frac{\delta L}{\delta {\bar{G}}^{\mu\nu}}+D^{\mu}\left[L D_{\mu}\phi D_{\nu}\phi (1+D_{{\alpha}}\phi D^{{\alpha}}\phi)+L{\bar{G}}_{\mu\nu}D_{{\alpha}}\phi D^{{\alpha}}\phi\right]. \end{aligned} $
(31) Thus, the requirement of the conservation of the energy-momentum tensor
$ (D^{\mu}{\bar{T}}_{\mu\nu}=0) $ for the K-essence Lagrangian, gives an effective functional relation as$ \begin{array}{*{20}{l}} 2D^{\mu}\; {\rm ln}[f_{L}({\bar{R}},L)]\frac{\delta L}{\delta {\bar{G}}^{\mu\nu}}+D^{\mu}\Big[L D_{\mu}\phi D_{\nu}\phi (1+D_{{\alpha}}\phi D^{{\alpha}}\phi)+L{\bar{G}}_{\mu\nu}D_{{\alpha}}\phi D^{{\alpha}}\phi\Big]=0. \end{array} $
(32) -
We consider the gravitational metric,
$ g_{\mu\nu} $ , to be a flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric and the line element for this is$ {\rm d}s^{2}={\rm d}t^{2}-a^{2}(t)\displaystyle\sum\limits_{i=1}^{3} ({\rm d}x^{i})^{2}, $
(33) with
$ a(t) $ being the scale factor, as usual.From Eq. (10), we have the components of the emergent gravity metric as
$ {\bar{G}}_{00}=(1-\dot\phi^{2})\; ;\; {\bar{G}}_{ii}=-[a^{2}(t)+(\phi^{'})^{2}]\; ;\; {\bar{G}}_{0i}=-\dot\phi \phi^{'}={\bar{G}}_{i0}, $
(34) where we consider
$ \phi\equiv \phi(t,x^{i}) $ ,$ \dot\phi=\frac{{\partial} \phi}{{\partial} t} $ , and$ \phi^{'}=\frac{{\partial} \phi}{{\partial} x^{i}} $ .So, the line element of the FLRW emergent gravity metric is
$ {\rm d}S^{2}=(1-\dot\phi^{2}){\rm d}t^{2}-\big[a^{2}(t)+(\phi^{'})^{2}\big]\displaystyle\sum\limits_{i=1}^{3} ({\rm d}x^{i})^{2}-2\dot\phi \phi^{'}{\rm d}t {\rm d}x^{i}. $
(35) Now, from the emergent gravity equation of motion, Eq. (8), we have
$ \begin{aligned}[b] &{\bar{G}}^{00}({\partial}_{0}{\partial}_{0}\phi-{\Gamma}^{0}_{00}{\partial}_{0}\phi-{\Gamma}^{i}_{00}{\partial}_{i}\phi)+{\bar{G}}^{ii}({\partial}_{i}{\partial}_{i}\phi\\&\quad-{\Gamma}^{0}_{ii}{\partial}_{0}\phi-{\Gamma}^{i}_{ii}{\partial}_{i}\phi)+{\bar{G}}^{0i}({\partial}_{0}{\partial}_{i}\phi-{\Gamma}^{0}_{0i}{\partial}_{0}\phi-{\Gamma}^{i}_{oi}{\partial}_{i}\phi) \\&\quad+{\bar{G}}^{i0}({\partial}_{i}{\partial}_{0}\phi-{\Gamma}^{0}_{i0}{\partial}_{0}\phi-{\Gamma}^{i}_{i0}{\partial}_{i}\phi)=0. \end{aligned} $
(36) For simplification, we consider the homogeneous K-essence scalar field, ϕ, i.e.,
$ \phi(t,x^{i})\equiv\phi(t) $ then$ {\bar{G}}_{00}=(1-\dot\phi^{2}) $ ,$ {\bar{G}}_{0i}={\bar{G}}_{i0}=0={\partial}_{i}\phi $ ,$ {\bar{G}}_{ii}=-a^{2}(t) $ , and$ X={1\over 2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi=\frac{1}{2}\dot\phi^{2} $ . This consideration is possible in this case, since the dynamical solutions of the K-essence scalar fields spontaneously break Lorentz symmetry. Therefore, the flat FLRW emergent gravity line element (35) and the equation of motion (36) become$ {\rm d}S^{2}=(1-\dot\phi^{2}){\rm d}t^{2}-a^{2}(t)\displaystyle\sum\limits_{i=1}^{3} ({\rm d}x^{i})^{2}, $
(37) and
$ \frac{\dot a}{a}=H(t)=-\frac{\ddot\phi}{\dot\phi(1-\dot\phi^{2})}, $
(38) where
$ H(t)=\frac{\dot a}{a} $ is the usual Hubble parameter (always$ \dot a\neq 0 $ ). Eq. (38) gives the relation between the Hubble parameter and the time derivatives of the K-essence scalar field. Note that in the above spacetime, Eq. (37) always is$ \dot\phi^{2}<1 $ . If$ \dot\phi^{2}>1 $ , the signature of this spacetime will be ill-defined. Moreover, the$ \dot\phi^{2}\neq 0 $ condition holds, instead of$ \dot\phi^{2}=0 $ , which leads to non-applicability of the K-essence theory. Additionally,$ \dot\phi^{2}\neq 1 $ because$\Omega_{\rm matter} + \Omega_{\rm radiation} + \Omega_{\rm dark energy}= 1$ and we can measure$ \dot\phi^{2} $ as dark energy density in units of the critical density, i.e., it is nothing but$\Omega_{\rm dark energy}$ [40–42, 74]. Therefore$ \dot\phi^{2} $ takes a value between$ 0 $ and$ 1 $ .The Ricci tensors and Ricci scalar of the emergent gravity space-time are
$ \begin{aligned}[b] {\bar{R}}_{ii}=&-\frac{a^{2}}{1-\dot\phi^{2}}\left[\frac{\ddot a}{a}+2\left(\frac{\dot a}{a}\right)^{2}+\frac{\dot a}{a}\frac{\dot\phi \ddot\phi}{1-\dot\phi^{2}}\right]\\=&-\frac{a^{2}}{1-\dot\phi^{2}}\left[\frac{\ddot a}{a}+\left(\frac{\dot a}{a}\right)^{2}(2-\dot\phi^{2})\right]\\=&-\frac{a^{2}}{1-\dot\phi^{2}}\left[\dot H+H^{2}(3-\dot\phi^{2})\right], \end{aligned} $
(39) $ \begin{aligned}[b] {\bar{R}}_{00}=&3\frac{\ddot a}{a}+3\frac{\dot a}{a}\frac{\dot\phi \ddot\phi}{1-\dot\phi^{2}} =3\frac{\ddot a}{a}+3\left(\frac{\dot a}{a}\right)^{2}\dot\phi^{2}\\=&3\left[\dot H+H^{2}(1-\dot\phi^{2})\right], \end{aligned} $
(40) and
$ \begin{aligned}[b] {\bar{R}} =& \frac{6}{1-\dot\phi^{2}}\left[\frac{\ddot a}{a}+\left(\frac{\dot a}{a}\right)^{2}+\frac{\dot a}{a}\frac{\dot\phi \ddot\phi}{1-\dot\phi^{2}}\right]\\=& \frac{6}{1-\dot\phi^{2}}\left[\frac{\ddot a}{a}+\left(\frac{\dot a}{a}\right)^{2}(1-\dot\phi^{2})\right]\\ =& \frac{6}{1-\dot\phi^{2}}\left[\dot H +H^{2}(2-\dot\phi^{2})\right], \end{aligned} $
(41) where we have used the relation Eq. (38) and
$ \dot H\equiv\frac{{\partial} H}{{\partial} t}=\frac{a\ddot{a}-\dot{a}^{2}}{a^{2}} $ .Combining Eqs. (39) and (40) with (41), we get
$ {\bar{R}}_{00}=\frac{1}{2}(1-\dot\phi^{2}){\bar{R}}-3H^{2}, $
(42) $ {\bar{R}}_{ii}=-\frac{a^{2}}{(1-\dot\phi^{2})}\left[\frac{1}{6}{\bar{R}}(1-\dot\phi^{2})+H^{2}\right]. $
(43) We assume that the energy-momentum tensor is an ideal fluid type, which is
$ \begin{aligned}[b] T_{\mu}^{\nu}=&diag(\rho,-p,-p,-p)=(\rho +p)u_{\mu}u^{\nu}-\delta_{\mu}^{\nu} p\\ T_{\mu\nu}=&{\bar{G}}_{\mu{\alpha}}T^{{\alpha}}_{\nu}, \end{aligned} $
(44) where p is the pressure and ρ is the matter density of the cosmic fluid. In the comoving frame, we have
$ u^{0}=1 $ and$ u^{{\alpha}}=0 $ ;$ {\alpha}= 1, 2, 3 $ in the K-essence emergent gravity spacetime.Now, the question is whether this type of energy-momentum tensor is valid or not in the case of a perfect fluid model when the kinetic energy (
$ \dot\phi^{2} $ ) of the K-essence scalar field is present. The answer is "yes" since our Lagrangian is$ L(X) = 1-\sqrt{1-2X} $ . This class of models is equivalent to perfect fluid models with zero vorticity, and the pressure (Lagrangian) can be expressed through the energy density only [33, 74].Now, we evaluate the
$ ii $ and$ 00 $ components of the modified field equation (Eq. 27) using Eq. (44) and considering$ \phi\equiv\phi(t) $ only:$ \begin{aligned}[b]& F{\bar{R}}_{ii} + (\bar{G}_{ii}{\bar{\square}} - D_{i}D_{i})F - \frac{1}{2}[f-Lf_{L}(1+\dot\phi^{2})]\bar{G}_{ii}\\ =&\frac{1}{2}f_{L}a^{2}(t)\bar{p}\; \; \; \; \end{aligned} $
(45) and
$ \begin{aligned}[b]& F{\bar{R}}_{00} + (\bar{G}_{00}{\bar{\square}} - D_{0}D_{0})F - \frac{1}{2}[f-Lf_{L}(1+\dot\phi^{2})]{\bar{G}}_{00} \\&\quad+\frac{1}{2}Lf_{L}\dot\phi^{2}(1+\dot\phi^{2}) =\frac{1}{2}f_{L}(1-\dot\phi^{2})\bar{\rho}, \end{aligned} $
(46) with
$ F=f_{{\bar{R}}}({\bar{R}},L)\equiv\dfrac{{\partial} f({\bar{R}},L)}{{\partial} {\bar{R}}} $ ,$ \bar{p}=p(1+\dot\phi^{2}) $ , and$ \bar{\rho}=\rho(1+\dot\phi^{2}) $ .Now, we calculate the terms
$ {\bar{G}}_{00}{\bar{\square}} F $ and$ {\bar{G}}_{ii}{\bar{\square}} F $ using the determinant of the flat FLRW emergent gravity metric,$ \sqrt{-{\bar{G}}}=a^{3}\sqrt{1-\dot\phi^{2}} $ , and Eq. (38):$ {\bar{G}}_{00}{\bar{\square}} F =\ddot F+3 \frac{\dot a}{a}\dot F +\dot F\frac{\dot\phi \ddot\phi}{(1-\dot\phi^{2})}=\ddot F + H\dot F (3-\dot\phi^{2}),\; \; \; \; $
(47) and
$ {\bar{G}}_{ii}{\bar{\square}} F =D_{i}D_{i}F-\frac{a^{2}}{(1-\dot\phi^{2})}\left[\ddot F +2H\dot{F}(1-\dot\phi^{2})\right], $
(48) where we have used,
$ ({\partial}_{i}t)^{2}=\dfrac{a^{2}}{1-\dot\phi^{2}} $ for the flat FLRW emergent gravity metric.Now, we substitute Eqs. (42) and (47) into Eq. (46) to obtain the first modified Friedmann equation as
$ \begin{aligned}[b] 3H^{2}=&\frac{1}{F}\Big[-\frac{1}{2}\bar{\rho}f_{L}(1-\dot\phi^{2})+3H\dot{F}\\&+(1-\dot\phi^{2})\frac{1}{2}(F{\bar{R}}-f)+\frac{1}{2}Lf_{L}(1+\dot\phi^{2})\Big]\\=&\frac{1}{F}\Big[-\frac{1}{2}\bar{\rho}f_{L}(1-\dot\phi^{2}) +3H\dot{{\bar{R}}}F_{{\bar{R}}} +3HF_{L}L_{X}\dot{X}\\&+(1-\dot\phi^{2})\frac{1}{2}(F{\bar{R}}-f)+\frac{1}{2}Lf_{L}(1+\dot\phi^{2})\Big].\; \; \; \end{aligned} $
(49) We also substitute Eqs. (39), (41), and (48) into the
$ ii $ -components of Eq. (45), and after rearranging, we get the second modified Friedmann equation for the flat FLRW K-essence emergent gravity spacetime under$ f({\bar{R}}, L(X)) $ theory. Hence,$ \begin{aligned}[b] \\[-10pt] 2\dot{H}+H^{2}(3-2\dot\phi^{2}) =&\frac{1}{F}\Big[\frac{1}{2}\bar{p}f_{L}(1-\dot\phi^{2})+\ddot{F}+2H\dot{F}(1-\dot\phi^{2})-\frac{1}{2}(1-\dot\phi^{2})(f-{\bar{R}} F)+\frac{1}{2}Lf_{L}(1-\dot\phi^{2})(1+\dot\phi^{2})\Big]\\=&\frac{1}{F}\Big[\frac{1}{2}\bar{p}f_{L}(1-\dot\phi^{2})+\ddot{{\bar{R}}}F_{{\bar{R}}}+(\dot{{\bar{R}}})^{2}F_{{\bar{R}}{\bar{R}}}+2H\dot{{\bar{R}}}F_{{\bar{R}}}(1-\dot\phi^{2})-\frac{1}{2}(1-\dot\phi^{2})(f-{\bar{R}} F)+\frac{1}{2}Lf_{L}(1-\dot\phi^{2})(1+\dot\phi^{2})\Big]\\&+\frac{1}{F}\Big[2H(1-\dot\phi^{2})F_{L}L_{X}\dot{X}+F_{LL}(L_{X}\dot{X})^{2}+F_{L}L_{XX}(\dot{X})^{2}+F_{L}L_{X}\ddot{X}\Big]. \end{aligned} $ (50) Since the Lagrangian (L) of the K-essence theory is a function of
$ X(={1\over 2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi) $ , we can write$ \begin{aligned}[b]\dot{F}=&F_{{\bar{R}}}\dot{{\bar{R}}}+F_{L}L_{X}\dot{X}\; and\; \\\ddot{F}=&F_{{\bar{R}}}\ddot{{\bar{R}}}+(\dot{{\bar{R}}})^{2}F_{{\bar{R}}{\bar{R}}}+F_{LL}(L_{X}\dot{X})^{2}+F_{L}L_{XX}(\dot{X})^{2}+F_{L}L_{X}\ddot{X}. \end{aligned} $
(51) The above Friedmann equations in the presence of the kinetic energy of the K-essence scalar field are different from the usual
$ f(R) $ gravity model. Notably, if we consider$ f({\bar{R}},L(X))\equiv f(R) $ and$ {\bar{G}}_{\mu\nu}\equiv g_{\mu\nu} $ , then, the above modified Friedmann equations (49) and Eq. (50) reduces to the usual Friedmann equations of$ f(R) $ gravity, with$ \kappa=1 $ and$ T_{\mu\nu} $ replaced by$ \frac{1}{2}T_{\mu\nu} $ [6, 7] as$ 3H^{2}=\frac{1}{F}\Big[\frac{-\rho}{2}+\frac{RF-f}{2}-3H\dot{R}F_{R}\Big], $
(52) and
$ 2\dot{H}+3H^{2}=\frac{1}{F}\Big[\frac{p}{2}+(\dot{R})^{2}F_{RR}+2H\dot{R}F_{R}+\ddot{R}F_{R}-\frac{f-RF}{2}\Big]. $
(53) -
We choose a Starobinsky type model [5, 6] to investigate our theory and evaluate some cosmological values of the universe. This model has achieved popularity as the inflationary predictions produced by this theory seem very much consistent with the observational data. The coefficient of the
$ R^2 $ curvature term single-handedly obtains the slow-roll inflation with tremendous success, without the introduction of outside inflation field by hand. Other reasons for the Starobinksy model to be treated as an important model have been discussed in [79]. Now, we write$ f({\bar{R}},L) $ as$ \begin{array}{*{20}{l}} f({\bar{R}},L)={\bar{R}}+\alpha{\bar{R}}^2+L, \end{array} $
(54) and L is the DBI type Lagrangian mentioned in Eq. (9).
Therefore, we get
$ f_L=\frac{\partial f}{\partial L}=1, \quad{F}=\frac{\partial f}{\partial {\bar{R}}}=1+2\alpha{\bar{R}}, \quad{F}_{{\bar{R}}}=2\alpha, \quad{F}_L=0. $
(55) Using these values and after some algebraic calculations we can write Friedmann equation (49) as
$ \begin{aligned}[b] (1+2\alpha {\bar{R}})3H^{2}=&-\frac{1}{2}\bar{\rho}(1-\dot{\phi}^2)+\frac{1}{2}(1-\dot{\phi}^2)\alpha {\bar{R}}^{2}\\&+6\alpha H\dot{{\bar{R}}}+\dot{\phi}^2(1-\sqrt{1-\dot{\phi}^2}). \end{aligned} $
(56) Analogous to [20–22], let us now assume there exists an exact power–law solution to the field equations, i.e., the scale factor behaves as
$ \begin{array}{*{20}{l}} a(t)=a_0 t^m, \end{array} $
(57) where
$ m(>0) $ is a fixed real number.The definition of H gives us
$ H=\frac{\dot{a}}{a}=\frac{m}{t}, \quad \dot{H}=-\frac{m}{t^2}, \ddot{H}=\frac{2m}{t^3}, \quad \dot{\ddot{H}}=-\frac{6m}{t^4}. $
(58) Now, taking Eq. (41) into consideration, we can evaluate the value of Ricci scalar as
$ {\bar{R}}=\frac{6}{(1-\dot{\phi}^2)t^2}\Big[-m+m^2 (2-\dot{\phi}^2)\Big], $
(59) and then using Eq. (38) we get
$ \begin{aligned}[b] \dot{{\bar{R}}}=&\frac{6}{1-\dot\phi^{2}}\Big[\ddot{H}+4H\dot{H}(1-\dot\phi^{2})-2H^{3}\dot\phi^{2}\Big]\\=&\frac{12}{t^3 (1-\dot{\phi}^2)}\Big[m-m^3\dot{\phi}^2 -2m^2 (1-\dot{\phi}^2)\Big].\; \; \; \; \end{aligned} $
(60) Now, putting the values of Eqs. (57)–(60) into (56), we simply get
$ \begin{aligned}[b] \frac{1}{2}\bar{\rho}(1-\dot\phi^{2})=&\frac{90\alpha m^2}{t^4 (1-\dot{\phi}^2)}-\frac{180\alpha m^3}{t^4(1-\dot{\phi}^2)}+\frac{180\alpha m^3\dot{\phi}^2}{t^4(1-\dot{\phi}^2)}\\ &-\frac{108\alpha m^4 \dot{\phi}^2}{t^4 (1-\dot{\phi}^2)}+\frac{18\alpha m^4 \dot{\phi}^4}{t^4 (1-\dot{\phi}^2)}-\frac{3m^2}{t^2}\\&+\dot{\phi}^2(1-\sqrt{1-\dot{\phi}^2}). \end{aligned} $
(61) Now, from the second Friedmann equation (50), we have
$\begin{aligned}[b]\\[-5pt] (1+2\alpha {\bar{R}})\Big[2\dot{H}+H^2(3-2\dot{\phi}^2)\Big]=\frac{1}{2}\bar{p}(1-\dot{\phi}^2)+2\alpha \ddot{{\bar{R}}} +4\alpha H \dot{{\bar{R}}}(1-\dot{\phi}^2)+\frac{1}{2}\alpha {\bar{R}}^2(1-\dot{\phi}^2) +\dot{\phi}^2(1-\sqrt{1-\dot{\phi}^2})\; \; \; \; \; \end{aligned} $ (62) or
$ \begin{aligned}[b] \frac{1}{2}\bar{p}(1-\dot{\phi}^2)=&-\frac{2m}{t^2}+\frac{3m^2}{t^2}+\frac{2m\dot{\phi}^2}{t^2}-\frac{5m^{2}\dot\phi^{2}}{t^{2}}-\frac{186\alpha m^2}{t^4(1-\dot{\phi}^2)} +\frac{240\alpha m^2\dot{\phi}^2}{t^4(1-\dot{\phi}^2)} +\frac{84\alpha m^3}{t^4(1-\dot{\phi}^2)}-\frac{252\alpha m^3\dot{\phi}^2}{t^4(1-\dot{\phi}^2)} +\frac{12\alpha m^4 \dot{\phi}^2}{t^4(1-\dot{\phi}^2)}\\&+\frac{72\alpha m}{t^4(1-\dot{\phi}^2)}-\frac{42\alpha m^4 \dot{\phi}^4}{t^4(1-\dot{\phi}^4)} +\frac{96\alpha m^3 \dot{\phi}^4}{t^4(1-\dot{\phi}^2)}-\frac{1}{2}\dot{\phi}^2(1-\sqrt{1-\dot{\phi}^2})+\frac{1}{2}\dot{\phi}^4(1-\sqrt{1-\dot{\phi}^2}).\; \; \; \end{aligned} $
(63) For our case, the energy-momentum conservation relation is
$ \begin{array}{*{20}{l}} D^{\mu}\bar{T}_{\mu\nu}=0, \end{array} $
(64) with
$ {\bar{T}}_{\mu\nu}=T_{\mu\nu}[1+D_{{\alpha}}\phi D^{{\alpha}}\phi] $ .Now, using Eqs. (44) and (64), we have the conserving equation as
$ \dot{\bar{\rho}}=3\frac{\dot{a}}{a}(\bar{\rho}+\bar{p}), $
(65) where
$ \bar{\rho} $ and$ \bar{p} $ already have been defined. It is essential to mention here that$ \bar{\rho} $ and$ \bar{p} $ are not the same as the normal ρ and p.Now, considering the power law, we get the following from Eq. (65):
$ \begin{array}{*{20}{l}} \bar{\rho}=\rho(1+\dot{\phi}^2)=\rho_0 t^{-3m(1+\omega)}, \end{array} $
(66) where
$ \omega=\dfrac{\bar{p}}{\bar{\rho}}=\dfrac{p}{\rho} $ .Now, putting the value of
$ \bar{\rho} $ into the Friedmann equation (61), we have$ \begin{aligned}[b] \frac{1}{2}\rho_0 t^{-3m(1+\omega)}=&\frac{90\alpha m^2}{t^4 (1-\dot{\phi}^2)^{2}}-\frac{180\alpha m^3}{t^4(1-\dot{\phi}^2)^{2}}\\&+\frac{180\alpha m^3\dot{\phi}^2}{t^4(1-\dot{\phi}^2)^{2}} -\frac{108\alpha m^4 \dot{\phi}^2}{t^4 (1-\dot{\phi}^2)^{2}}+\frac{18\alpha m^4 \dot{\phi}^4}{t^4 (1-\dot{\phi}^2)^{2}}\\&-\frac{3m^2}{t^2(1-\dot{\phi}^2)}+\frac{\dot{\phi}^2}{(1-\dot{\phi}^2)}(1-\sqrt{1-\dot{\phi}^2}).\; \; \; \end{aligned} $
(67) On the other hand, to maintain the energy-momentum conservation, the relation (32) must be satisfied. So, the effective functional relation (32) for homogeneous K-essence scalar field reduces to
$ \begin{array}{*{20}{l}} 3\dot\phi^{2}-2=2\sqrt{1-\dot\phi^{2}}, \end{array} $
(68) where we have used Eqs. (9) and (55).
Solving Eq. (68), we have either
$ \dot\phi^{2}=0 $ , which is not acceptable for our case, or$ \dot\phi^{2}=\frac{8}{9}=0.888={\rm{constant}}. $
(69) It should be noted that the exact solution of field equations (Eq. (2) in Ref. [22]) are already obtained by the assumption of the power law form of the scale factor using the Starobinsky Model in [22]. The results of that case are
$ \rho_{\phi}=\frac{3n^2}{t^2}-\frac{\rho_{0}}{t^{3n(1+\omega)}}+\frac{54\alpha n^2(2n-1)}{t^4}, $
(70) and
$ p_{\phi}=\frac{n(2-3n)}{t^{2}}+\frac{18{\alpha} n(2n-1)(4-3n)}{t^{4}}-\frac{{\omega}\rho_{m0}}{t^{3n(1+{\omega})}}, $
(71) where
$ \rho_{\phi} $ and$ p_{\phi} $ is the energy density and pressure of the scalar field, and n is synonymous to m for our case.Rearranging Eq. (70), we get
$ \rho_0 t^{-3n(1+\omega)}=\frac{3n^2}{t^2}+\frac{108\alpha n^3}{t^4}-\frac{54\alpha n^2}{t^4} -\frac{1}{2}\dot{\phi}^2-V(\phi), $
(72) where they have defined,
$ \rho_{\phi}=\dfrac{1}{2}\dot{\phi}^2+V(\phi) $ ,$ p_{\phi}=\dfrac{1}{2}\dot{\phi}^2- V(\phi) $ , and$ V(\phi) $ is the scalar potential.Singh et al. [22] used a canonical Lagrangian and the usual field equations of
$ f(R) $ -gravity, but, in our case, we have used a non-canonical Lagrangian and the corresponding field equations (27). This is the basic difference between these two studies. Notably, the scalar field of each is not identical with the K-essence scalar field.Now, let us concentrate upon the deceleration parameter using the expression
$ q=-\frac{1}{H^2}\frac{\ddot{a}}{a}=\frac{1}{m}-1, $
(73) where we have used Eq. (57).
From the above expression, it is clear that for our present epoch, the deceleration parameter should have a negative value to support the acceleration of the universe. Therefore, we can conclude from Eq. (73) that the m takes a value greater than
$ 1 $ . A negative value of m cannot be considered since observations show the universe is expanding.As we know, the value of
$ \dot{\phi}^2 $ is less than$ 1 $ , so neglecting the higher order terms$ O(\dot{\phi}^4 $ ) in Eq. (61) and (63), and using Eq. (69), we get the equation of state (EOS) parameter of this scenario as:$ \omega=\frac{-(2+13m)t^{2}+\alpha (648+246m-1260m^{2}-96m^{3})}{-3mt^{2}+\alpha m(810-180m-864m^{2})}.\\ $
(74) The variation of ρ and p (using Eqs. (61) and (63) and omitting
$ O(\dot{\phi}^4 $ ) terms) with time (t) has been plotted in Fig. 1 for different choices of the positive power law parameter ($ m=1.5,2 $ ) and the positive coefficient of$ {\bar{R}}^2 $ in the Starobinsky model ($ \alpha=1,3,5,7,9 $ ). Figure 2 shows the variation of the EOS parameter, ω, with t for the aforementioned values of m and α. As we know, the values of ρ and p should differ in signature for a dark-energy dominated era and simultaneously the value of the EOS parameter (ω) should approach a value close to$ -1 .$ Therefore, the above two figures conclude that the choice of positive m and positive α is ruled out for our model to produce dark energy conditions. The time, t, here is the cosmological time, i.e., the time corresponding to the FLRW metric.Figure 1. (color online) Variation of ρ and p with t for different values of m (
$ =1.5,2 $ ) and$ {\alpha} $ $ (=1,3,5,7,9) $ .Figure 2. (color online) Variation of ω with t for different values of m (
$ =1.5,2 $ ) and$ {\alpha} $ $ (=1,3,5,7,9) $ .The negative values of α hav already been considered in [80] for
$ f(R,T) $ gravity. So, let's check the results of our model for a positive value of$ m(=2,3) $ and negative values of$ \alpha(=-0.9,-0.7,-0.5,-0.3,-0.1) $ . Figure 3 depicts the variation of ρ and p with time (t) for the above parameter values. Figure 4 shows the variation of the EOS parameter$ (\omega) $ with time$ (t) $ . From Fig. 3, it is evident that the value of ρ and p have the expected nature at a particular region of time. Simultaneously, Fig. 4 produces the anticipated value of ω, which is$ -1 $ for the dark energy epoch. We discuss the results more elaborately obtained in Figs. 3 and 4 in the following subsection. -
Before entering into this section, we would like to discuss two significant works, one was done by Tripathi et al. [81] and the other one was done by Moraes et al. [80]. In [81], they constrained the dark energy models for low redshifts and compared the data with the observations of Supernova Type Ia data, Baryon Acoustic Oscillation data, and Hubble parameter measurements. On the other hand, in [80], the authors studied various cosmological aspects with the help of the Starobinsky model in the framework of
$ f(R,T) $ gravity. They found the nature of material content of the universe, i.e. ρ and p in both decelerated and accelerated regimes of the universe.The variation of ρ and p with time obtained in Fig. 3 is quite similar with the variation obtained in [80], though our models differ from each other. Figure 3 shows that at early time (
$ t\rightarrow 0 $ ), the pressure was positive. But, after a certain value of time, it takes negative value, which may be correlated with the effect of the negative pressure fluid responsible for the accelerating universe. We have shown a table which depicts that for different choices of the positive m and the negative α, and we get a range of t (from Fig. 4) where the value of ω agrees with the observational data of Supernova Type Ia data, Baryon Acoustic Oscillation data, and Hubble parameter measurements (Observational data are taken from [81]). Furthermore, if we concentrate on the range of t that has been shown in Table 1 and match those values with Fig. 3, then can be observed that at those particular time regions, the value of p takes the negative sign, whereas the ρ is positive.m α t ω ( $ 3\sigma $ confidence)Observation 2 $ -0.9 $ $ 14.96-15.5 $ $ -0.95\geq\omega\geq-1.13 $ SNIa+ BAO+ H(z) 3 $ 22.8-23.87 $ 2 $ -0.7 $ $ 13.2-13.67 $ 3 $ 20.1-21.05 $ 2 $ -0.5 $ $ 11.16-11.55 $ 3 $ 17.06-17.8 $ 2 $ -0.3 $ $ 8.64-8.95 $ 3 $ 13.22-13.78 $ 2 $ -0.1 $ $ 4.98-5.16 $ 3 $ 7.63-7.97 $ Table 1. Table for Observational Verification of the Model.
-
With the help of the modified field equation (27) for
$ f({\bar{R}},L(X)) $ theory, the emergent Einstein's equation (15) can be written as ($ {\kappa}=1 $ )$ {\bar{R}}_{\mu\nu}-\frac{1}{2}{\bar{G}}_{\mu\nu}{\bar{R}}=T_{\mu\nu}^{\rm eff}, $
(75) where
$ \begin{aligned}[b] T_{\mu\nu}^{\rm eff}=&\frac{1}{F}[\frac{1}{2}f_{L}{\bar{T}}_{\mu\nu}-\frac{1}{2}{\bar{R}} F{\bar{G}}_{\mu\nu}-({\bar{G}}_{\mu\nu}\bar{\square}-D_{\mu}D_{\nu})F\\&+\frac{1}{2}{\bar{G}}_{\mu\nu}(f-Lf_{L}(1+D_{{\alpha}}\phi D^{{\alpha}}\phi))\\&-\frac{1}{2}Lf_{L}D_{\mu}\phi D_{\nu}\phi(1+D_{{\alpha}}\phi D^{{\alpha}}\phi)] \\ =&\frac{1}{F}[\frac{1}{2}f_{L}{\bar{T}}_{\mu\nu}+\frac{1}{2}{\bar{G}}_{\mu\nu}(f-F{\bar{R}})-({\bar{G}}_{\mu\nu}\bar{\square}-D_{\mu}D_{\nu})F\\&-\frac{1}{2}Lf_{L}{\bar{G}}_{\mu\nu}(1+D_{\mu}\phi D^{\mu}\phi)^{2}], \end{aligned} $
(76) with
$ F=f_{{\bar{R}}}=\dfrac{{\partial} f({\bar{R}},L(X))}{{\partial} {\bar{R}}} $ .The trace of the effective energy momentum tensor (76) is
$ \begin{aligned}[b] T^{\rm eff}=&\frac{1}{F}[\frac{1}{2}f_{L}{\bar{T}} +2(f-F {\bar{R}})-3 \bar{\square} F-\\&2Lf_{L}(1+D_{\mu}\phi D^{\mu}\phi)^{2}]. \end{aligned} $
(77) Now, from Eq. (75), we have the emergent Ricci tensor in terms of the effective energy momentum tensor as
$ {\bar{R}}_{\mu\nu}=T_{\mu\nu}^{\rm eff}-\frac{1}{2}{\bar{G}}_{\mu\nu}T^{\rm eff}. $
(78) Let
$ \bar{u}^{\mu} $ be the tangent vector field to a congruence of time-like geodesics in the K-essence emergent space-time manifold endowed with the metric$ {\bar{G}}_{\mu\nu} $ ($ {\bar{G}}_{\mu\nu}\bar{u}^{\mu}\bar{u}^{\nu}=1 $ ), then the strong energy condition (SEC) (107) in$ f({\bar{R}},L(X)) $ modified gravity can be expressed as$ {\bar{R}}_{\mu\nu}\bar{u}^{\mu}\bar{u}^{\nu}=(T_{\mu\nu}^{\rm eff}\bar{u}^{\mu}\bar{u}^{\nu}-\frac{1}{2}T^{\rm eff})\geq 0. $
(79) On the other hand, if we consider
$ \bar{k}^{\mu} $ be the tangent vector along the null geodesic congruence ($ {\bar{G}}_{\mu\nu}\bar{k}^{\mu}\bar{k}^{\nu}=0 $ ), then the null energy condition (NEC) (109) in$ f({\bar{R}},L(X)) $ gravity is$ {\bar{R}}_{\mu\nu}\bar{k}^{\mu}\bar{k}^{\nu}=T_{\mu\nu}^{\rm eff}\bar{k}^{\mu}\bar{k}^{\nu}\geq 0. $
(80) So, considering an additional condition [19]
$ \dfrac{f_{L}({\bar{R}},L)}{f_{{\bar{R}}}({\bar{R}},L)}>0 $ , and the K-essence scalar field to be homogeneous, i.e.,$ \phi(x^{i},t)\equiv \phi(t) $ , and using the perfect fluid energy momentum tensor (44), we have the SEC and NEC in the$ f({\bar{R}},L(X)) $ gravity are$ \begin{aligned}[b] SEC:&\; \bar{\rho}+3\bar{p}-\frac{2}{f_{L}}(f-F{\bar{R}})+2L(1+\dot\phi^{2})^{2}\\&+\frac{6}{f_{L}(1-\dot\phi^{2})}[\ddot{F}(1-\frac{2}{3}\dot\phi^{2})+H\dot{F}(1-\dot\phi^{2}+\frac{2}{3}\dot\phi^{4})]\geq 0, \end{aligned} $
(81) $ NEC: \bar{\rho}+\bar{p}+\frac{2}{f_{L}}(\ddot{F}-H\dot{F}\dot\phi^{2})\geq 0, $
(82) where
$ \bar{\rho}=\rho(1+\dot\phi^{2}) $ and$ \bar{p}=p(1+\dot\phi^{2}) $ .To evaluate the effective density,
$\bar{\rho}^{\rm eff}$ , and effective pressure,$\bar{p}^{\rm eff}$ , in the K-essence emergent$ f({\bar{R}},L(X)) $ gravity, we consider the two following equations$ T_{\mu\nu}^{\rm eff}\bar{u}^{\mu}\bar{u}^{\nu}-\frac{1}{2}{\bar{G}}_{\mu\nu}T^{\rm eff}\bar{u}^{\mu}\bar{u}^{\nu}=\bar{\rho}^{\rm eff}+3\bar{p}^{\rm eff}, $
(83) and
$ T_{\mu\nu}^{\rm eff}\bar{k}^{\mu}\bar{k}^{\nu}=\bar{\rho}^{\rm eff}+\bar{p}^{\rm eff}. $
(84) Solving these Eqs. (49) and (50), we get
$ \begin{aligned}[b] \bar{\rho}^{\rm eff}=&\bar{\rho}+\frac{1}{f_{L}}(f-F{\bar{R}})-\frac{6}{f_{L}(1-\dot\phi^{2})}[\frac{1}{3}\ddot{F}\dot\phi^{2}\\&+H\dot{F}(1-\frac{1}{3}\dot\phi^{4})]-L(1+\dot\phi^{2})^{2}, \end{aligned} $
(85) $ \begin{aligned}[b] \bar{p}^{\rm eff}=&\bar{p}-\frac{1}{f_{L}}(f-F{\bar{R}})+\frac{3}{f_{L}(1-\dot\phi^{2})}[\frac{1}{3}\ddot{F}(2-\dot\phi^{2})\\&+H\dot{F}(1-\frac{2}{3}\dot\phi^{2}+\frac{1}{3}\dot\phi^{4})]+L(1+\dot\phi^{2})^{2}. \end{aligned} $
(86) From the above Eqs. (85) and (86), we have WEC and DEC, respectively, for the K-essence emergent
$ f({\bar{R}},L(X)) $ gravity as$ \begin{aligned}[b] WEC:& \bar{\rho}+\frac{1}{f_{L}}(f-F{\bar{R}})-\frac{6}{f_{L}(1-\dot\phi^{2})}\Big[\frac{1}{3}\ddot{F}\dot\phi^{2}\\&+H\dot{F}(1-\frac{1}{3}\dot\phi^{4})\Big]-L(1+\dot\phi^{2})^{2}\geq 0, \end{aligned} $
(87) $ \begin{aligned}[b] DEC:&\bar{\rho}-\bar{p}+\frac{2}{f_{L}}(f-F{\bar{R}})-\frac{2}{f_{L}(1-\dot\phi^{2})}[\ddot{F}(1+\frac{1}{2}\dot\phi^{2})\\&+3H\dot{F}(\frac{3}{2}-\frac{1}{3}\dot\phi^{2}-\frac{1}{6}\dot\phi^{4})]-2L(1+\dot\phi^{2})^{2}\geq 0. \end{aligned} $
(88) These energy conditions (81), (82), (87), and (88) of the K-essence emergent
$ f({\bar{R}},L(X)) $ gravity are different from the usual$ f(R,L_{m}) $ -gravity (111) and$ f(R) $ -gravity (110) in the presence of the K-essence scalar field, ϕ. Also, note that if we consider$ f({\bar{R}},L(X))\equiv R $ and$ {\bar{G}}_{\mu\nu}\equiv g_{\mu\nu} $ , then we can get back to the usual energy conditions of GR, i.e.,$ SEC:\; \rho+3p\geq 0 $ ;$ NEC:\; \rho+p\geq 0 $ ; and$ WEC:\; \rho\geq 0 $ and$ DEC:\; \rho\geq |p| $ .One may notice that we briefly have discussed the energy conditions of
$ f(R) $ and$ f(R,L_m) $ gravity in the Appendix. -
The inequalities of the energy conditions (81), (82), (87), and (88) can also be expressed in terms of the deceleration (q), jerk (j), and snap (s) parameters such that the Ricci scalar and its derivatives for a spatially flat K-essence emergent FLRW geometry (37) are
$ {\bar{R}}=\frac{6}{1-\dot\phi^{2}}\left[\dot H +H^{2}(2-\dot\phi^{2})\right]=\frac{6H^{2}}{1-\dot\phi^{2}}\left[1-q-\dot\phi^{2}\right], $
(89) $ \begin{aligned}[b] \dot{{\bar{R}}}=&\frac{6}{1-\dot\phi^{2}}\left[\ddot{H}+4H\dot{H}(1-\dot\phi^{2})-2H^{3}\dot\phi^{2}\right] \\=&\frac{6H^{3}}{1-\dot\phi^{2}}\left[(j-q-2)+2\dot\phi^{2}(1-2q)\right], \end{aligned} $
(90) $ \begin{aligned}[b] \ddot{{\bar{R}}}=&\frac{6}{1-\dot\phi^{2}}[(\dot{\ddot{H}}+4\dot{H}^{2}+4H\ddot{H})\\&-2\dot\phi^{2}(2\dot{H}^{2}+3H\ddot{H}-2H^{4}+3H^{2}\dot{H}] \\=&\frac{6H^{4}}{1-\dot\phi^{2}}[(s+q^{2}+8q+6)-2\dot\phi^{2}(3+3j+10q+2q^{2})], \end{aligned} $
(91) $ q=-\frac{1}{H^{2}}\frac{\ddot{a}}{a}\; ;\; j=\frac{1}{H^{3}}\frac{\dot{\ddot{a}}}{a}\; ;\; s=\frac{1}{H^{4}}\frac{\ddot{\ddot{a}}}{a}. $
(92) Now, from Eq. (51), we evaluate the values of
$ \dot{F} $ and$ \ddot{F} $ (using Eq. (38)) in terms of$q,\; j,\; {\rm{and}} \; s$ as$ \begin{aligned}[b] \dot{F}=&\frac{6H^{3}}{1-\dot\phi^{2}}F_{{\bar{R}}}[(j-q-2)+2\dot\phi^{2}(1-2q)]\\&-HF_{L}L_{XX}\dot\phi^{2}(1-\dot\phi^{2}), \end{aligned}$
(93) $ \begin{aligned}[b] \ddot{F}=&\frac{6H^{4}}{1-\dot\phi^{2}}F_{{\bar{R}}}[(s+q^{2}+8q+6)-2\dot\phi^{2}(3+3j+10q+2q^{2})] \\&+\frac{36H^{6}}{(1-\dot\phi^{2})^{2}}F_{{\bar{R}}{\bar{R}}}[(j-q-2)+2\dot\phi^{2}(1-2q)]^{2}\\&+H\dot\phi^{4}(1-\dot\phi^{2})^{2}\left(F_{LL}L_{X}^{2}+F_{L}L_{XX}\right)\\&-F_{L}L_{X}\dot\phi^{2}(1-\dot\phi^{2})[\dot{H}-2H^{2}(1-2\dot\phi^{2})].\; \; \end{aligned} $
(94) Therefore, putting these values of
$ \dot{F} $ and$ \ddot{F} $ into the energy conditions (81), (82), (87), and (88), we have the energy conditions in terms of q, j, and s. We can easily check that these energy conditions in terms of q, j, and s are also different from the$ f(R,L_{m}) $ -gravity [19] in the presence of the K-essence scalar field, ϕ. -
Considering the Starobinsky Model, i.e., Eq. (54), we obtain the following results as
$ f_{L}=1 $ ,$ F=1+2\alpha{\bar{R}} $ ,$ \dot{F}=2\alpha\dot{{\bar{R}}} $ , and$ \ddot{F}=2\alpha\ddot{{\bar{R}}} $ .Using these results we get the energy conditions from (81), (82), (87), and (88) as follows:
$ \begin{aligned}[b] SEC :\;& \bar{\rho}+3\bar{p}+2\left[\alpha{\bar{R}}^{2}+L\dot{\phi}^2(2+\dot{\phi}^2)\right]\\&+\frac{12\alpha\ddot{{\bar{R}}}}{1-\dot{\phi}^2}\left(1-\frac{2}{3}\dot{\phi}^2\right) +\frac{12\alpha H\dot{{\bar{R}}}}{1-\dot{\phi}^2}\left(1-\dot{\phi}^2+\frac{2}{3}\dot{\phi}^4\right)\geq 0 \end{aligned} $
(95) $ NEC :\; \bar{\rho}+\bar{p}+4\alpha\left(\ddot{{\bar{R}}}-H\dot{{\bar{R}}}\dot{\phi^2}\right)\geq 0 $
(96) $ \begin{aligned}[b] WEC :\;&\bar{\rho}-\alpha{\bar{R}}^{2}-\frac{4\alpha}{1-\dot{\phi}^2}\left[\ddot{{\bar{R}}}\dot{\phi}^2-3\dot{{\bar{R}}}(1-\frac{1}{3}\dot{\phi}^4)\right]\\&-L\dot{\phi}^2(2-\dot{\phi}^2)\geq 0 \end{aligned} $
(97) $ \begin{aligned}[b] DEC :\;&\bar{\rho}-\bar{p}-2\alpha{\bar{R}}^{2}-\frac{4\alpha}{1-\dot{\phi}^2}\Bigg[\ddot{{\bar{R}}}(1-\frac{1}{2}\dot{\phi}^2)\\&-3H\dot{{\bar{R}}}\left(\frac{3}{2}-\frac{1}{3}\dot{\phi}^2-\frac{1}{6}\dot{\phi}^4\right)\Bigg]-2L\dot{\phi}^2(2+\dot{\phi}^2)\geq 0\; \; \end{aligned} $
(98) Again, if we put the values of
$ {\bar{R}} $ ,$ \dot{{\bar{R}}} $ , and$ \ddot{{\bar{R}}} $ from (89), (90), and (91) into the above equations (95), (96), (97), and (98), we easily reconstruct the energy conditions in terms of the deceleration (q), jerk (j), and snap (s) parameters. -
Let us consider here the well known
$ f(R) $ and$ f(R,L_{m}) $ gravity, where R is the Ricci scalar with respect to the gravitational metric,$ g_{\mu\nu} $ , and$ L_{m} $ is the matter Lagrangian. The total action for the$ f(R) $ gravity is [6, 7]$ S=\frac{1}{2\kappa}\int {\rm d}^{4}x\sqrt{-g}f(R)+S_{M}(g_{\mu\nu},\psi), \tag{A1}$
where
$ S_{M} $ is the matter term, ψ denotes the matter fields,$ {\kappa}=8\pi G $ , G is the gravitational constant, g is the determinant of the gravitational metric, and$ R\; (=g^{\mu\nu}R_{\mu\nu}) $ is the Ricci scalar.Varying with respect to the gravitational metric, we achieve the modified field equation as
$ f'(R)R_{\mu\nu}-\frac{1}{2}f(R)g_{\mu\nu}-[\nabla_{\mu}\nabla_{\nu}-g_{\mu\nu}\Box]f'(R)={\kappa} T_{\mu\nu},\tag{A2}$
with
$ T_{\mu\nu}= \frac{-2}{\sqrt{-g}}\frac{\delta S_{M}}{\delta g^{\mu\nu}}, \tag{A3} $
where
$ f'(R)=\dfrac{{\partial} f(R)}{{\partial} R} $ ,$ \nabla_{\mu} $ is covariant derivative with respect to the gravitational metric, and$ \square\equiv \nabla^{\mu}\nabla_{\mu} $ .On the other hand, the action for the
$ f(R,L_{m}) $ gravity is [18, 19]$ S=\frac{1}{2\kappa}\int {\rm d}^{4}x\sqrt{-g}f(R,L_{m}), \tag{A4} $
where
$ f(R,L_{m}) $ is an arbitrary function of the Ricci scalar R, and the Lagrangian density corresponding to matter,$ L_{m} $ . The energy-momentum tensor is$ T_{\mu\nu}= \frac{-2}{\sqrt{-g}}\frac{\delta (\sqrt{-g}L_{m})}{\delta g^{\mu\nu}}=-2\frac{{\partial} L_{m}}{{\partial} g^{\mu\nu}}+g_{\mu\nu}L_{m},\; \; \tag{A5} $
where the Lagrangian density,
$ L_{m} $ , is only matter dependent on the metric tensor components,$ g_{\mu\nu} $ .The modified field equations of the
$ f(R,L_{m}) $ -gravity model is$ \begin{aligned}[b] &f_{R}(R,L_{m})R_{\mu\nu}+(g_{\mu\nu}\square-\nabla_{\mu}\nabla_{\nu})f_{R}(R,L_{m})\\&-\frac{1}{2}[f(R,L_{m})-L_{m}f_{L_{m}}(R,L_{m})]g_{\mu\nu} \\=& \frac{1}{2}f_{L_{m}}(R,L_{m})T_{\mu\nu},\; \; \; \end{aligned}\tag{A6} $
where
$ f_{R}(R,L_{m})={\partial} f(R,L_{m})/{\partial} R $ and$ f_{L_{m}}(R,L_{m})= {\partial} f(R,L_{m})/{\partial} L_{m} $ . However, if$ f(R,L_{m})=R/2+L_{m} $ , then the above Eq. (A6) reduces to the usual field equation$ R_{\mu\nu}-(1/2)g_{\mu\nu}R={\kappa} T_{\mu\nu} $ . -
Following most of the techniques of [10–14, 19, 73], we will derive the energy conditions for modified (
$ f(R) $ ,$ f(R,L_{m}) $ , etc.) gravities. From these theories we can approach the Null Energy Condition (NEC) and Strong Energy Condition (SEC) in the context of GR. The origin of these energy conditions comes from the Raychaudhuri equations. Let$ u^{\mu} $ be the tangent vector field to a congruence of time-like geodesics in a space-time manifold endowed with a metric,$ g_{\mu\nu} $ . Therefore, the Raychaudhuri equation [89–94] is$ \frac{{\rm d}{\theta}}{{\rm d}\tau}=-\frac{1}{3}{\theta}^{2}-{\sigma}_{\mu\nu}{\sigma}^{\mu\nu}+{\omega}_{\mu\nu}{\omega}^{\mu\nu}-R_{\mu\nu}u^{\mu}u^{\nu}, \tag{B1} $
where
$ R_{\mu\nu} $ is the Ricci tensor corresponding to the metric$ g_{\mu\nu} $ , and$ {\theta} $ ,$ {\sigma}_{\mu\nu} $ , and$ {\omega}_{\mu\nu} $ are the expansion, shear, and rotation associated with the congruence, respectively. While in the case of a congruence of null geodesics defined by the vector field,$ k^{\mu} $ , the Raychaudhuri equation [92] is given by$ \frac{{\rm d}{\theta}}{{\rm d}\tau}=-\frac{1}{2}{\theta}^{2}-{\sigma}_{\mu\nu}{\sigma}^{\mu\nu}+{\omega}_{\mu\nu}{\omega}^{\mu\nu}-R_{\mu\nu}k^{\mu}k^{\nu}. \tag{B2} $
These equations are purely based on geometric statements, and as such it makes no reference to any gravitational field equations. In other words, the Raychaudhuri equation can be thought of as geometrical identities, which do not depend on any gravitational theory. These equations provide the evolution of the expansion of a geodesic congruence. However, since the GR field equations relate
$ R_{\mu\nu} $ to the energy-momentum tensor,$ T_{\mu\nu} $ , the combination of Einstein and Raychaudhuri equations can be used to restrict energy-momentum tensors on physical grounds. Indeed, the shear is a "spatial" tensor given by$ {\sigma}^{2}\equiv {\sigma}_{\mu\nu}{\sigma}^{\mu\nu}\geq 0 $ .Thus, it is clear from the Raychaudhuri equation that for any hypersurface orthogonal congruences (
$ {\omega}_{\mu\nu}\equiv 0 $ ), the condition for attractive gravity (convergence of timelike geodesics or geodesic focusing) reduces to ($ R_{\mu\nu}u^{\mu}u^{\nu}\geq 0 $ ), which by virtue of Einstein’s equation implies$ R_{\mu\nu}u^{\mu}u^{\nu}=(T_{\mu\nu}-\frac{T}{2}g_{\mu\nu})u^{\mu}u^{\nu}\geq 0, \tag{B3} $
where T is the trace of the energy momentum tensor,
$ T_{\mu\nu} $ ($ {\kappa}=1 $ ). Here, Eq. (B3) is nothing but the SEC stated in a coordinate-invariant way in terms of$ T_{\mu\nu} $ and vector fields of fixed (time-like) character. Thus, in the context of GR, the SEC ensures the fact that the gravity is attractive. In particular, for a perfect fluid of density, ρ, and pressure, p,$ T_{\mu\nu}=(\rho +p)u_{\mu}u_{\nu}-pg_{\mu\nu} \tag{B4} $
and the restriction given by Eq. (B3) takes the familiar form for the SEC, i.e.,
$ \rho +3p \geq 0 $ .On the other hand, the condition for the convergence (geodesic focusing) of hypersurface orthogonal (
$ {\omega}_{\mu\nu}\equiv 0 $ ) congruences of null geodesics along with Einstein’s equation implies$ R_{\mu\nu}k^{\mu}k^{\nu}=T_{\mu\nu}k^{\mu}k^{\nu} \geq 0 \tag{B5} $
which is the condition for NEC written in a coordinate-invariant way.
Thus, in GR the NEC ultimately encodes the null geodesic focusing due to the gravitational attraction. For the energy-momentum tensor of a perfect fluid (B4), the above condition (B5) reduces to the well-known form of the NEC, i.e.,
$ \rho +p\geq 0 $ .The Weak Energy Condition (WEC) states that
$ T_{\mu\nu}u^{\mu}u^{\nu}\geq 0 $ for all time-like vectors,$ u^{\mu} $ , or equivalently for perfect fluid it is$ \rho>0 $ and$ \rho +p>0 $ . The Dominant Energy Condition (DEC) includes the WEC, as well as the additional requirement that$ T_{\mu\nu}u^{\mu} $ is a non space-like vector, i.e.,$ T_{\mu\nu}T^{\nu}_{{\lambda}}u^{\mu}u^{{\lambda}}\leq 0 $ . For a perfect fluid, these conditions, together, are equivalent to the simple requirement that$ \rho\geq |p| $ , the energy density must be non-negative, and greater than or equal to the magnitude of the pressure.In
$ f(R) $ -gravity [10, 11], the energy conditions for perfect fluid are given by$ \begin{aligned}[b] &SEC:\; \; \rho +3p-f+Rf'+3(\ddot{R}+\dot{R}H)f"+3\dot{R}^{2}f"'\geq 0,\\ &NEC:\; \; \rho +p+(\ddot{R}-\dot{R}H)f"+\dot{R}^{2}f"'\geq 0,\\ &WEC:\; \; \rho+\frac{1}{2}(f-Rf')-3\dot{R}Hf"\geq 0,\\ \end{aligned} $
$ \begin{aligned}[b] &DEC:\; \rho-p+f-Rf'-(\ddot{R}+5\dot{R}H)f"-\dot{R}^{2}f"'\geq 0, \end{aligned}\tag{B6} $
where
$ f'=\dfrac{{\partial} f(R)}{{\partial} R} $ .In
$ f(R,L_{m}) $ -gravity [19], the energy conditions are$ \begin{aligned}[b] &SEC: \rho +3p-\frac{2}{f_{L_{m}}}[f-Rf']+\frac{6}{f_{L_{m}}}[\dot{R}^{2}f"' +\ddot{R}f" \\&+H\dot{R}f"]-2L_{m}\geq 0.\\ &NEC: \rho +p+\frac{2}{f_{L_{m}}}[\dot{R}^{2}f"' +\ddot{R}f" ]\geq 0,\\& WEC: \rho+\frac{1}{f_{L_{m}}}[f-Rf']-\frac{6}{f_{L_{m}}}H\dot{R}f"+L_{m}\geq 0,\\ &DEC: \rho-p+\frac{2}{f_{L_{m}}}[f-Rf']-\frac{2}{f_{L_{m}}}\Big[\dot{R}^{2}f"' +\ddot{R}f"+6H\dot{R}f"\Big]\\&+2L_{m}\geq 0, \end{aligned}\tag{B7} $
where
$ f'=\dfrac{{\partial} f(R,L_{m})}{{\partial} R} $ .
${ \boldsymbol f(\bar{\boldsymbol R}, \boldsymbol L(\boldsymbol X))} $ -gravity in the context of dark energy with power law expansion and energy conditions
- Received Date: 2022-08-20
- Available Online: 2023-02-15
Abstract: The objective of this work is to generate a general formalism of