-
The framework has been introduced elsewhere; see for example Refs. [10, 36, 37]. We recapitulate the framework here for completeness and to specify the details. The masses and wave functions are obtained by solving the radial Schrödinger equation,
$ \begin{equation} (T + V - E)R(r) = 0, \end{equation} $
(1) where
$ T =- \dfrac{\hbar^2}{2\mu_m r^2}\dfrac{{\rm{d}}}{{\rm{d}}r}\left(r^2\dfrac{{\rm{d}}}{{\rm{d}}r}\right) + \dfrac{L(L+1)\hbar^2}{2\mu_m r^2} $ is the kinetic energy operator, r is the distance between the two constituent quarks,$ R(r) $ is the radial wave function,$ \mu_m = \dfrac{m \bar{m}}{m + \bar{m}} $ is the reduced mass with m and$ \bar{m} $ being the constituent quark masses, and L is the orbital angular moment quantum number. V is the potential between the quarks and E is the energy of this system. The meson mass is then$ M = m + \bar{m} + E $ . Note that the complete wave function is$ \Phi_{nLM_L}({\boldsymbol{r}}) = R_{nL}(r)Y_{LM_L}(\theta,\phi) $ , where n is the main quantum number,$ M_L $ is the magnetic quantum number of orbital angular momentum, and$ Y_{LM_L}(\theta,\phi) $ is the spherical harmonics. In this paper a bold character stands for a three-dimensional vector, for example,$ {\boldsymbol{r}} = \vec{r} $ .The potential could be decomposed into
$ \begin{equation} V = H^{{\rm{SI}}} + H^{{\rm{SS}}} + H^{{\rm{T}}} + H^{{\rm{SO}}}. \end{equation} $
(2) $ H^{{\rm{SI}}} $ is the spin independent part, which is composed of a coulombic potential and a linear potential,$ \begin{equation} H^{{\rm{SI}}} = -\frac{4\alpha_s(Q^2)}{3r} + br, \end{equation} $
(3) where b is a constant and
$ \alpha_s(Q^2) $ is the running coupling of the strong interaction. The other three terms are spin dependent.$ \begin{equation} H^{{\rm{SS}}} = \frac{32\pi\alpha_s(Q^2)}{9m\bar{m}}\tilde{\delta}_\sigma({\boldsymbol{r}}) {\boldsymbol{s}}\cdot{\boldsymbol{\bar{s}}} \end{equation} $
(4) is the spin-spin contact hyperfine potential, where
$ {\boldsymbol{s}} $ and$ {\boldsymbol{\bar{s}}} $ are the spin of the quark and antiquark respectively, and$ \tilde{\delta}_\sigma({\boldsymbol{r}}) = \left(\dfrac{\sigma}{\sqrt{\pi}}\right)^3 {\rm{e}}^{-\sigma^2 r^2} $ with σ being a parameter.$ \begin{equation} H^{{\rm{T}}} = \frac{4\alpha_s(Q^2)}{3m\bar{m}} \frac{1}{r^3}\left( 3\frac{({\boldsymbol{s}}\cdot{\boldsymbol{r}})({\boldsymbol{\bar{s}}}\cdot{\boldsymbol{r}})}{r^2} - {\boldsymbol{s}}\cdot{\boldsymbol{\bar{s}}} \right) \end{equation} $
(5) is the tensor potential.
$ H^{{\rm{SO}}} $ is the spin-orbital interaction potential and could be decomposed into a symmetric part$ H^{{\rm{SO+}}} $ and an anti-symmetric part$ H^{{\rm{SO-}}} $ , i.e.$ H^{{\rm{SO}}} = H^{{\rm{SO+}}} + H^{{\rm{SO-}}}, $
(6) $ \begin{aligned} H^{{\rm{SO+}}} = \frac{{\boldsymbol{S}}_+\cdot{\boldsymbol{L}}}{2}\left[ \left(\frac{1}{2m^2} + \frac{1}{2\bar{m}^2}\right)\left(\frac{4\alpha_s(Q^2)}{3r^3} - \frac{b}{r}\right)\right. \left. + \frac{8\alpha_s(Q^2)}{3m\bar{m}r^3} \right], \end{aligned} $
(7) $ H^{{\rm{SO-}}} = \frac{{\boldsymbol{S}}_-\cdot{\boldsymbol{L}}}{2}\left[ \left(\frac{1}{2m^2} - \frac{1}{2\bar{m}^2}\right)\left(\frac{4\alpha_s(Q^2)}{3r^3} - \frac{b}{r}\right) \right], $
(8) where
$ {\boldsymbol{S}}_\pm = {\boldsymbol{s}} \pm {\boldsymbol{\bar{s}}} $ , and$ {\boldsymbol{L}} $ is the orbital angular momentum of the quark and antiquark system.In Eqs. (3)
$-$ (8), the running coupling takes the following form:$ \alpha_s(Q^2) = \frac{4\pi}{\beta \log\left({\rm{e}}^{\frac{4\pi}{\beta\alpha_0}} + \dfrac{Q^2}{\Lambda^2_{{\rm{QCD}}}}\right)}, $
(9) where
$ \Lambda_{{\rm{QCD}}} $ is the energy scale below which nonperturbative effects take over,$ \beta = 11-\dfrac{2}{3}N_f $ with$ N_f $ being the flavor number, Q is the typical momentum of the system, and$ \alpha_0 $ is a constant. Equation (9) approaches the one loop running form of QCD at large$ Q^2 $ and saturates at low$ Q^2 $ . In practice$ \alpha_s(Q^2) $ is parametrized by the form of a sum of Gaussian functions and transformed into$ \alpha_s(r) $ as in Ref. [35].It should be mentioned that the potential containing
$ \dfrac{1}{r^3} $ is divergent. Following Refs. [36, 37], a cutoff$ r_c $ is introduced, so that$ \dfrac{1}{r^3} \to \dfrac{1}{r^3_c} $ for$ r \leq r_c $ . Herein$ r_c $ is a parameter to be fixed by observables. Most of the interaction operators in Eq. (2) are diagonal in the space with basis$ |JM_J;LS \rangle $ except$ H^{{\rm{SO-}}} $ and$ H^{{\rm{T}}} $ , where J, L and S are the total, orbital and spin angular momentum quantum numbers, and$ M_J $ is the magnetic quantum number. The anti-symmetric part of the spin-orbital interaction,$ H^{{\rm{SO-}}} $ , arising only when the quark masses are unequal, causes$ ^3L_J \leftrightarrow ^1L_J $ mixing. The tensor interaction,$ H^{{\rm{T}}} $ , causes$ ^3L_J \leftrightarrow ^3L'_J $ mixing. The former mixing is considered in our calculation while the latter one is ignored, as the mixing due to the tensor interaction is very weak [35].There are eight parameters in all: m,
$ \bar{m} $ ,$ N_f $ ,$ \Lambda_{{\rm{QCD}}} $ ,$ \alpha_0 $ , b, σ and$ r_c $ . m and$ \bar{m} $ are fixed by the mass spectra of charmonium and bottomium; see Appendix A and Appendix B.$ N_f $ and$ \Lambda_{{\rm{QCD}}} $ are chosen according to QCD estimation.$ N_f=4 $ for charmonium and$ B_c $ mesons, and$ N_f = 5 $ for bottomium mesons. In this work we vary$ \Lambda_{{\rm{QCD}}} $ in the range$ 0.2 {\rm{ GeV}} <\Lambda_{{\rm{QCD}}} < 0.4{\rm{ GeV}} $ , and$ \alpha_0 $ , b, σ and$ r_c $ are fixed by the masses of$ B_c(1^1S_0) $ ,$ B_c(2^1S_0) $ ,$ B^*_c(1^3S_1) $ and$ B_c(1^3P_0) $ . For the$ B_c $ meson masses, the experimental values [42] or the lattice QCD results [30] are referred. -
The decay constant of a pseudoscalar meson,
$ f_P $ , is defined by$ \begin{equation} p^\mu f_P {\rm{e}}^{-{\rm i}p\cdot x} = {\rm i}\langle 0| j^{\mu 5}(x) |P(p) \rangle, \end{equation} $
(10) where
$ |P(p) \rangle $ is the pseudoscalar meson state,$ p^\mu $ is the meson four-momentum, and$ j^{\mu 5}(x) = \bar{\psi}\gamma^\mu \gamma^5 \psi(x) $ is the axial vector current with$ \psi(x) $ being the quark field. In the quark model the pseudoscalar meson state is described by$ \begin{aligned}[b] |P(p) \rangle =& \sqrt{\frac{2E_p}{N_c}}\chi^{{\boldsymbol{SM_S}}}_{{\boldsymbol{s\bar{s}}}} \int\frac{{\rm d}^3{\boldsymbol{k}} {\rm d}^3{\boldsymbol{\bar{k}}}}{(2\pi)^3}\Phi\left(\frac{\bar{m}{\boldsymbol{k}} - m{\boldsymbol{\bar{k}}}}{m+\bar{m}}\right) \\ & \cdot\delta^{(3)}({\boldsymbol{k}}+{\boldsymbol{\bar{k}}}-{\boldsymbol{p}}) b^\dagger_{{\boldsymbol{ks}}} d^\dagger_{{\boldsymbol{\bar{k}\bar{s}}}}| 0 \rangle, \end{aligned} $
(11) where
$ {\boldsymbol{k}} $ ,$ {\boldsymbol{\bar{k}}} $ and$ {\boldsymbol{p}} $ are the momenta of the quark, antiquark and meson respectively,$ E_p =\sqrt{M^2 + {\boldsymbol{p}}^2} $ is the meson energy,$ N_c $ is the color number,$ {\boldsymbol{S}}(={\boldsymbol{S}}_+) $ is the total spin and$ {\boldsymbol{M_S}} $ is its z-projection (in the case of pseudoscalar meson,$ {\boldsymbol{S}} = {\boldsymbol{M_S}} = 0 $ ), and$ b^\dagger_{{\boldsymbol{ks}}} $ and$ d^\dagger_{{\boldsymbol{\bar{k}\bar{s}}}} $ are the creation operators of the quark and antiquark respectively.$ \chi^{{\boldsymbol{SM_S}}}_{{\boldsymbol{s\bar{s}}}} $ is the spin wave function, and$ \Phi\left(\dfrac{\bar{m}{\boldsymbol{k}} - m{\boldsymbol{\bar{k}}}}{m+\bar{m}} = {\boldsymbol{k}}_r\right) $ is the wave function in momentum space, where$ {\boldsymbol{k}}_r $ is the relative momentum between the quark and antiquark. While$\Phi({\boldsymbol{k}}_r) = \int {\rm{d}}^3{\boldsymbol{r}}\Phi({\boldsymbol{r}}) {\rm{e}}^{-{\rm i}{\boldsymbol{k}}_r \cdot{\boldsymbol{r}}}$ , we use the same symbol for wave functions in coordinate space and momentum space.The decay constant is Lorentz invariant by definition, as in Eq. (10). However,
$ |P(p) \rangle $ defined by Eq. (11) is not Lorentz covariant, and thus leads to ambiguity about the decay constant. Letting the four-momentum be$ p^\mu = (E_p, {\boldsymbol{p}}) $ and$ {\boldsymbol{p}} = (0,0,p) $ , we can obtain the decay constant by comparing the temporal ($ \mu = 0 $ ) component or the spatial ($ \mu = 3 $ ) component of Eq. (10). The decay constant obtained with the temporal component is$ \begin{aligned}[b] f_P =& \sqrt{\frac{N_c}{E_p}} \int \frac{{\rm{d}}^3{\boldsymbol{l}}}{(2\pi)^3} \Phi({\boldsymbol{l}})\sqrt{\left(1+\frac{m}{E_{l_+}}\right) \left(1+\frac{\bar{m}}{\bar{E}_{l_-}}\right)} \\ &\times\left[ 1-\frac{{\boldsymbol{l}}_+\cdot {\boldsymbol{l}}_-}{(E_{l_+}+m) (\bar{E}_{l_-}+\bar{m})} \right], \end{aligned} $
(12) where
$ {\boldsymbol{l}}_+ = {\boldsymbol{l}} + \dfrac{m{\boldsymbol{p}}}{m+\bar{m}} $ ,$ {\boldsymbol{l}}_- = {\boldsymbol{l}} - \dfrac{\bar{m}{\boldsymbol{p}}}{m+\bar{m}} $ ,$ E_{l_+} = \sqrt{({\boldsymbol{l}}_+)^2 + m^2} $ , and$ \bar{E}_{l_-} = \sqrt{({\boldsymbol{l}}_-)^2 + \bar{m}^2} $ . The decay constant obtained with the spatial component is$ \begin{aligned}[b] f_P =& \frac{\sqrt{N_c E_p}}{{\boldsymbol{p}}^2} \int \frac{{\rm{d}}^3 {\boldsymbol{l}}}{(2\pi)^3} \Phi({\boldsymbol{l}}) \sqrt{\left(1+\frac{m}{E_{l_+}}\right) \left(1+\frac{\bar{m}}{\bar{E}_{l_-}}\right)}\\ &\times \left[ \frac{{\boldsymbol{p}}\cdot{\boldsymbol{l}}_+}{E_{l_+}+m} - \frac{{\boldsymbol{p}}\cdot{\boldsymbol{l}}_-}{ \bar{E}_{l_-}+\bar{m} } \right]. \end{aligned} $
(13) The Lorentz covariance is violated in two aspects. Firstly, Eqs. (12) and (13) lead to different results. Secondly,
$ f_P $ varies as the momentum$ p = |{\boldsymbol{p}}| $ varies. Losing Lorentz covariance is a deficiency of nonrelativistic quark model and covariance is only recovered in the nonrelativistic and weak coupling limits [41]. Herein we treat the center value as the prediction, and the deviation is treated as the uncertainty due to losing Lorentz covariance.The decay constant of a vector meson,
$ f_V $ , is defined by$ \begin{equation} M_V f_V \epsilon^\mu {\rm{e}}^{-{\rm i}p\cdot x} = \langle 0| j^{\mu}(x) |V(p) \rangle, \end{equation} $
(14) where
$ M_V $ is the vector meson mass,$ \epsilon^\mu $ is its polarization vector,$ j^{\mu}(x) = \bar{\psi}\gamma^\mu \psi(x) $ is the vector current, the vector meson state is the same as Eq. (11) except$ {\boldsymbol{S}} = 1 $ and$ {\boldsymbol{M_S}} = 0, \pm 1 $ (we use the quantum number to present the value of the angular momentum). With$ p^\mu = (E_p, 0,0,p) $ , the polarization vector is$ \epsilon^\mu_+ = \left(0, -\frac{1}{\sqrt{2}}, -\frac{\rm i}{\sqrt{2}}, 0\right), \quad{\rm{for}}\quad {\boldsymbol{M_S}} = + 1, $
(15) $ \epsilon^\mu_0 = \left(\frac{p}{M_V}, 0, 0, \frac{E_p}{M_V}\right),\quad{\rm{for}}\quad {\boldsymbol{M_S}} = 0, $
(16) $ \epsilon^\mu_- = \left(0, \frac{1}{\sqrt{2}}, -\frac{\rm i}{\sqrt{2}}, 0\right), \quad{\rm{for}}\quad {\boldsymbol{M_S}} = - 1. $
(17) We obtain three different expressions for
$ f_V $ in the nonrelativistic quark model. Let$ \epsilon^\mu = \epsilon^\mu_0 $ and$ \mu=0 $ (temporal),$ \begin{aligned}[b] f_V =& \frac{\sqrt{N_c E_p}}{{\boldsymbol{p}}^2} \int \frac{{\rm{d}}^3 {\boldsymbol{l}}}{(2\pi)^3} \Phi({\boldsymbol{l}}) \sqrt{\left(1+\frac{m}{E_{l_+}}\right) \left(1+\frac{\bar{m}}{\bar{E}_{l_-}}\right)}\\ & \times \left[ \frac{{\boldsymbol{p}}\cdot{\boldsymbol{l}}_+}{E_{l_+}+m} - \frac{{\boldsymbol{p}}\cdot{\boldsymbol{l}}_-}{ \bar{E}_{l_-}+\bar{m} } \right]. \end{aligned} $
(18) Let
$ \epsilon^\mu = \epsilon^\mu_0 $ and$ \mu=3 $ (spatial longitudinal),$ \begin{aligned}[b] f_V =& \sqrt{\frac{N_c}{E_p}} \int \frac{{\rm{d}}^3 {\boldsymbol{l}}}{(2\pi)^3} \Phi({\boldsymbol{l}}) \sqrt{\left(1+\frac{m}{E_{l_+}}\right) \left(1+\frac{\bar{m}}{\bar{E}_{l_-}}\right)} \\ & \times\left[ 1+\frac{ 2{\boldsymbol{l}}^2 -{\boldsymbol{l}}_+\cdot {\boldsymbol{l}}_- -2({\boldsymbol{l}}\cdot {\boldsymbol{p}})^2/{\boldsymbol{p}}^2 }{(E_{l_+}+m) (\bar{E}_{l_-}+\bar{m})} \right]. \end{aligned} $
(19) Let
$ \epsilon^\mu = \epsilon^\mu_+ {\rm{ or }} \epsilon^\mu_- $ and$ \mu=1\ {\rm{ or }}\ 2 $ (spatial transverse),$ \begin{aligned}[b] f_V =& \frac{\sqrt{N_c E_p}}{M_V} \int \frac{{\rm{d}}^3 {\boldsymbol{l}}}{(2\pi)^3} \Phi({\boldsymbol{l}}) \sqrt{\left(1+\frac{m}{E_{l_+}}\right) \left(1+\frac{\bar{m}}{\bar{E}_{l_-}}\right)} \\ & \times\left[ 1+\frac{ -{\boldsymbol{l}}^2 +{\boldsymbol{l}}_+\cdot {\boldsymbol{l}}_- +({\boldsymbol{l}}\cdot {\boldsymbol{p}})^2/{\boldsymbol{p}}^2 }{(E_{l_+}+m) (\bar{E}_{l_-}+\bar{m})} \right]. \end{aligned} $
(20) Again the center value is treated as the prediction of
$ f_V $ , and the deviation is treated as the uncertainty due to losing Lorentz covariance. -
We take Eq. (1) as an eigenvalue problem, and solve it using the Gaussian expansion method [43]. Three parameter sets are used in our calculation, which are listed in Table 1. The
$ B_c $ mass spectra corresponding to these three parameter sets are listed in Table 2 in columns three to five. The parameters are fixed by the masses of$ B_c(1^1S_0) $ ,$ B_c(2^1S_0) $ ,$ B^*_c(1^3S_1) $ and$ B_c(1^3P_0) $ , where the experimental values [42] (column seven) or the lattice QCD results [30] (column eight) are referred. The others are all outputs of the quark model explained from Eqs. (2) to (9). We also list the results of a previous nonrelativistic quark model [10] using a constant$ \alpha_s $ in column six. Comparing the results using different parameters, we see that the deviation increases as n increases. The deviation from the center value is about$30\ {\rm{ MeV}}$ for$ 3S $ states and$50\ {\rm{ MeV}}$ for$ 3P $ states.$m_c/{\rm{GeV} }$ $m_b/{\rm{GeV} }$ $N_f$ $\Lambda_{\text{QCD} }/{\rm{GeV} }$ $\alpha_0$ b/GeV $^2$ σ/GeV $r_c/{\rm{fm} }$ Parameter1 1.591 4.997 4 0.20 1.850 0.1515 1.86 0.538 Parameter2 1.591 4.997 4 0.30 1.074 0.1250 1.50 0.420 Parameter3 1.591 4.997 4 0.40 0.865 0.1126 1.40 0.345 Table 1. Three parameter sets used in our calculation.
$m_c$ and$m_b$ are fixed by the mass spectra of charmonium and bottomium respectively; see Table A1 and Table B1 in the appendix.$N_f$ and$\Lambda_{\text{QCD}}$ are chosen according to QCD estimation.$\alpha_0$ , b, σ and$r_c$ are fixed by the masses of$B_c(1^1S_0)$ ,$B_c(2^1S_0)$ ,$B^*_c(1^3S_1)$ and$B_c(1^3P_0)$ (the experimental values [42] or the lattice QCD results [30] are referred).state $J^{\rm{P}}$ $M_{c\bar{b}}$ $M_{c\bar{b}}$ [10]$M^{\rm{expt.}}_{c\bar{b}}$ [8, 42]$M^{\rm{lQCD}}_{c\bar{b}}$ [30]Parameter1 Parameter2 Parameter3 $B_c(1^1S_0)$ $0^{-}$ 6.275 6.275 6.275 6.271 6.274(0.3) 6.276(3)(6) $B_c(2^1S_0)$ $0^{-}$ 6.872 6.872 6.872 6.871 6.871(1) – $B_c(3^1S_0)$ $0^{-}$ 7.272 7.241 7.220 7.239 – – $B^*_c(1^3S_1)$ $1^{-}$ 6.333 6.333 6.333 6.326 – 6.331(4)(6) $B^*_c(2^3S_1)$ $1^{-}$ 6.900 6.895 6.893 6.890 6.898(6) – $B^*_c(3^3S_1)$ $1^{-}$ 7.292 7.256 7.233 7.252 – – $B_c(1^3P_0)$ $0^{+}$ 6.712 6.712 6.712 6.714 – 6.712(18)(7) $B_c(2^3P_0)$ $0^{+}$ 7.145 7.123 7.106 7.107 – – $B_c(3^3P_0)$ $0^{+}$ 7.487 7.433 7.396 7.420 – – $B_c(1P_1)$ $1^{+}$ 6.729 6.736 6.744 6.757 – 6.736(17)(7) $B_c(1P'_1)$ $1^{+}$ 6.725 6.741 6.755 6.776 – – $B_c(2P_1)$ $1^{+}$ 7.153 7.134 7.123 7.134 – – $B_c(2P'_1)$ $1^{+}$ 7.145 7.130 7.120 7.150 – – $B_c(3P_1)$ $1^{+}$ 7.493 7.440 7.406 7.441 – – $B_c(3P'_1)$ $1^{+}$ 7.485 7.435 7.404 7.458 – – $B_c(1^3P_2)$ $2^{+}$ 6.735 6.755 6.772 6.787 – – $B_c(2^3P_2)$ $2^{+}$ 7.152 7.139 7.133 7.160 – – $B_c(3^3P_2)$ $2^{+}$ 7.491 7.441 7.413 7.464 – – Table 2. Mass spectra of
$B_c$ mesons (in GeV). The third to fifth columns are our results corresponding to the three parameter sets in Table 1, where the underlined values are used to fix$\alpha_0$ , b, σ and$r_c$ . The sixth column is the result of a previous nonrelativistic quark model using a constant$\alpha_s$ .$M^{\rm{expt.}}_{c\bar{b}}$ is the experimental value,$M_{B_c(1^1S_0)}$ and$M_{B_c(2^1S_0)}$ are taken from Ref. [42], and$M_{B^*_c(2^3S_1)}$ is obtained by combining the experimental value$M_{B^*_c(2^3S_1)} - M_{B^*_c(1^3S_1)} = 0.567 \text{ GeV}$ [8] and the lQCD value of$M_{B^*_c(1^3S_1)}$ .$M^{\rm{lQCD}}_{c\bar{b}}$ is the recent lattice QCD result [30].Note that
$ B_c(nP'_1) $ and$ B_c(nP_1) $ are mixing states of$ B_c(n^1P_1) $ and$ B_c(n^3P_1) $ ,$ \begin{equation} \begin{pmatrix} |nP'_1\rangle \\ |nP_1\rangle \end{pmatrix}= \begin{pmatrix} \cos\theta_{nP} & \sin\theta_{nP} \\ -\sin\theta_{nP} & \cos\theta_{nP} \end{pmatrix} \begin{pmatrix} |n^1P_1\rangle \\ |n^3P_1\rangle \end{pmatrix}, \end{equation} $
(21) where
$ \theta_{nP} $ is the mixing angle. We choose$ |nP'_1\rangle $ to be the state nearer to$ |n^1P_1\rangle $ , i.e. the mixing angle is always in the range$0^\circ \leq \theta_{nP} \leq 45^\circ$ . Let$ H_0 = m + \bar{m} + T + H^{{\rm{SI}}} + H^{{\rm{SS}}} + H^{{\rm{T}}} + H^{{\rm{SO+}}} $ ,$ H' = H^{{\rm{SO-}}} $ , and M be the mass of$ |nP'_1\rangle $ or$ |nP_1\rangle $ ; then the equation$ (H_0 + H')|nP'_1\rangle = M|nP'_1\rangle $ leads to$ \begin{equation} \begin{pmatrix} H_0 & H' \\ H' & H_0 \end{pmatrix} \begin{pmatrix} \cos\theta_{nP} |n^1P_1\rangle \\ \sin\theta_{nP} |n^3P_1\rangle \end{pmatrix} =M \begin{pmatrix} \cos\theta_{nP} |n^1P_1\rangle \\ \sin\theta_{nP} |n^3P_1\rangle \end{pmatrix} . \end{equation} $
(22) Using
$ \langle n^1P_1| $ and$ \langle n^3P_1| $ to dot product the above equation, we obtain$ \begin{equation} \begin{pmatrix} M_1 & E' \\ E' & M_3 \end{pmatrix} \begin{pmatrix} \cos\theta_{nP} \\ \sin\theta_{nP} \end{pmatrix} =M \begin{pmatrix} \cos\theta_{nP} \\ \sin\theta_{nP} \end{pmatrix}, \end{equation} $
(23) where
$ M_1 $ and$ M_3 $ are the masses of$ |n^1P_1\rangle $ and$ |n^3P_1\rangle $ respectively,$ E' = \langle n^3P_1| H' |n^1P_1\rangle = \langle n^1P_1| H' |n^3P_1\rangle $ . By normalizing$ |n^1P_1\rangle $ and$ |n^3P_1\rangle $ properly, we can always make$ 0\leq\theta_{nP}\leq \pi/4 $ . Equation (23) gives$M_{\pm} = (M_1 + M_3)/2 \pm (M_1 - M_3)\sqrt{1+E'^2/(M_1-M_3)^2}/2$ . The mass of$ |nP'_1\rangle $ (the state nearer to$ |n^1P_1\rangle $ ) is$ M_+ $ , and the mixing angle is$ \begin{aligned}[b]& \cos\theta_{nP}\\ =& \frac{|E'|}{\sqrt{2(E')^2 + \dfrac{(M_1-M_3)^2}{2} - \sqrt{\dfrac{(M_1 - M_3)^4}{4} + (M_1-M_3)^2(E')^2}}}. \end{aligned} $
(24) If
$ |M_1-M_3| \gg |E'| $ , then$\theta_{nP} \approx 0^\circ$ , i.e. the mixing is very weak in this case. If$ |M_1-M_3| \ll |E'| $ , then$ \theta_{nP} \approx 45^\circ $ , which is the case of the strongest mixing.Our results of the mixing angles are listed in the second to fourth columns in Table 3, and the previous quark model results using a constant strong coupling [10] are listed in the fifth column. The mixing angles are sensitive to the parameters because both
$ |M_1-M_3| $ and$ |E'| $ are small in the actual situation. However we can still find that a running coupling affects$ \theta_{1P} $ very little, and the mixing angles of the radial excited mesons from a running coupling are much smaller than those from a constant$ \alpha_s $ . This feature is also confirmed by the results of Ref. [35]. We believe that the mixing of the radial excited mesons is much weaker than the ground state.Mixing angle Herein Previous [10] Parameter1 Parameter2 Parameter3 $\theta_{1P}$ $30.8^\circ$ $37.3^\circ$ $34.0^\circ$ $35.5^\circ$ $\theta_{2P}$ $24.2^\circ$ $9.9^\circ$ $29.9^\circ$ $38.0^\circ$ $\theta_{3P}$ $22.0^\circ$ $14.1^\circ$ $3.6^\circ$ $39.7^\circ$ As explained in section III, we obtain two different expressions for
$ f_P $ and three for$ f_V $ , and they depend on the momentum of the meson, due to losing Lorentz covariance. This is illustrated in Fig. 1, where the left panel is$ f_{B_c(1^1S_0)} $ and the right panel is$ f_{B_c(1^3S_1)} $ . The dependence on the meson momentum is weak up to 2 GeV; thus, the main uncertainty comes from the different expressions (Eqs. (12) and (13) for$ f_P $ , Eqs. (18)-(20) for$ f_V $ ). We treat the central value as the predicted decay constant, and the deviation from the central value as the uncertainty due to losing Lorentz covariance. Our results for the decay constants of$ B_c(nS) $ and$ B^*_c(nS) $ corresponding to the three parameter sets and their uncertainties are listed in Table 4. We see that the uncertainty due to losing Lorentz covariance is smaller for higher n states. Comparing the results from different parameters, the uncertainty due to varying the parameter is smaller than the former one in most cases.Figure 1. (color online) Decay constants calculated using Parameter2 in Table 1; the horizontal coordinate is the momentum of the meson. Left: decay constant of
$B_c(1^1S_0)$ ; "$1^1S_0$ Temporal" is calculated from Eq. (12), and "$1^1S_0$ Spatial" is calculated from Eq. (13). Right: decay constant of$B_c(1^3S_1)$ ; "$1^3S_1$ Temporal" is calculated from Eq. (18), "$1^3S_1$ Spatial Longitudinal" is calculated from Eq. (19), and "$1^3S_1$ Spatial Transverse" is calculated from Eq. (20).State $J^{P}$ $f^{\rm{QM}}_{c\bar{b}}$ Parameter1 Parameter2 Parameter3 $B_c(1\,^1S_0)$ $0^{-}$ 0.429(30) 0.439(30) 0.456(32) $B_c(2\,^1S_0)$ $0^{-}$ 0.292(12) 0.282(13) 0.277(13) $B_c(3\,^1S_0)$ $0^{-}$ 0.251(5) 0.237(6) 0.230(6) $B^*_c(1\,^3S_1)$ $1^{-}$ 0.390(44) 0.417(51) 0.440(56) $B^*_c(2\,^3S_1)$ $1^{-}$ 0.294(33) 0.297(35) 0.296(37) $B^*_c(3\,^3S_1)$ $1^{-}$ 0.262(28) 0.257(29) 0.253(30) Table 4. Our results of decay constants (in GeV) of
$B_c(nS)$ and$B^*_c(nS)$ corresponding to the three parameter sets in Table 1; the uncertainties due to losing Lorentz covariance are listed in parentheses.Our final prediction for the decay constant together with both uncertainties are listed in Table 5. We also compare our result with others.
$ f^{\rm{DSE}}_{c\bar{b}} $ is the result from Dyson-Schwinger equation (DSE) approach [27, 29].$ f^{\rm{lQCD}}_{c\bar{b}} $ is one of the lattice QCD results [44]; the other lattice QCD results are almost consistent with this one. The sixth and seventh columns are results from other potential models [45, 46]. The eighth column is the result from a light-front quark model [47]. These results are almost consistent except that our predictions for the radial excited mesons are smaller than those of Ref. [46]. The main difference is that Ref. [46] uses the nonrelativistic limit van Royen and Weisskopf formula to calculate the decay constants, and this results in a larger decay constant [41]. The reliability of our results can also be supported by the mass spectra and decay constants of the charmonium and bottomium, which are presented in the appendixes. We can see from Table A1, Table A2, Table B1 and Table B2 that our results are overall consistent with other results.State $J^{P}$ $f^{\rm{QM}}_{c\bar{b}}$ $f^{\rm{DSE}}_{c\bar{b}}$ [27, 29]$f^{\rm{lQCD}}_{c\bar{b}}$ [44]$|f|$ [45]$|f|$ [46]$|f|$ [47]$B_c(1\,^1S_0)$ $0^{-}$ 0.439(30)(17) 0.441(1) 0.434(15) $0.400(45)$ 0.433 $ 0.389^{+16}_{-3}$ $B_c(2\,^1S_0)$ $0^{-}$ 0.282(13)(10) 0.246(7) – $0.280(50)$ 0.356 – $B_c(3\,^1S_0)$ $0^{-}$ 0.237(6)(14) – – – 0.326 – $B^*_c(1\,^3S_1)$ $1^{-}$ 0.417(51)(27) 0.431(7) 0.422(13) – 0.435 $ 0.391^{+4}_{-5}$ $B^*_c(2\,^3S_1)$ $1^{-}$ 0.297(35)(3) 0.305(13) – – 0.356 – $B^*_c(3\,^3S_1)$ $1^{-}$ 0.257(29)(5) – – – 0.326 – Table 5. Decay constants of
$B_c(nS)$ and$B^*_c(nS)$ (in GeV).$f^{\rm{QM}}_{c\bar{b}}$ is our prediction, where the first uncertainty is due to losing Lorentz covariance and the second uncertainty is due to varying the parameters.$f^{\rm{DSE}}_{c\bar{b}}$ are the results from Dyson-Schwinger equation approach,$f_{B_c(1\,^1S_0)}$ and$f_{B^*_c(1\,^3S_1)}$ are from Ref. [29], and$f_{B_c(2\,^1S_0)}$ and$f_{B^*_c(2\,^3S_1)}$ are from Ref. [27].$f^{\rm{lQCD}}_{c\bar{b}}$ are the lattice QCD results [44]. The sixth and seventh columns are results from other potential models [45, 46]. The eighth column is the result from a light-front quark model [47]. -
In this appendix, we list our nonrelativistic quark model results of the mass spectrum of charmonium in Table A1 and the decay constants of
$ \eta_c(nS) $ and$ J/\psi(nS) $ (n = 1, 2, 3) in Table A2. The experimental values of the vector meson decay constants ($ f_V $ ) in Table A2 and Table B2 are estimated by$ \Gamma_{V\to e^+e^-} = \frac{4\pi \alpha^2 Q^2 *f_V^2}{3M_V}, \tag{A1} $
where
$ \Gamma_{V\to e^+e^-} $ is the decay width of the vector meson to$ e^+e^- $ , α is the fine structure constant, Q is the electric charge of the constituent quark, and$ M_V $ is the mass of the vector meson.$n^{2S+1}L_J$ State $J^{PC}$ $M_{c\bar{c}}^{\text{QM}}$ $M^{\rm{expt.}}_{c\bar{c}}$ [42]$1^1S_0$ $\eta_c(1S)$ $0^{-+}$ 2.984 (input) 2.984(0.4) $2^1S_0$ $\eta_c(2S)$ $0^{-+}$ 3.639 (input) 3.638(1) $3^1S_0$ $\eta_c(3S)$ $0^{-+}$ 4.054 – $1^3S_1$ $J/\psi(1S)$ $1^{--}$ 3.097 (input) 3.097(0) $2^3S_1$ $\psi(2S)$ $1^{--}$ 3.687 3.686(0.1) $3^3S_1$ $\psi(4040)$ $1^{--}$ 4.088 4.039(1) $1^3P_0$ $\chi_{c0}(1P)$ $0^{++}$ 3.415 (input) 3.415(0.3) $2^3P_0$ $\chi_{c0}(2P)$ $0^{++}$ 3.897 – $3^3P_0$ $\chi_{c0}(3P)$ $0^{++}$ 4.260 – $1^1P_1$ $h_{c}(1P)$ $1^{+-}$ 3.498 3.525(0.1) $2^1P_1$ $h_{c}(2P)$ $1^{+-}$ 3.931 – $3^1P_1$ $h_{c}(3P)$ $1^{+-}$ 4.279 – $1^3P_1$ $\chi_{c1}(1P)$ $1^{++}$ 3.492 3.511(0.1) $2^3P_1$ $\chi_{c1}(2P)$ $1^{++}$ 3.934 – $3^3P_1$ $\chi_{c1}(3P)$ $1^{++}$ 4.285 – $1^3P_2$ $\chi_{c2}(1P)$ $2^{++}$ 3.534 3.556(0.1) $2^3P_2$ $\chi_{c2}(3930)$ $2^{++}$ 3.956 3.923(1) $3^3P_2$ $\chi_{c2}(3P)$ $2^{++}$ 4.299 – Table A1. Mass spectrum of charmonium (in GeV).
$M_{c\bar{c}}^{\text{QM}}$ is our nonrelativistic quark model result, with the parameters$m_c = 1.591 \text{ GeV}$ ,$\alpha_0 = 1.082$ ,$N_f = 4$ ,$\Lambda_{\text{QCD}} = 0.30 \text{ GeV}$ ,$b = 0.1320 \text{ GeV}^2$ ,$\sigma = 1.30 \text{ GeV}$ ,$r_c = 0.375 \text{ fm}$ . Note that$N_f$ and$\Lambda_{\text{QCD}}$ are chosen according to QCD estimatation, the other parameters are tuned to fit the masses of$\eta_c(1S)$ ,$\eta_c(2S)$ ,$J/\psi(1S)$ and$\chi_{c0}(1P)$ , i.e. these four masses are inputs of our model, and all the other masses are outputs.$M^{\rm{expt.}}_{c\bar{c}}$ are the experiment values [42].$n^{2S+1}L_J$ State $J^{PC}$ $f^{\rm{QM}}_{c\bar{c}}$ $f^{\rm{DSE}}_{c\bar{c}}$ [27, 29]$f^{\rm{lQCD}}_{c\bar{c}}$ [48,49]$|f|$ [45]$|f|$ [46]$|f|$ [47]$f^{\rm{SR}}_{c\bar{c}}$ [50]$f^{\rm{expt.}}_{c\bar{c}}$ [42]$1\,^1S_0$ $\eta_c(1S)$ $0^{-+}$ 0.447(32) 0.393 0.393(4) – 0.350 $ 0.353^{+22}_{-17}$ 0.309(39) $2\,^1S_0$ $\eta_c(2S)$ $0^{-+}$ 0.268(2) 0.223(11) – – 0.278 – – $3\,^1S_0$ $\eta_c(3S)$ $0^{-+}$ 0.220(11) – – – 0.249 – – $1\,^3S_1$ $J/\psi$ $1^{--}$ 0.403(57) 0.430(1) 0.405(6) 0.400(35) 0.326 $ 0.361^{+7}_{-6}$ 0.401(46) 0.416(8) $2\,^3S_1$ $\psi(2S)$ $1^{--}$ 0.295(35) 0.294(7) – 0.297(26) 0.257 – – 0.294(5) $3\,^3S_1$ $\psi(3S)$ $1^{--}$ 0.257(26) – – 0.226(20) 0.230 – – 0.187(15) Table A2. Decay constants of
$\eta_c(nS)$ and$J/\psi(nS)$ (in GeV).$f^{\rm{QM}}_{c\bar{c}}$ are our nonrelativistic quark model results, with the parameters listed in the caption of Table A1. The uncertainties due to losing Lorentz covariance are listed in parentheses.$f^{\rm{DSE}}_{c\bar{c}}$ are the results from Dyson-Schwinger equation (DSE) approach, where$f_{\eta_c(1\,^1S_0)}$ and$f_{J/\psi(1\,^3S_1)}$ are from Ref. [29],$f_{\eta_c(2\,^1S_0)}$ and$f_{\psi(2\,^3S_1)}$ are from Ref. [27], and the underlined values are inputs.$f^{\rm{lQCD}}_{c\bar{b}}$ are the lattice QCD results, where$f_{\eta_c(1\,^1S_0)}$ is from Ref. [48], and$f_{J/\psi(1\,^3S_1)}$ is from Ref. [49]. The seventh and eighth columns are other potential model results [45, 46]. The ninth column is a light front quark model result [47].$f^{\rm{SR}}_{c\bar{c}}$ are the results from QCD sum rule [50].$f^{\rm{expt.}}_{c\bar{c}}$ are the experimental values and the vector meson decay constant is estimated by Eq. (25). -
In this appendix, we list our nonrelativistic quark model results of the mass spectrum of charmonium in Table B1 and the decay constants of
$ \eta_b(nS) $ and$ \varUpsilon(nS) $ (n=1, 2, 3) in Table B2.$n^{2S+1}L_J$ State $J^{{PC} }$ $M^{\text{QM}}_{b\bar{b}}$ $M^{\text{expt.}}_{b\bar{b}}$ [42]$1^1S_0$ $\eta_b(1S)$ $0^{-+}$ 9.400 (input) 9.399(2) $2^1S_0$ $\eta_b(2S)$ $0^{-+}$ 10.004 9.999(4) $3^1S_0$ $\eta_b(3S)$ $0^{-+}$ 10.324 – $1^3S_1$ $\varUpsilon(1S)$ $1^{--}$ 9.460 (input) 9.460(0.3) $2^3S_1$ $\varUpsilon(2S)$ $1^{--}$ 10.023 (input) 10.023(0.3) $3^3S_1$ $\varUpsilon(3S)$ $1^{--}$ 10.336 10.355(1) $4^3S_1$ $\varUpsilon(4S)$ $1^{--}$ 10.573 10.579(1) $1^3P_0$ $\chi_{b0}(1P)$ $0^{++}$ 9.859 (input) 9.859(1) $2^3P_0$ $\chi_{b0}(2P)$ $0^{++}$ 10.224 10.233(1) $3^3P_0$ $\chi_{b0}(3P)$ $0^{++}$ 10.481 – $1^1P_1$ $h_{b}(1P)$ $1^{+-}$ 9.903 9.899(1) $2^1P_1$ $h_{b}(2P)$ $1^{+-}$ 10.244 10.260(1) $3^1P_1$ $h_{b}(3P)$ $1^{+-}$ 10.493 – $1^3P_1$ $\chi_{b1}(1P)$ $1^{++}$ 9.896 9.893(1) $2^3P_1$ $\chi_{b1}(2P)$ $1^{++}$ 10.242 10.255(1) $3^3P_1$ $\chi_{b1}(3P)$ $1^{++}$ 10.493 10.513(1) $1^3P_2$ $\chi_{b2}(1P)$ $2^{++}$ 9.921 9.912(1) $2^3P_2$ $\chi_{b2}(2P)$ $2^{++}$ 10.255 10.269(1) $3^3P_2$ $\chi_{b2}(3P)$ $2^{++}$ 10.502 10.524(1) $1^3D_2$ $\varUpsilon_2(1D)$ $2^{--}$ 10.152 10.164(1) Table B1. Mass spectra of bottomium (in GeV).
$M_{b\bar{b}}^{\text{QM}}$ are our nonrelativistic quark model results, with the parameters$m_b = 4.997\ \text{ GeV}$ ,$\alpha_0 = 0.920$ ,$N_f = 5$ ,$\Lambda_{\text{QCD}} = 0.30\ \text{ GeV}$ ,$b = 0.1110\ \text{ GeV}^2$ ,$\sigma = 2.35\ \text{ GeV}$ ,$r_c = 0.195\ \text{ fm}$ . Note that$N_f$ and$\Lambda_{\text{QCD}}$ are chosen by QCD estimatation, the other parameters are tuned to fit the masses of$\eta_b(1S)$ ,$\varUpsilon(1S)$ ,$\varUpsilon(2S)$ and$\chi_{b0}(1P)$ , i.e. these four masses are inputs of our model, and all the other masses are outputs.$M^{\rm{expt.}}_{b\bar{b}}$ are the experimental values [42].$n^{2S+1}L_J$ State $J^{\rm{PC}}$ $f^{\rm{QM}}_{b\bar{b}}$ $f^{\rm{DSE}}_{b\bar{b}}$ [27,29]$f^{\rm{lQCD}}_{b\bar{b}}$ [48,51]$|f|$ [45]$|f|$ [46]$|f|$ [47]$f^{\rm{expt.}}_{b\bar{b}}$ [42]$1\,^1S_0$ $\eta_b(1S)$ $0^{-+}$ 0.749(41) 0.667 0.667(6) – 0.646 $0.605^{+32}_{-17}$ $2\,^1S_0$ $\eta_b(2S)$ $0^{-+}$ 0.441(14) 0.488(8) – – 0.519 – $3\,^1S_0$ $\eta_b(3S)$ $0^{-+}$ 0.356(7) – – – 0.475 – $1\,^3S_1$ $\varUpsilon(1S)$ $1^{--}$ 0.712(78) 0.625(4) 0.649(31) 0.685(30) 0.647 $0.611^{+6}_{-11}$ 0.715(10) $2\,^3S_1$ $\varUpsilon(2S)$ $1^{--}$ 0.460(48) 0.498(6) 0.481(39) 0.469(21) 0.519 – 0.497(9) $3\,^3S_1$ $\varUpsilon(3S)$ $1^{--}$ 0.381(38) – – 0.399(17) 0.475 – 0.425(8) Table B2. Decay constants of
$\eta_b(nS)$ and$\varUpsilon(nS)$ (in GeV).$f^{\rm{QM}}_{b\bar{b}}$ are our nonrelativistic quark model results, with the parameters listed in the caption of Table B1. The uncertainties due to losing Lorentz covariance are listed in parentheses.$f^{\rm{DSE}}_{b\bar{b}}$ are the results from the Dyson-Schwinger equation (DSE) approach, where$f_{\eta_b(1\,^1S_0)}$ and$f_{\varUpsilon(1\,^3S_1)}$ are from Ref. [29],$f_{\eta_b(2\,^1S_0)}$ and$f_{\varUpsilon(2\,^3S_1)}$ are from Ref. [27], and the underlined values are inputs.$f^{\rm{lQCD}}_{c\bar{b}}$ are the lattice QCD results, where$f_{\eta_b(1\,^1S_0)}$ are from Ref. [48], and$f_{\varUpsilon(1\,^3S_1)}$ and$f_{\varUpsilon(2\,^3S_1)}$ are from Ref. [51]. The seventh and eighth columns are other potential model results [45, 46]. The ninth column is a light front quark model result [47].$f^{\rm{expt.}}_{b\bar{b}}$ are the experimental values and the vector meson decay constant is estimated by Eq. (25).
Decay constants of Bc(nS) and ${\boldsymbol B_c^*} $ (nS)
- Received Date: 2022-09-15
- Available Online: 2023-02-15
Abstract: The decay constants of the low lying S-wave