Processing math: 81%

New puzzle in charmonium decays

  • By analyzing existing data on pseudoscalar charmonium decays, we obtain the ratio of the branching fractions of ηc(2S) and ηc decays into ten different final states with light hadrons. For the first time, we test the two existing theoretical predictions of these decays and find that the experimental data are significantly different from both of them. The lack of observation of any decay mode with higher rate in ηc(2S) than in ηc decays suggests very unusual decay dynamics in pseudoscalar charmonium decays to be identified. We also report the first model-independent evaluation of the partial width of ηc(2S)γγ (2.21+0.880.64 keV) and improve determination of that of ηcγγ (5.43+0.410.38 keV). The latter shows a tension with the most recent lattice QCD calculation.
  • Charmonium states are the bound states of a charmed quark (c) and a charmed antiquark (ˉc). Since the discovery of the first charmonium state, the J/ψ, at BNL [1] and at SLAC [2] in 1974, all the charmonium states below the open-charm threshold and a few charmonium states above the open-charm threshold have been established; the measured spectrum of the states agrees well with theoretical calculations based on QCD [35] and QCD-inspired potential models [68]. On the contrary, the decays of the charmonium states into light hadrons, which must proceed via the annihilation of the charmed quark-antiquark pair, are still poorly known, although they are governed by the same QCD theory.

    The first calculation by Appelquist and Politzer [9] using perturbative QCD related the hadronic decays of J/ψ and its radial excited sibling, ψ(2S), to their leptonic decays, and predicted

    QV=B(ψ(2S)hadrons)B(J/ψhadrons)=B(ψ(2S)e+e)B(J/ψe+e).

    The ratio was found to be around 12% using the branching fractions of the leptonic decays at that time, and this was called the "12% rule" since then, although the most recent ratio is (13.3 ± 0.3)% [10]. Extending QV of inclusive decays of charmonium to light hadrons to each individual hadronic final state, h, the Mark II experiment tested QVh with eight final states [11] and found two modes were severely suppressed relative to 12%, while the other six modes agreed with 12% reasonably well, and the ρπ mode was suppressed by more than an order of magnitude; therefore, this was referred to as the "ρπ puzzle." Many theoretical explanations have been put forth to decipher this puzzle [12]. Some attribute the small QVρπ to the enhanced branching fraction of J/ψ decays, some attribute it to the suppressed branching fraction of ψ(2S) decays, and some others attribute it to some dynamics that may affect both ψ(2S) and J/ψ decays but in a different way. Improved measurements from BES, CLEOc, and lately, BESIII experiments confirmed the Mark II observations and tested various theoretical models [10]. None of these models can solve the "ρπ puzzle" and all the newly available data satisfactorily [12].

    As the spin-partners of J/ψ and ψ(2S), respectively, the spin-singlets ηc and ηc(2S) may decay into light hadrons in a similar way as their spin-triplets partners. Anselmino, Genovese, and Predazzi assumed [13]

    B(ηc(2S)hadrons)B(ηchadrons)B(ψ(2S)hadrons)B(J/ψhadrons)=QV,

    while Chao, Gu, and Tuan argued that [14]

    QP=B(ηc(2S)hadrons)B(ηchadrons)1.

    These two predictions differ by a factor of seven and should be tested with experimental data.

    The theoretical work was clearly ahead of its time since the ηc(2S) was first observed in 2002 [15], and until now, only three hadronic decays of it were listed with branching fractions and the uncertainties are more than 50% [10].

    By examining the experimental data available for ηc(2S) decays (cited by the PDG [10] and those listed in the Appendix A), we found an amazing fact that in most of the cases, both ηc and ηc(2S) were measured in an experiment at the same time; therefore, this allowed a very convenient way of determining the ratio of the branching fractions and to test the theoretical predictions. We scrutinized the experimental measurements, selected only the reliable results, and performed a global fit to extract properties related to the ηc and ηc(2S) states.

    There are mainly three categories of measurements related to ηc and ηc(2S) states: two-photon processes (γγηc(ηc(2S))), B meson decays (BKηc(ηc(2S))), and charmonium decays (ψ(2S)γηc(ηc(2S)), J/ψγηc, and hcγηc). In many of the cases, experimental measurements are the ratio or the product of the branching fractions or partial widths. With the help of measurements of a few absolute branching fractions and the total widths of ηc (Γηc) and ηc(2S) (Γηc(2S)), we were able to determine the branching fractions of ηc and ηc(2S) decays and the ratios, as well as their partial widths, of γγ (Γηcγγ and Γηc(2S)γγ).

    The ηc-related measurements before 1995 were obtained by using ηc mass and width that are significantly smaller than the recent results [10]. They were not used in our analysis since the results are biased and the precision is low. The ηc-related measurements from J/ψγηc were biased by neglecting the interference between ηc and non-ηc amplitudes and using unreliable line shape of ηc resonance in this M1 transition [16]. They were also not used in our analysis.

    We were left with 97 measurements from the AMY, BaBar, Belle, BESIII, CLEO, DELPHI, E760, E835, and LHCb experiments, as listed in Appendix A. We performed a least-squares fit with 29 parameters, and the χ2 of the fit was 86, which corresponds to a confidence level of 5.7%, indicating a reasonable fit. The main contributor to large χ2 is DELPHI [17]; the uncertainties of its three measurements may have been underestimated, but there was no significant effect on the results by including these data.

    Table 1 and Fig. 1 show the fit results and the total uncertainties of ηc and ηc(2S) hadronic decays. We found that the ratios of all the modes with positive ηc(2S) signals (upper half of Table 1) were less than one, and those of some modes with stringent ηc(2S) decay rates were also less than one, although those of some other modes were inconclusive (lower half of Table 1). These put the prediction of QP1 in question. Although each and all of the ratios agreed with the "12% rule" better than QP1, we found that all central values were higher than 13%, except for pˉp mode, which was lower by more than three standard deviations. These indicated that the experimental measurements do not agree with either of the two predictions.

    Table 1

    Table 1.  The branching fractions of ηc(2S) and ηc decays and the ratios. For the modes with upper limits only, the data are from experimental measurements directly. The upper limits of the ratios at the 90% confidence level are determined by dividing the upper limits of the ηc(2S) decays by the branching fractions of the ηc decays lowered by the corresponding uncertainties.
    decay mode (h) B(ηch) (%) B(ηc(2S)h) (%) QPh
    pˉp 0.136±0.012 0.0077+0.00280.0021 0.057+0.0220.016
    KˉKπ 6.90+0.440.42 1.86+0.680.49 0.27+0.100.07
    KˉKη 1.27+0.150.14 0.51+0.310.23 0.40+0.250.18
    π+πη 1.20+0.180.17 0.25+0.140.09 0.21+0.120.08
    π+πpˉp 0.365+0.0420.039 0.236+0.0760.052 0.65+0.220.16
    K0SK±ππ+π 2.39+0.670.62 1.00+0.690.42 0.42+0.340.19
    K+Kπ+ππ0 3.50+0.600.57 1.36+0.700.48 0.39+0.220.14
    π+πη 1.43+0.410.38 <0.96 [18] <0.78
    2(π+π) 0.86+0.130.12 <0.41[19] <0.50
    K+Kπ+π 0.57±0.10 <0.32 [19] <0.60
    2(K+K) 0.135+0.0280.027 <0.14 [19] 1.5
    3(π+π) 1.75±0.48 [20] <2.9 [18] <2.0
    K+K2(π+π) 0.72±0.37 [20] <2.2 [18] <5.4
    ϕϕ 0.155+0.0180.017
    ϕK+K 0.36+0.150.14
    2(π+ππ0) 15.1+2.01.9
    DownLoad: CSV
    Show Table

    Figure 1

    Figure 1.  (color online) QP from the global fit and the comparison with theoretical predictions. Dots with error bars are data and the vertical lines show QP=0.133 and QP=1.

    Table 2 shows the other fit results. We found that the total widths of ηc and ηc(2S) agreed with those obtained in Ref. [10], and the ratio Γηc(2S)/Γηc=0.44±0.10 agreed well with the expectation of Eq. (14) of Ref. [14], i.e.,

    Table 2

    Table 2.  The fit results on ηc(2S) and ηc related quantities.
    Γηc 32.2±0.7 MeV
    Γηc(2S) 14.1±3.1 MeV
    Γηcγγ 5.43+0.410.38 keV
    Γηc(2S)γγ 2.21+0.880.64 keV
    B(B+ηcK+) (10.8±0.6)×104
    B(B+ηc(2S)K+) (4.42±0.96)×104
    B(ψ(2S)γηc(2S)) (7.0+3.42.5)×104
    B(ψ(2S)π0hcπ0γηc) (5.03+0.520.49)×104
    DownLoad: CSV
    Show Table

    Γηc(2S)ΓηcΓηc(2S)hadronsΓηchadronsΓψ(2S)e+eΓJ/ψe+e=0.42±0.01,

    where Γψ(2S)e+e and ΓJ/ψe+e are the leptonic partial widths of the vector charmonium states [10].

    The partial width of ηcγγ, (5.43+0.410.38) keV, is about one standard deviation higher than the world average [10] and is lower than the lattice QCD calculation of Γηcγγ=(6.51±0.20) keV [21] by 2.5 standard deviations. Further measurements and refined calculations are needed to clarify the tension and to develop other model calculations [22, 23].

    The partial width of ηc(2S)γγ of (2.21+0.880.64) keV is a first model-independent evaluation, to be compared with various calculations compiled in Ref. [23]. Note that the ratio of the branching fractions of ηc(2S) and ηcγγ agreed fairly well with the QP=1 rule:

    B(ηc(2S)γγ)B(ηcγγ)=Γηc(2S)γγ/Γηc(2S)Γηcγγ/Γηc=0.93+0.480.31,

    although the uncertainty was large.

    As by products, we also report the best evaluation of B(B+ηcK+), B(B+ηc(2S)K+), B(ψ(2S)γηc(2S)), and B(ψ(2S)π0hc)B(hcγηc) to date, as shown in Table 2. These results will be used in future measurements with these processes.

    In summary, we determined the ratios of the pseudoscalar charmonium states ηc(2S) and ηc decay branching fractions and found prominent discrepancy from theoretical predictions [13, 14]. The mixing of the J/ψ with a nearby glueball has been proposed [24] to explain the "ρπ puzzle", and the scheme has been extended to the ηc case [13, 14]. As the pseudoscalar glueballs are expected to be close to ηc or ηc(2S) [25, 26], the mixing between them may also play an important role in the charmonium decays [2729]. The different contribution of the open-charm loop in ηc and ηc(2S) decays may affect the branching fraction ratio [30] too. The fact that all the known hadronic decays of ηc(2S) have rates lower than ηc decays suggests abnormal dynamics in either ηc(2S) or ηc decays, and these may be investigated at future experiments like BESIII [31], Belle II [32], and LHCb [33] in charmonium decays, two-photon processes, and B decays.

    Table A1

    Table A1.  Data used in the analysis: absolute branching fractions and the ratios of the branching fractions for ηc and ηc(2S).
    Index quantity Value (%) Experiment
    Branching fraction
    1 B(ηcK+Kπ0) 1.15±0.12±0.10 BESIII [34]
    2 B(ηcK0SK±π) 2.60±0.21±0.20 BESIII [34]
    3 B(ηcpˉp) 0.120±0.026±0.015 BESIII [34]
    4 B(ηc2(π+ππ0)) 15.3±1.8±1.8 BESIII [34]
    5 B(B+ηcK+) 0.120±0.008±0.007 Belle [35]
    6 B(B+ηcK+) 0.096±0.012±0.006 BaBar [36]
    7 B(B+ηc(2S)K+) 0.048±0.011±0.003 Belle [35]
    8 B(B+ηc(2S)K+) 0.035±0.017±0.005 BaBar [36]
    Ratio of the branching fractions
    9 B(ηcϕϕ)B(ηcpˉp) 1.79±0.14±0.32 LHCb [37]
    10 B(ηcϕϕ)B(ηcKˉKπ) 0.032+0.0140.010±0.009 Belle [38]
    11 B(ηcK+Kη)B(ηcK+Kπ0) 0.571±0.025±0.051 BaBar [39]
    12 B(ηcϕK+K)B(ηcKˉKπ) 0.052+0.0160.014±0.014 Belle [38]
    13 B(ηc2(K+K))B(ηcKˉKπ) 0.026+0.0090.007±0.007 Belle [38]
    14 B(ηc(2S)K+Kη)B(ηc(2S)K+Kπ0) 0.82±0.21±0.27 Belle [39]
    15 B(ηc(2S)KˉKπ)B(B+ηc(2S)K+)B(ηcKˉKπ)B(B+ηcK+) 0.096+0.0200.019±0.025 BaBar [40]
    16 B(ηc(2S)K0SK±π)Γηc(2S)γγB(ηcK0SK±π)Γηcγγ 0.18±0.05±0.02 CLEO [41]
    DownLoad: CSV
    Show Table

    Table A2

    Table A2.  Data used in the analysis: product branching fractions measured in B decays and charmonium decays.
    Index quantity Value (×106) Experiment
    17 B(ηcpˉp)B(ψ(2S)π0hcπ0γηc) 0.65±0.19±0.10 BESIII [42]
    18 B(ηcpˉp)B(ηcγγ) 0.224+0.0380.037±0.020 E835 [43]
    19 B(ηcpˉp)B(ηcγγ) 0.336+0.0800.070 E760 [44]
    20 B(ηcpˉp)B(B+ηcK+) 1.64±0.41+0.170.24 Belle [45]
    21 B(ηcpˉp)B(B0ηcK0) 1.79±0.68+0.190.25 Belle [45]
    22 B(ηcpˉp)B(B+ηcK+) 1.8+0.30.2±0.2 BaBar [46]
    23 B(ηcpˉp)B(B+ηcK+) 1.42±0.11+0.160.20 Belle [47]
    24 B(ηcγγ)B(B+ηcK+) 0.22+0.090.07+0.040.02 Belle [48]
    25 B(ηcϕϕ)B(B+ηcK+) 4.7±1.2±0.5 BaBar [49]
    26 B(ηcϕϕ)B(B0ηcK0) 2.4±1.4±0.3 BaBar [49]
    27 B(ηcKˉKπ)B(B+ηcK+) 74.0±5.0±7.0 BaBar [49]
    28 B(ηcKˉKπ)B(B0ηcK0) 64.8±8.5±7.1 BaBar [49]
    29 B(ηcK+Kπ0)B(ψ(2S)π0hcπ0γηc) 4.54±0.76±0.48 BESIII [42]
    30 B(ηcK+Kπ0)B(B+ηcK+) 11.4±2.5+1.11.8 Belle [45]
    31 B(ηcK+Kπ0)B(B0ηcK0) 16.6±5.0±1.8 Belle [45]
    32 B(ηcK0SK±π)B(ψ(2S)π0hcπ0γηc) 11.35±1.25±1.50 BESIII [42]
    33 B(ηcK0SK±π)B(B+ηcK+) 24.0±1.2+2.12.0 Belle [50]
    Continued on next page
    DownLoad: CSV
    Show Table

    Table A2

    Table A2-continued from previous page
    Index quantity Value (×106) Experiment
    34 B(ηcK0SK±π)B(B0ηcK0) 20.1±4.7+3.04.5 Belle [45]
    35 B(ηcπ+πη)B(ψ(2S)π0hcπ0γηc) 7.22±1.47±1.11 BESIII [42]
    36 B(ηcK+Kη)B(ψ(2S)π0hcπ0γηc) 2.11±1.01±0.32 BESIII [42]
    37 B(ηc2(π+π))B(ψ(2S)π0hcπ0γηc) 7.51±0.85±1.11 BESIII [42]
    38 B(ηc2(K+K))B(ψ(2S)π0hcπ0γηc) 0.94±0.37±0.14 BESIII [42]
    39 B(ηc2(K+K))B(B+ηcK+) 2.0±0.6±0.4 BaBar [49]
    40 B(ηc2(K+K))B(B0ηcK0) 0.9±0.9±0.4 BaBar [49]
    41 B(ηcπ+πpˉp)B(B+ηcK+) 3.94+0.410.39+0.220.18 Belle [51]
    42 B(ηcπ+πpˉp)B(B0ηcK0S) 1.90+0.320.29+0.130.47 Belle [51]
    43 B(ηcπ+πpˉp)B(ψ(2S)π0hcπ0γηc) 2.30±0.65±0.36 BESIII [42]
    44 B(ηcK+Kπ+π)B(ψ(2S)π0hcπ0γηc) 4.16±0.76±0.59 BESIII [42]
    45 B(ηcK0SK±ππ+π)B(ψ(2S)π0hcπ0γηc) 12.01±2.22±2.04 BESIII [42]
    46 B(ηc2(π+ππ0))B(ψ(2S)π0hcπ0γηc) 75.13±7.42±9.99 BESIII [42]
    47 B(ηc(2S)pˉp)B(B+ηc(2S)K+) 0.0342±0.0071±0.0021 LHCb [52]
    48 B(ηc(2S)KˉKπ)B(ψ(2S)γηc(2S)) 13.0±2.0±3.0 BESIII [53]
    49 B(ηc(2S)K0SK±π)B(B+ηc(2S)K+) 3.1±0.8±0.2 Belle [50]
    50 B(ηc(2S)π+πpˉp)B(B+ηc(2S)K+) 1.12+0.180.16 +0.050.07 Belle [51]
    51 B(ηc(2S)π+πpˉp)B(B0ηc(2S)K0S) 0.42+0.140.12±0.03 Belle [51]
    52 B(ηc(2S)K0SK±ππ+π)B(ψ(2S)γηc(2S)) 7.03±2.10±0.70 BESIII [54]
    DownLoad: CSV
    Show Table

    Table A3

    Table A3.  Data used in the analysis: product of γγ partial width and branching fraction of ηc and ηc(2S) decays measured in two-photon processes.
    Index quantity Value/eV Experiment
    53 B(ηcϕϕ)Γηcγγ 7.75±0.66±0.62 Belle [55]
    54 B(ηcϕϕ)Γηcγγ 6.8±1.2±1.3 Belle [19]
    55 B(ηcpˉp)Γηcγγ 7.20±1.53+0.670.75 Belle [56]
    56 B(ηcKˉKπ)Γηcγγ 386±8±21 BaBar [57]
    57 B(ηcKˉKπ)Γηcγγ 374±9±31 BaBar [58]
    58 B(ηcKˉKπ)Γηcγγ 600±120±90 DELPHI [17]
    59 B(ηcK0SK±π)Γηcγγ 490±290±90 AMY [59]
    60 B(ηcK0SK±π)Γηcγγ 142±4±14 Belle [60]
    61 B(ηcπ+πη)Γηcγγ 65.4±2.6±7.8 Belle [61]
    62 B(ηc2(π+π))Γηcγγ 40.7±3.7±5.3 Belle [19]
    63 B(ηcK+Kπ+π)Γηcγγ 25.7±3.2±4.9 Belle [19]
    64 B(ηcK+Kπ+π)Γηcγγ 280±100±60 DELPHI [17]
    65 B(ηc2(K+K))Γηcγγ 5.6±1.1±1.6 Belle [19]
    66 B(ηc2(K+K))Γηcγγ 350±90±60 DELPHI [17]
    67 B(ηcK+Kπ+ππ0)Γηcγγ 190±6±28 BaBar [57]
    68 B(ηc(2S)KˉKπ)Γηc(2S)γγ 41±4±6 BaBar [57]
    69 B(ηc(2S)K0SK±π)Γηc(2S)γγ 11.2±2.4±2.7 Belle [60]
    70 B(ηc(2S)π+πη)Γηc(2S)γγ 5.6+1.21.1±1.1 Belle [61]
    71 B(ηc(2S)K+Kπ+ππ0)Γηc(2S)γγ 30±6±5 BaBar [57]
    DownLoad: CSV
    Show Table

    Table A4

    Table A4.  Data used in the analysis: total widths of ηc (upper half in the table) and ηc(2S) (lower half in the table).
    Index Process Width/MeV Experiment
    72 γγηc, ηcηπ+π 30.8+2.32.2±2.9 Belle [61]
    73 γγηc, ηcK+Kη 34.8±3.1±4.0 BaBar [39]
    74 γγηc, ηcK+Kπ0 25.2±2.6±2.4 BaBar [39]
    75 γγηc, ηcK0SK±π 32.1±1.1±1.3 BaBar [57]
    76 γγηc, ηcK0SK±π 24.8±3.4±3.5 CLEO [41]
    77 γγηc, ηcK0SK±π 36.6±1.5±2.0 Belle [60]
    78 γγηc, ηcK0SK±π 31.7±1.2±0.8 BaBar [58]
    79 γγηc, ηcK+Kπ+ππ0 36.2±2.8±3.0 BaBar [57]
    80 γγηc, ηchadrons 28.1±3.2±2.2 Belle [19]
    81 B+ηcK+, ηcpˉp 34.0±1.9±1.3 LHCb [52]
    82 B+ηcK+, ηcpˉp 48+87±5 Belle [47]
    83 B+ηcK+, ηcΛˉΛ 40±19±5 Belle [47]
    84 B+ηcK+, ηcK0SK±π 35.4±3.6+3.02.1 Belle [50]
    85 BηcK(), ηcKˉKπ 36.3+3.73.6±4.4 BaBar [40]
    86 bηcX, ηcϕϕ 31.4±3.5±2.0 LHCb [37]
    87 bηcX, ηcpˉp 25.8±5.2±1.9 LHCb [62]
    88 pˉpηc, ηcγγ 20.4+7.76.7±2.0 E835 [43]
    89 pˉpηc, ηcγγ 23.9+12.67.1 E760 [44]
    90 ψ(2S)π0hcπ0γηc, ηchadrons 32.0±1.2±1.0 BESIII [63]
    91 ψ(2S)π0hcπ0γηc, ηchadrons 36.4±3.2±1.7 BESIII [63]
    92 γγηc(2S), ηc(2S)K0SK±π 13.4±4.6±3.2 BaBar [57]
    93 γγηc(2S), ηc(2S)K0SK±π 6.3±12.4±4.0 CLEO [41]
    94 γγηc(2S), ηc(2S)K0SK±π 19.1±6.9±6.0 Belle [60]
    95 B+ηc(2S)K+, ηc(2S)K0SK±π 41.0±12.0+6.410.9 Belle [50]
    96 ψ(2S)γηc(2S), ηc(2S)KˉKπ 16.9±6.4±4.8 BESIII [53]
    97 ψ(2S)γηc(2S), ηc(2S)K0SK±ππ+π 9.9±4.8±2.9 BESIII [54]
    DownLoad: CSV
    Show Table
    [1] J. J. Aubert et al. (E598), Phys. Rev. Lett. 33, 1404-1406 (1974) doi: 10.1103/PhysRevLett.33.1404
    [2] J. E. Augustin et al. (SLAC-SP-017), Phys. Rev. Lett. 33, 1406-1408 (1974) doi: 10.1103/PhysRevLett.33.1406
    [3] N. Brambilla, A. Pineda, J. Soto et al., Rev. Mod. Phys. 77, 1423 (2005) doi: 10.1103/RevModPhys.77.1423
    [4] N. Brambilla, S. Eidelman, B. K. Heltsley et al., Eur. Phys. J. C 71, 1534 (2011) doi: 10.1140/epjc/s10052-010-1534-9
    [5] N. Brambilla, S. Eidelman, P. Foka et al., Eur. Phys. J. C 74(10), 2981 (2014) doi: 10.1140/epjc/s10052-014-2981-5
    [6] E. Eichten, K. Gottfried, T. Kinoshita et al., Phys. Rev. D 17, 3090 (1978) [Erratum: Phys. Rev. D 21, 313 (1980)]
    [7] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi: 10.1103/PhysRevD.32.189
    [8] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005) doi: 10.1103/PhysRevD.72.054026
    [9] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975) doi: 10.1103/PhysRevLett.34.43
    [10] P. A. Zyla et al. (Particle Data Group), PTEP 2020(8), 083C01 (2020) doi: 10.1093/ptep/ptaa104
    [11] M. E. B. Franklin et al., Phys. Rev. Lett. 51, 963-966 (1983) doi: 10.1103/PhysRevLett.51.963
    [12] X. H. Mo, C. Z. Yuan, and P. Wang, Chin. Phys. C 31, 686-701 (2007)
    [13] M. Anselmino, M. Genovese, and E. Predazzi, Phys. Rev. D 44, 1597-1598 (1991) doi: 10.1103/PhysRevD.44.1597
    [14] K. T. Chao, Y. F. Gu, and S. F. Tuan, Commun. Theor. Phys. 25, 471-478 (1996) doi: 10.1088/0253-6102/25/4/471
    [15] S. K. Choi et al. (Belle), Phys. Rev. Lett. 89, 102001 (2002) [Erratum: Phys. Rev. Lett. 89, 129901 (2002)]
    [16] J. Segovia and J. T. Castellà, Phys. Rev. D 104(7), 074032 (2021) doi: 10.1103/PhysRevD.104.074032
    [17] J. Abdallah et al. (DELPHI), Eur. Phys. J. C 31, 481-489 (2003) doi: 10.1140/epjc/s2003-01384-0
    [18] D. Cronin-Hennessy et al. (CLEO), Phys. Rev. D 81, 052002 (2010) doi: 10.1103/PhysRevD.81.052002
    [19] S. Uehara et al. (Belle), Eur. Phys. J. C 53, 1-14 (2008) doi: 10.1140/epjc/s10052-007-0451-z
    [20] Recalculated with data in M. Ablikim et al. (BESIII), Phys. Rev. D 86, 092009 (2012) and \begin{document}$ {\cal B}(\psi(2S)\to $\end{document}\begin{document}$ \pi^0 h_c\to \pi^0 \gamma \eta_c) $\end{document} obtained from this paper (Table 2)
    [21] Y. Meng, X. Feng, C. Liu et al., arXiv: 2109.09381 [hep-lat]
    [22] N. Brambilla, H. S. Chung, and J. Komijani, Phys. Rev. D 98(11), 114020 (2018) doi: 10.1103/PhysRevD.98.114020
    [23] R. Chaturvedi and A. K. Rai, Int. J. Theor. Phys. 59(11), 3508-3532 (2020) doi: 10.1007/s10773-020-04613-y
    [24] W. S. Hou and A. Soni, Phys. Rev. Lett. 50, 569 (1983) doi: 10.1103/PhysRevLett.50.569
    [25] M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, arXiv: 2111.10197 [hep-ph]
    [26] F. Chen, X. Jiang, Y. Chen et al., arXiv: 2111.11929 [hep-lat]
    [27] Y. D. Tsai, H. n. Li, and Q. Zhao, Phys. Rev. D 85, 034002 (2012) doi: 10.1103/PhysRevD.85.034002
    [28] W. Qin, Q. Zhao, and X. H. Zhong, Phys. Rev. D 97(9), 096002 (2018) doi: 10.1103/PhysRevD.97.096002
    [29] R. Zhang, W. Sun, Y. Chen et al., Phys. Lett. B 827, 136960 (2022) doi: 10.1016/j.physletb.2022.136960
    [30] Q. Wang, X. H. Liu, and Q. Zhao, Phys. Lett. B 711, 364-370 (2012) doi: 10.1016/j.physletb.2012.04.022
    [31] M. Ablikim et al. (BESIII), Chin. Phys. C 44(4), 040001 (2020) doi: 10.1088/1674-1137/44/4/040001
    [32] T. Abe et al. (Belle-II), arXiv: 1011.0352 [physics.ins-det]
    [33] R. Aaij et al. (LHCb), arXiv: 1808.08865 [hep-ex]
    [34] M. Ablikim et al. (BESIII), Phys. Rev. D 100(1), 012003 (2019) doi: 10.1103/PhysRevD.100.012003
    [35] Y. Kato et al. (Belle), Phys. Rev. D 97(1), 012005 (2018) doi: 10.1103/PhysRevD.97.012005
    [36] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 124(15), 152001 (2020) doi: 10.1103/PhysRevLett.124.152001
    [37] R. Aaij et al. (LHCb), Eur. Phys. J. C 77(9), 609 (2017) doi: 10.1140/epjc/s10052-017-5151-8
    [38] H. C. Huang et al. (Belle), Phys. Rev. Lett. 91, 241802 (2003) doi: 10.1103/PhysRevLett.91.241802
    [39] J. P. Lees et al. (BaBar), Phys. Rev. D 89(11), 112004 (2014) doi: 10.1103/PhysRevD.89.112004
    [40] B. Aubert et al. (BaBar), Phys. Rev. D 78, 012006 (2008) doi: 10.1103/PhysRevD.78.012006
    [41] D. M. Asner et al. (CLEO), Phys. Rev. Lett. 92, 142001 (2004) doi: 10.1103/PhysRevLett.92.142001
    [42] M. Ablikim et al. (BESIII), Phys. Rev. D 86, 092009 (2012) doi: 10.1103/PhysRevD.86.092009
    [43] M. Ambrogiani et al. (Fermilab E835), Phys. Lett. B 566, 45-50 (2003) doi: 10.1016/S0370-2693(03)00805-0
    [44] T. A. Armstrong et al. (E760), Phys. Rev. D 52, 4839-4854 (1995) doi: 10.1103/PhysRevD.52.4839
    [45] F. Fang et al. (Belle), Phys. Rev. Lett. 90, 071801 (2003) doi: 10.1103/PhysRevLett.90.071801
    [46] B. Aubert et al. (BaBar), Phys. Rev. D 72, 051101 (2005) doi: 10.1103/PhysRevD.72.051101
    [47] C. H. Wu et al. (Belle), Phys. Rev. Lett. 97, 162003 (2006) doi: 10.1103/PhysRevLett.97.162003
    [48] I. Adachi et al. (Belle), Phys. Lett. B 662, 323-329 (2008) doi: 10.1016/j.physletb.2008.03.029
    [49] B. Aubert et al. (BaBar), Phys. Rev. D 70, 011101 (2004) doi: 10.1103/PhysRevD.70.011101
    [50] A. Vinokurova et al. (Belle), Phys. Lett. B 706, 139-149 (2011) doi: 10.1016/j.physletb.2011.11.014
    [51] K. Chilikin et al. (Belle), Phys. Rev. D 100(1), 012001 (2019) doi: 10.1103/PhysRevD.100.012001
    [52] R. Aaij et al. (LHCb), Phys. Lett. B 769, 305-313 (2017) doi: 10.1016/j.physletb.2017.03.046
    [53] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 109, 042003 (2012) doi: 10.1103/PhysRevLett.109.042003
    [54] M. Ablikim et al. (BESIII), Phys. Rev. D 87(5), 052005 (2013) doi: 10.1103/PhysRevD.87.052005
    [55] Z. Q. Liu et al. (Belle), Phys. Rev. Lett. 108, 232001 (2012) doi: 10.1103/PhysRevLett.108.232001
    [56] C. C. Kuo et al. (Belle), Phys. Lett. B 621, 41-55 (2005) doi: 10.1016/j.physletb.2005.06.036
    [57] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D 84, 012004 (2011) doi: 10.1103/PhysRevD.84.012004
    [58] J. P. Lees et al. (BaBar), Phys. Rev. D 81, 052010 (2010) doi: 10.1103/PhysRevD.81.052010
    [59] M. Shirai et al. (AMY), Phys. Lett. B 424, 405-410 (1998) doi: 10.1016/S0370-2693(98)00203-2
    [60] H. Nakazawa et al. (Belle), Nucl. Phys. B Proc. Suppl. 184, 220-223 (2008) doi: 10.1016/j.nuclphysbps.2008.09.168
    [61] Q. N. Xu et al. (Belle), Phys. Rev. D 98(7), 072001 (2018) doi: 10.1103/PhysRevD.98.072001
    [62] R. Aaij et al. (LHCb), Eur. Phys. J. C 75(7), 311 (2015) doi: 10.1140/epjc/s10052-015-3502-x
    [63] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 108, 222002 (2012) doi: 10.1103/PhysRevLett.108.222002
  • [1] J. J. Aubert et al. (E598), Phys. Rev. Lett. 33, 1404-1406 (1974) doi: 10.1103/PhysRevLett.33.1404
    [2] J. E. Augustin et al. (SLAC-SP-017), Phys. Rev. Lett. 33, 1406-1408 (1974) doi: 10.1103/PhysRevLett.33.1406
    [3] N. Brambilla, A. Pineda, J. Soto et al., Rev. Mod. Phys. 77, 1423 (2005) doi: 10.1103/RevModPhys.77.1423
    [4] N. Brambilla, S. Eidelman, B. K. Heltsley et al., Eur. Phys. J. C 71, 1534 (2011) doi: 10.1140/epjc/s10052-010-1534-9
    [5] N. Brambilla, S. Eidelman, P. Foka et al., Eur. Phys. J. C 74(10), 2981 (2014) doi: 10.1140/epjc/s10052-014-2981-5
    [6] E. Eichten, K. Gottfried, T. Kinoshita et al., Phys. Rev. D 17, 3090 (1978) [Erratum: Phys. Rev. D 21, 313 (1980)]
    [7] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi: 10.1103/PhysRevD.32.189
    [8] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005) doi: 10.1103/PhysRevD.72.054026
    [9] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975) doi: 10.1103/PhysRevLett.34.43
    [10] P. A. Zyla et al. (Particle Data Group), PTEP 2020(8), 083C01 (2020) doi: 10.1093/ptep/ptaa104
    [11] M. E. B. Franklin et al., Phys. Rev. Lett. 51, 963-966 (1983) doi: 10.1103/PhysRevLett.51.963
    [12] X. H. Mo, C. Z. Yuan, and P. Wang, Chin. Phys. C 31, 686-701 (2007)
    [13] M. Anselmino, M. Genovese, and E. Predazzi, Phys. Rev. D 44, 1597-1598 (1991) doi: 10.1103/PhysRevD.44.1597
    [14] K. T. Chao, Y. F. Gu, and S. F. Tuan, Commun. Theor. Phys. 25, 471-478 (1996) doi: 10.1088/0253-6102/25/4/471
    [15] S. K. Choi et al. (Belle), Phys. Rev. Lett. 89, 102001 (2002) [Erratum: Phys. Rev. Lett. 89, 129901 (2002)]
    [16] J. Segovia and J. T. Castellà, Phys. Rev. D 104(7), 074032 (2021) doi: 10.1103/PhysRevD.104.074032
    [17] J. Abdallah et al. (DELPHI), Eur. Phys. J. C 31, 481-489 (2003) doi: 10.1140/epjc/s2003-01384-0
    [18] D. Cronin-Hennessy et al. (CLEO), Phys. Rev. D 81, 052002 (2010) doi: 10.1103/PhysRevD.81.052002
    [19] S. Uehara et al. (Belle), Eur. Phys. J. C 53, 1-14 (2008) doi: 10.1140/epjc/s10052-007-0451-z
    [20] Recalculated with data in M. Ablikim et al. (BESIII), Phys. Rev. D 86, 092009 (2012) and \begin{document}$ {\cal B}(\psi(2S)\to $\end{document}\begin{document}$ \pi^0 h_c\to \pi^0 \gamma \eta_c) $\end{document} obtained from this paper (Table 2)
    [21] Y. Meng, X. Feng, C. Liu et al., arXiv: 2109.09381 [hep-lat]
    [22] N. Brambilla, H. S. Chung, and J. Komijani, Phys. Rev. D 98(11), 114020 (2018) doi: 10.1103/PhysRevD.98.114020
    [23] R. Chaturvedi and A. K. Rai, Int. J. Theor. Phys. 59(11), 3508-3532 (2020) doi: 10.1007/s10773-020-04613-y
    [24] W. S. Hou and A. Soni, Phys. Rev. Lett. 50, 569 (1983) doi: 10.1103/PhysRevLett.50.569
    [25] M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, arXiv: 2111.10197 [hep-ph]
    [26] F. Chen, X. Jiang, Y. Chen et al., arXiv: 2111.11929 [hep-lat]
    [27] Y. D. Tsai, H. n. Li, and Q. Zhao, Phys. Rev. D 85, 034002 (2012) doi: 10.1103/PhysRevD.85.034002
    [28] W. Qin, Q. Zhao, and X. H. Zhong, Phys. Rev. D 97(9), 096002 (2018) doi: 10.1103/PhysRevD.97.096002
    [29] R. Zhang, W. Sun, Y. Chen et al., Phys. Lett. B 827, 136960 (2022) doi: 10.1016/j.physletb.2022.136960
    [30] Q. Wang, X. H. Liu, and Q. Zhao, Phys. Lett. B 711, 364-370 (2012) doi: 10.1016/j.physletb.2012.04.022
    [31] M. Ablikim et al. (BESIII), Chin. Phys. C 44(4), 040001 (2020) doi: 10.1088/1674-1137/44/4/040001
    [32] T. Abe et al. (Belle-II), arXiv: 1011.0352 [physics.ins-det]
    [33] R. Aaij et al. (LHCb), arXiv: 1808.08865 [hep-ex]
    [34] M. Ablikim et al. (BESIII), Phys. Rev. D 100(1), 012003 (2019) doi: 10.1103/PhysRevD.100.012003
    [35] Y. Kato et al. (Belle), Phys. Rev. D 97(1), 012005 (2018) doi: 10.1103/PhysRevD.97.012005
    [36] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 124(15), 152001 (2020) doi: 10.1103/PhysRevLett.124.152001
    [37] R. Aaij et al. (LHCb), Eur. Phys. J. C 77(9), 609 (2017) doi: 10.1140/epjc/s10052-017-5151-8
    [38] H. C. Huang et al. (Belle), Phys. Rev. Lett. 91, 241802 (2003) doi: 10.1103/PhysRevLett.91.241802
    [39] J. P. Lees et al. (BaBar), Phys. Rev. D 89(11), 112004 (2014) doi: 10.1103/PhysRevD.89.112004
    [40] B. Aubert et al. (BaBar), Phys. Rev. D 78, 012006 (2008) doi: 10.1103/PhysRevD.78.012006
    [41] D. M. Asner et al. (CLEO), Phys. Rev. Lett. 92, 142001 (2004) doi: 10.1103/PhysRevLett.92.142001
    [42] M. Ablikim et al. (BESIII), Phys. Rev. D 86, 092009 (2012) doi: 10.1103/PhysRevD.86.092009
    [43] M. Ambrogiani et al. (Fermilab E835), Phys. Lett. B 566, 45-50 (2003) doi: 10.1016/S0370-2693(03)00805-0
    [44] T. A. Armstrong et al. (E760), Phys. Rev. D 52, 4839-4854 (1995) doi: 10.1103/PhysRevD.52.4839
    [45] F. Fang et al. (Belle), Phys. Rev. Lett. 90, 071801 (2003) doi: 10.1103/PhysRevLett.90.071801
    [46] B. Aubert et al. (BaBar), Phys. Rev. D 72, 051101 (2005) doi: 10.1103/PhysRevD.72.051101
    [47] C. H. Wu et al. (Belle), Phys. Rev. Lett. 97, 162003 (2006) doi: 10.1103/PhysRevLett.97.162003
    [48] I. Adachi et al. (Belle), Phys. Lett. B 662, 323-329 (2008) doi: 10.1016/j.physletb.2008.03.029
    [49] B. Aubert et al. (BaBar), Phys. Rev. D 70, 011101 (2004) doi: 10.1103/PhysRevD.70.011101
    [50] A. Vinokurova et al. (Belle), Phys. Lett. B 706, 139-149 (2011) doi: 10.1016/j.physletb.2011.11.014
    [51] K. Chilikin et al. (Belle), Phys. Rev. D 100(1), 012001 (2019) doi: 10.1103/PhysRevD.100.012001
    [52] R. Aaij et al. (LHCb), Phys. Lett. B 769, 305-313 (2017) doi: 10.1016/j.physletb.2017.03.046
    [53] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 109, 042003 (2012) doi: 10.1103/PhysRevLett.109.042003
    [54] M. Ablikim et al. (BESIII), Phys. Rev. D 87(5), 052005 (2013) doi: 10.1103/PhysRevD.87.052005
    [55] Z. Q. Liu et al. (Belle), Phys. Rev. Lett. 108, 232001 (2012) doi: 10.1103/PhysRevLett.108.232001
    [56] C. C. Kuo et al. (Belle), Phys. Lett. B 621, 41-55 (2005) doi: 10.1016/j.physletb.2005.06.036
    [57] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D 84, 012004 (2011) doi: 10.1103/PhysRevD.84.012004
    [58] J. P. Lees et al. (BaBar), Phys. Rev. D 81, 052010 (2010) doi: 10.1103/PhysRevD.81.052010
    [59] M. Shirai et al. (AMY), Phys. Lett. B 424, 405-410 (1998) doi: 10.1016/S0370-2693(98)00203-2
    [60] H. Nakazawa et al. (Belle), Nucl. Phys. B Proc. Suppl. 184, 220-223 (2008) doi: 10.1016/j.nuclphysbps.2008.09.168
    [61] Q. N. Xu et al. (Belle), Phys. Rev. D 98(7), 072001 (2018) doi: 10.1103/PhysRevD.98.072001
    [62] R. Aaij et al. (LHCb), Eur. Phys. J. C 75(7), 311 (2015) doi: 10.1140/epjc/s10052-015-3502-x
    [63] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 108, 222002 (2012) doi: 10.1103/PhysRevLett.108.222002
  • 加载中

Cited by

1. Wang, J.. Measurements of charmonium decays at BESIII[J]. Proceedings of Science, 2025.
2. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Search for ηc (2S) →p p ¯ K+K- and measurement of χcJ →p p ¯ K+K- in ψ (3686) radiative decays[J]. Physical Review D, 2025, 111(7): 072001. doi: 10.1103/PhysRevD.111.072001
3. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Observation of ηc (1 S,2 S) and χcJ decays to 2 (π+π-)η via ψ (3686) radiative transitions[J]. Physical Review D, 2025, 111(5): 052013. doi: 10.1103/PhysRevD.111.052013
4. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Search for ηc (2S) →ωω and ωφ and measurements of χcJ →ωω and ωφ in ψ (2S) radiative processes[J]. Physical Review D, 2025, 111(3): 032001. doi: 10.1103/PhysRevD.111.032001
5. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Search for ηc (2S) →k+K-η′ decay[J]. Physical Review D, 2025, 111(1): 012004. doi: 10.1103/PhysRevD.111.012004
6. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Search for ηc (2S) →p p ¯ and branching fraction measurements of χcJ →p p ¯ via ψ (2S) radiative decays[J]. Physical Review D, 2025, 111(1): 012003. doi: 10.1103/PhysRevD.111.012003
7. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Observation of ηc (2S) →k+K-η[J]. Physical Review D, 2024, 110(9): 092003. doi: 10.1103/PhysRevD.110.092003
8. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Search for ηc (2S) →2 (π+π-) and improved measurement of χcJ →2 (π+π-)[J]. Physical Review D, 2024, 110(7): 072009. doi: 10.1103/PhysRevD.110.072009
9. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Evidence of the hc → KS0 K+π-+ c. c. decay[J]. Physical Review D, 2024, 110(1): 012007. doi: 10.1103/PhysRevD.110.012007
10. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Updated measurements of the M1 transition ψ (3686) →γηc (2S) with ηc (2S) →k K ¯ π[J]. Physical Review D, 2024, 109(3): 032004. doi: 10.1103/PhysRevD.109.032004
11. Meng, Y., Feng, X., Liu, C. et al. First-principle calculation of the ηc→2γ decay width from lattice QCD[J]. Science Bulletin, 2023, 68(17): 1880-1885. doi: 10.1016/j.scib.2023.07.041
12. Colquhoun, B., Cooper, L.J., Davies, C.T.H. et al. Precise determination of decay rates for ηc →γγ, J/ψ →γηc, and J/ψ →ηce+e- from lattice QCD[J]. Physical Review D, 2023, 108(1): 014513. doi: 10.1103/PhysRevD.108.014513
13. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Evidence for the ηc (2S) →π+π-η decay[J]. Physical Review D, 2023, 107(5): 052007. doi: 10.1103/PhysRevD.107.052007
14. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Observation of ηc (2S) →3 (π+π-) and measurements of χcJ →3 (π+π-) in ψ (3686) radiative transitions[J]. Physical Review D, 2022, 106(3): 032014. doi: 10.1103/PhysRevD.106.032014

Figures(1) / Tables(7)

Get Citation
Hongpeng Wang and Chang-Zheng Yuan. New puzzle in charmonium decays[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac5fa2
Hongpeng Wang and Chang-Zheng Yuan. New puzzle in charmonium decays[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac5fa2 shu
Milestone
Received: 2022-02-02
Article Metric

Article Views(1694)
PDF Downloads(47)
Cited by(14)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

New puzzle in charmonium decays

  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: By analyzing existing data on pseudoscalar charmonium decays, we obtain the ratio of the branching fractions of ηc(2S) and ηc decays into ten different final states with light hadrons. For the first time, we test the two existing theoretical predictions of these decays and find that the experimental data are significantly different from both of them. The lack of observation of any decay mode with higher rate in ηc(2S) than in ηc decays suggests very unusual decay dynamics in pseudoscalar charmonium decays to be identified. We also report the first model-independent evaluation of the partial width of ηc(2S)γγ (2.21+0.880.64 keV) and improve determination of that of ηcγγ (5.43+0.410.38 keV). The latter shows a tension with the most recent lattice QCD calculation.

    HTML

  • Charmonium states are the bound states of a charmed quark (c) and a charmed antiquark (ˉc). Since the discovery of the first charmonium state, the J/ψ, at BNL [1] and at SLAC [2] in 1974, all the charmonium states below the open-charm threshold and a few charmonium states above the open-charm threshold have been established; the measured spectrum of the states agrees well with theoretical calculations based on QCD [35] and QCD-inspired potential models [68]. On the contrary, the decays of the charmonium states into light hadrons, which must proceed via the annihilation of the charmed quark-antiquark pair, are still poorly known, although they are governed by the same QCD theory.

    The first calculation by Appelquist and Politzer [9] using perturbative QCD related the hadronic decays of J/ψ and its radial excited sibling, ψ(2S), to their leptonic decays, and predicted

    QV=B(ψ(2S)hadrons)B(J/ψhadrons)=B(ψ(2S)e+e)B(J/ψe+e).

    The ratio was found to be around 12% using the branching fractions of the leptonic decays at that time, and this was called the "12% rule" since then, although the most recent ratio is (13.3 ± 0.3)% [10]. Extending QV of inclusive decays of charmonium to light hadrons to each individual hadronic final state, h, the Mark II experiment tested QVh with eight final states [11] and found two modes were severely suppressed relative to 12%, while the other six modes agreed with 12% reasonably well, and the ρπ mode was suppressed by more than an order of magnitude; therefore, this was referred to as the "ρπ puzzle." Many theoretical explanations have been put forth to decipher this puzzle [12]. Some attribute the small QVρπ to the enhanced branching fraction of J/ψ decays, some attribute it to the suppressed branching fraction of ψ(2S) decays, and some others attribute it to some dynamics that may affect both ψ(2S) and J/ψ decays but in a different way. Improved measurements from BES, CLEOc, and lately, BESIII experiments confirmed the Mark II observations and tested various theoretical models [10]. None of these models can solve the "ρπ puzzle" and all the newly available data satisfactorily [12].

    As the spin-partners of J/ψ and ψ(2S), respectively, the spin-singlets ηc and ηc(2S) may decay into light hadrons in a similar way as their spin-triplets partners. Anselmino, Genovese, and Predazzi assumed [13]

    B(ηc(2S)hadrons)B(ηchadrons)B(ψ(2S)hadrons)B(J/ψhadrons)=QV,

    while Chao, Gu, and Tuan argued that [14]

    QP=B(ηc(2S)hadrons)B(ηchadrons)1.

    These two predictions differ by a factor of seven and should be tested with experimental data.

    The theoretical work was clearly ahead of its time since the ηc(2S) was first observed in 2002 [15], and until now, only three hadronic decays of it were listed with branching fractions and the uncertainties are more than 50% [10].

    By examining the experimental data available for ηc(2S) decays (cited by the PDG [10] and those listed in the Appendix A), we found an amazing fact that in most of the cases, both ηc and ηc(2S) were measured in an experiment at the same time; therefore, this allowed a very convenient way of determining the ratio of the branching fractions and to test the theoretical predictions. We scrutinized the experimental measurements, selected only the reliable results, and performed a global fit to extract properties related to the ηc and ηc(2S) states.

    There are mainly three categories of measurements related to ηc and ηc(2S) states: two-photon processes (γγηc(ηc(2S))), B meson decays (BKηc(ηc(2S))), and charmonium decays (ψ(2S)γηc(ηc(2S)), J/ψγηc, and hcγηc). In many of the cases, experimental measurements are the ratio or the product of the branching fractions or partial widths. With the help of measurements of a few absolute branching fractions and the total widths of ηc (Γηc) and ηc(2S) (Γηc(2S)), we were able to determine the branching fractions of ηc and ηc(2S) decays and the ratios, as well as their partial widths, of γγ (Γηcγγ and Γηc(2S)γγ).

    The ηc-related measurements before 1995 were obtained by using ηc mass and width that are significantly smaller than the recent results [10]. They were not used in our analysis since the results are biased and the precision is low. The ηc-related measurements from J/ψγηc were biased by neglecting the interference between ηc and non-ηc amplitudes and using unreliable line shape of ηc resonance in this M1 transition [16]. They were also not used in our analysis.

    We were left with 97 measurements from the AMY, BaBar, Belle, BESIII, CLEO, DELPHI, E760, E835, and LHCb experiments, as listed in Appendix A. We performed a least-squares fit with 29 parameters, and the χ2 of the fit was 86, which corresponds to a confidence level of 5.7%, indicating a reasonable fit. The main contributor to large χ2 is DELPHI [17]; the uncertainties of its three measurements may have been underestimated, but there was no significant effect on the results by including these data.

    Table 1 and Fig. 1 show the fit results and the total uncertainties of ηc and ηc(2S) hadronic decays. We found that the ratios of all the modes with positive ηc(2S) signals (upper half of Table 1) were less than one, and those of some modes with stringent ηc(2S) decay rates were also less than one, although those of some other modes were inconclusive (lower half of Table 1). These put the prediction of QP1 in question. Although each and all of the ratios agreed with the "12% rule" better than QP1, we found that all central values were higher than 13%, except for pˉp mode, which was lower by more than three standard deviations. These indicated that the experimental measurements do not agree with either of the two predictions.

    decay mode (h) B(ηch) (%) B(ηc(2S)h) (%) QPh
    pˉp 0.136±0.012 0.0077+0.00280.0021 0.057+0.0220.016
    KˉKπ 6.90+0.440.42 1.86+0.680.49 0.27+0.100.07
    KˉKη 1.27+0.150.14 0.51+0.310.23 0.40+0.250.18
    π+πη 1.20+0.180.17 0.25+0.140.09 0.21+0.120.08
    π+πpˉp 0.365+0.0420.039 0.236+0.0760.052 0.65+0.220.16
    K0SK±ππ+π 2.39+0.670.62 1.00+0.690.42 0.42+0.340.19
    K+Kπ+ππ0 3.50+0.600.57 1.36+0.700.48 0.39+0.220.14
    π+πη 1.43+0.410.38 <0.96 [18] <0.78
    2(π+π) 0.86+0.130.12 <0.41[19] <0.50
    K+Kπ+π 0.57±0.10 <0.32 [19] <0.60
    2(K+K) 0.135+0.0280.027 <0.14 [19] 1.5
    3(π+π) 1.75±0.48 [20] <2.9 [18] <2.0
    K+K2(π+π) 0.72±0.37 [20] <2.2 [18] <5.4
    ϕϕ 0.155+0.0180.017
    ϕK+K 0.36+0.150.14
    2(π+ππ0) 15.1+2.01.9

    Table 1.  The branching fractions of ηc(2S) and ηc decays and the ratios. For the modes with upper limits only, the data are from experimental measurements directly. The upper limits of the ratios at the 90% confidence level are determined by dividing the upper limits of the ηc(2S) decays by the branching fractions of the ηc decays lowered by the corresponding uncertainties.

    Figure 1.  (color online) QP from the global fit and the comparison with theoretical predictions. Dots with error bars are data and the vertical lines show QP=0.133 and QP=1.

    Table 2 shows the other fit results. We found that the total widths of ηc and ηc(2S) agreed with those obtained in Ref. [10], and the ratio Γηc(2S)/Γηc=0.44±0.10 agreed well with the expectation of Eq. (14) of Ref. [14], i.e.,

    Γηc 32.2±0.7 MeV
    Γηc(2S) 14.1±3.1 MeV
    Γηcγγ 5.43+0.410.38 keV
    Γηc(2S)γγ 2.21+0.880.64 keV
    B(B+ηcK+) (10.8±0.6)×104
    B(B+ηc(2S)K+) (4.42±0.96)×104
    B(ψ(2S)γηc(2S)) (7.0+3.42.5)×104
    B(ψ(2S)π0hcπ0γηc) (5.03+0.520.49)×104

    Table 2.  The fit results on ηc(2S) and ηc related quantities.

    Γηc(2S)ΓηcΓηc(2S)hadronsΓηchadronsΓψ(2S)e+eΓJ/ψe+e=0.42±0.01,

    where Γψ(2S)e+e and ΓJ/ψe+e are the leptonic partial widths of the vector charmonium states [10].

    The partial width of ηcγγ, (5.43+0.410.38) keV, is about one standard deviation higher than the world average [10] and is lower than the lattice QCD calculation of Γηcγγ=(6.51±0.20) keV [21] by 2.5 standard deviations. Further measurements and refined calculations are needed to clarify the tension and to develop other model calculations [22, 23].

    The partial width of ηc(2S)γγ of (2.21+0.880.64) keV is a first model-independent evaluation, to be compared with various calculations compiled in Ref. [23]. Note that the ratio of the branching fractions of ηc(2S) and ηcγγ agreed fairly well with the QP=1 rule:

    B(ηc(2S)γγ)B(ηcγγ)=Γηc(2S)γγ/Γηc(2S)Γηcγγ/Γηc=0.93+0.480.31,

    although the uncertainty was large.

    As by products, we also report the best evaluation of B(B+ηcK+), B(B+ηc(2S)K+), B(ψ(2S)γηc(2S)), and B(ψ(2S)π0hc)B(hcγηc) to date, as shown in Table 2. These results will be used in future measurements with these processes.

    In summary, we determined the ratios of the pseudoscalar charmonium states ηc(2S) and ηc decay branching fractions and found prominent discrepancy from theoretical predictions [13, 14]. The mixing of the J/ψ with a nearby glueball has been proposed [24] to explain the "ρπ puzzle", and the scheme has been extended to the ηc case [13, 14]. As the pseudoscalar glueballs are expected to be close to ηc or ηc(2S) [25, 26], the mixing between them may also play an important role in the charmonium decays [2729]. The different contribution of the open-charm loop in ηc and ηc(2S) decays may affect the branching fraction ratio [30] too. The fact that all the known hadronic decays of ηc(2S) have rates lower than ηc decays suggests abnormal dynamics in either ηc(2S) or ηc decays, and these may be investigated at future experiments like BESIII [31], Belle II [32], and LHCb [33] in charmonium decays, two-photon processes, and B decays.

APPENDIX A: DATA USED IN THE ANALYSIS (TABLES A1, A2, A3, A4)
  • Index quantity Value (%) Experiment
    Branching fraction
    1 B(ηcK+Kπ0) 1.15±0.12±0.10 BESIII [34]
    2 B(ηcK0SK±π) 2.60±0.21±0.20 BESIII [34]
    3 B(ηcpˉp) 0.120±0.026±0.015 BESIII [34]
    4 B(ηc2(π+ππ0)) 15.3±1.8±1.8 BESIII [34]
    5 B(B+ηcK+) 0.120±0.008±0.007 Belle [35]
    6 B(B+ηcK+) 0.096±0.012±0.006 BaBar [36]
    7 B(B+ηc(2S)K+) 0.048±0.011±0.003 Belle [35]
    8 B(B+ηc(2S)K+) 0.035±0.017±0.005 BaBar [36]
    Ratio of the branching fractions
    9 B(ηcϕϕ)B(ηcpˉp) 1.79±0.14±0.32 LHCb [37]
    10 B(ηcϕϕ)B(ηcKˉKπ) 0.032+0.0140.010±0.009 Belle [38]
    11 B(ηcK+Kη)B(ηcK+Kπ0) 0.571±0.025±0.051 BaBar [39]
    12 B(ηcϕK+K)B(ηcKˉKπ) 0.052+0.0160.014±0.014 Belle [38]
    13 B(ηc2(K+K))B(ηcKˉKπ) 0.026+0.0090.007±0.007 Belle [38]
    14 B(ηc(2S)K+Kη)B(ηc(2S)K+Kπ0) 0.82±0.21±0.27 Belle [39]
    15 B(ηc(2S)KˉKπ)B(B+ηc(2S)K+)B(ηcKˉKπ)B(B+ηcK+) 0.096+0.0200.019±0.025 BaBar [40]
    16 B(ηc(2S)K0SK±π)Γηc(2S)γγB(ηcK0SK±π)Γηcγγ 0.18±0.05±0.02 CLEO [41]

    Table A1.  Data used in the analysis: absolute branching fractions and the ratios of the branching fractions for ηc and ηc(2S).

    Index quantity Value (×106) Experiment
    17 B(ηcpˉp)B(ψ(2S)π0hcπ0γηc) 0.65±0.19±0.10 BESIII [42]
    18 B(ηcpˉp)B(ηcγγ) 0.224+0.0380.037±0.020 E835 [43]
    19 B(ηcpˉp)B(ηcγγ) 0.336+0.0800.070 E760 [44]
    20 B(ηcpˉp)B(B+ηcK+) 1.64±0.41+0.170.24 Belle [45]
    21 B(ηcpˉp)B(B0ηcK0) 1.79±0.68+0.190.25 Belle [45]
    22 B(ηcpˉp)B(B+ηcK+) 1.8+0.30.2±0.2 BaBar [46]
    23 B(ηcpˉp)B(B+ηcK+) 1.42±0.11+0.160.20 Belle [47]
    24 B(ηcγγ)B(B+ηcK+) 0.22+0.090.07+0.040.02 Belle [48]
    25 B(ηcϕϕ)B(B+ηcK+) 4.7±1.2±0.5 BaBar [49]
    26 B(ηcϕϕ)B(B0ηcK0) 2.4±1.4±0.3 BaBar [49]
    27 B(ηcKˉKπ)B(B+ηcK+) 74.0±5.0±7.0 BaBar [49]
    28 B(ηcKˉKπ)B(B0ηcK0) 64.8±8.5±7.1 BaBar [49]
    29 B(ηcK+Kπ0)B(ψ(2S)π0hcπ0γηc) 4.54±0.76±0.48 BESIII [42]
    30 B(ηcK+Kπ0)B(B+ηcK+) 11.4±2.5+1.11.8 Belle [45]
    31 B(ηcK+Kπ0)B(B0ηcK0) 16.6±5.0±1.8 Belle [45]
    32 B(ηcK0SK±π)B(ψ(2S)π0hcπ0γηc) 11.35±1.25±1.50 BESIII [42]
    33 B(ηcK0SK±π)B(B+ηcK+) 24.0±1.2+2.12.0 Belle [50]
    Continued on next page

    Table A2.  Data used in the analysis: product branching fractions measured in B decays and charmonium decays.

    Table A2-continued from previous page
    Index quantity Value (×106) Experiment
    34 B(ηcK0SK±π)B(B0ηcK0) 20.1±4.7+3.04.5 Belle [45]
    35 B(ηcπ+πη)B(ψ(2S)π0hcπ0γηc) 7.22±1.47±1.11 BESIII [42]
    36 B(ηcK+Kη)B(ψ(2S)π0hcπ0γηc) 2.11±1.01±0.32 BESIII [42]
    37 B(ηc2(π+π))B(ψ(2S)π0hcπ0γηc) 7.51±0.85±1.11 BESIII [42]
    38 B(ηc2(K+K))B(ψ(2S)π0hcπ0γηc) 0.94±0.37±0.14 BESIII [42]
    39 B(ηc2(K+K))B(B+ηcK+) 2.0±0.6±0.4 BaBar [49]
    40 B(ηc2(K+K))B(B0ηcK0) 0.9±0.9±0.4 BaBar [49]
    41 B(ηcπ+πpˉp)B(B+ηcK+) 3.94+0.410.39+0.220.18 Belle [51]
    42 B(ηcπ+πpˉp)B(B0ηcK0S) 1.90+0.320.29+0.130.47 Belle [51]
    43 B(ηcπ+πpˉp)B(ψ(2S)π0hcπ0γηc) 2.30±0.65±0.36 BESIII [42]
    44 B(ηcK+Kπ+π)B(ψ(2S)π0hcπ0γηc) 4.16±0.76±0.59 BESIII [42]
    45 B(ηcK0SK±ππ+π)B(ψ(2S)π0hcπ0γηc) 12.01±2.22±2.04 BESIII [42]
    46 B(ηc2(π+ππ0))B(ψ(2S)π0hcπ0γηc) 75.13±7.42±9.99 BESIII [42]
    47 B(ηc(2S)pˉp)B(B+ηc(2S)K+) 0.0342±0.0071±0.0021 LHCb [52]
    48 B(ηc(2S)KˉKπ)B(ψ(2S)γηc(2S)) 13.0±2.0±3.0 BESIII [53]
    49 B(ηc(2S)K0SK±π)B(B+ηc(2S)K+) 3.1±0.8±0.2 Belle [50]
    50 B(ηc(2S)π+πpˉp)B(B+ηc(2S)K+) 1.12+0.180.16 +0.050.07 Belle [51]
    51 B(ηc(2S)π+πpˉp)B(B0ηc(2S)K0S) 0.42+0.140.12±0.03 Belle [51]
    52 B(ηc(2S)K0SK±ππ+π)B(ψ(2S)γηc(2S)) 7.03±2.10±0.70 BESIII [54]
    Index quantity Value/eV Experiment
    53 B(ηcϕϕ)Γηcγγ 7.75±0.66±0.62 Belle [55]
    54 B(ηcϕϕ)Γηcγγ 6.8±1.2±1.3 Belle [19]
    55 B(ηcpˉp)Γηcγγ 7.20±1.53+0.670.75 Belle [56]
    56 B(ηcKˉKπ)Γηcγγ 386±8±21 BaBar [57]
    57 B(ηcKˉKπ)Γηcγγ 374±9±31 BaBar [58]
    58 B(ηcKˉKπ)Γηcγγ 600±120±90 DELPHI [17]
    59 B(ηcK0SK±π)Γηcγγ 490±290±90 AMY [59]
    60 B(ηcK0SK±π)Γηcγγ 142±4±14 Belle [60]
    61 B(ηcπ+πη)Γηcγγ 65.4±2.6±7.8 Belle [61]
    62 B(ηc2(π+π))Γηcγγ 40.7±3.7±5.3 Belle [19]
    63 B(ηcK+Kπ+π)Γηcγγ 25.7±3.2±4.9 Belle [19]
    64 B(ηcK+Kπ+π)Γηcγγ 280±100±60 DELPHI [17]
    65 B(ηc2(K+K))Γηcγγ 5.6±1.1±1.6 Belle [19]
    66 B(ηc2(K+K))Γηcγγ 350±90±60 DELPHI [17]
    67 B(ηcK+Kπ+ππ0)Γηcγγ 190±6±28 BaBar [57]
    68 B(ηc(2S)KˉKπ)Γηc(2S)γγ 41±4±6 BaBar [57]
    69 B(ηc(2S)K0SK±π)Γηc(2S)γγ 11.2±2.4±2.7 Belle [60]
    70 B(ηc(2S)π+πη)Γηc(2S)γγ 5.6+1.21.1±1.1 Belle [61]
    71 B(ηc(2S)K+Kπ+ππ0)Γηc(2S)γγ 30±6±5 BaBar [57]

    Table A3.  Data used in the analysis: product of γγ partial width and branching fraction of ηc and ηc(2S) decays measured in two-photon processes.

    Index Process Width/MeV Experiment
    72 γγηc, ηcηπ+π 30.8+2.32.2±2.9 Belle [61]
    73 γγηc, ηcK+Kη 34.8±3.1±4.0 BaBar [39]
    74 γγηc, ηcK+Kπ0 25.2±2.6±2.4 BaBar [39]
    75 γγηc, ηcK0SK±π 32.1±1.1±1.3 BaBar [57]
    76 γγηc, ηcK0SK±π 24.8±3.4±3.5 CLEO [41]
    77 γγηc, ηcK0SK±π 36.6±1.5±2.0 Belle [60]
    78 γγηc, ηcK0SK±π 31.7±1.2±0.8 BaBar [58]
    79 γγηc, ηcK+Kπ+ππ0 36.2±2.8±3.0 BaBar [57]
    80 γγηc, ηchadrons 28.1±3.2±2.2 Belle [19]
    81 B+ηcK+, ηcpˉp 34.0±1.9±1.3 LHCb [52]
    82 B+ηcK+, ηcpˉp 48+87±5 Belle [47]
    83 B+ηcK+, ηcΛˉΛ 40±19±5 Belle [47]
    84 B+ηcK+, ηcK0SK±π 35.4±3.6+3.02.1 Belle [50]
    85 BηcK(), ηcKˉKπ 36.3+3.73.6±4.4 BaBar [40]
    86 bηcX, ηcϕϕ 31.4±3.5±2.0 LHCb [37]
    87 bηcX, ηcpˉp 25.8±5.2±1.9 LHCb [62]
    88 pˉpηc, ηcγγ 20.4+7.76.7±2.0 E835 [43]
    89 pˉpηc, ηcγγ 23.9+12.67.1 E760 [44]
    90 ψ(2S)π0hcπ0γηc, ηchadrons 32.0±1.2±1.0 BESIII [63]
    91 ψ(2S)π0hcπ0γηc, ηchadrons 36.4±3.2±1.7 BESIII [63]
    92 γγηc(2S), ηc(2S)K0SK±π 13.4±4.6±3.2 BaBar [57]
    93 γγηc(2S), ηc(2S)K0SK±π 6.3±12.4±4.0 CLEO [41]
    94 γγηc(2S), ηc(2S)K0SK±π 19.1±6.9±6.0 Belle [60]
    95 B+ηc(2S)K+, ηc(2S)K0SK±π 41.0±12.0+6.410.9 Belle [50]
    96 ψ(2S)γηc(2S), ηc(2S)KˉKπ 16.9±6.4±4.8 BESIII [53]
    97 ψ(2S)γηc(2S), ηc(2S)K0SK±ππ+π 9.9±4.8±2.9 BESIII [54]

    Table A4.  Data used in the analysis: total widths of ηc (upper half in the table) and ηc(2S) (lower half in the table).

Reference (63)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return