Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

P-wave Ωb states: masses and pole residues

  • In this study, we consider all P-wave Ωb states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues using the QCD sum rule method. Because of the large uncertainties in our calculation compared with the small difference in the masses of the excited Ωb states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave Ωb states represented by the interpolating currents investigated in the present work to gain a better understanding of the four excited Ωb states observed by the LHCb collaboration.
      PCAS:
    • 13.40.Gp(Electromagnetic form factors)
  • In 2017, the LHCb collaboration observed five narrow excited Ωc states, i.e., Ωc(3000), Ωc(3050), Ωc(3066), Ωc(3090), and Ωc(3119), in the Ξ+cK mass spectrum [1]. Recently, they reported four excited Ωb states in the Ξ0bK mass spectrum [2]:

    Ωb(6316):m=6315.64±0.31±0.07±0.50MeV,Γ<2.8MeV,Ωb(6330):m=6330.30±0.28±0.07±0.50MeV,Γ<3.1MeV,Ωb(6340):m=6339.71±0.26±0.05±0.50MeV,Γ<1.5MeV,Ωb(6350):m=6349.88±0.35±0.05±0.50MeV,Γ=1.4+1.00.8±0.1MeV.

    (1)

    Following this experimental progresses, there have been many theoretical works concerning various properties of these excited ΩQ (Q=b,c) states [3-26] and other excited heavy baryons [27-36].

    Two kinds of excitations, the ρ-mode and λ-mode, exist in these excited ΩQ states. The ρ-mode excitation is the excitation between two strange quarks, while the λ-mode one is the excitation between the strange diquark and bottom (charm) quark. In Ref. [37], the authors systematically considered all possible baryon currents with a derivative for internal ρ- and λ-mode excitations and studied the P-wave charmed baryons using the QCD sum rule method in the framework of heavy quark effective theory. In Refs. [12, 22], the authors studied these excited states using the QCD sum rule method in the framework of QCD.

    In this paper, we construct the full QCD counterparts of the interpolating currents considered in Ref. [37] and study P-wave Ωb excited states using the QCD sum rule method [38, 39]. The basic idea of the QCD sum rule method is that the correlation function of interpolating currents of hadrons can be represented in terms of hadronic parameters (the so-called hadronic side) and calculated at quark-gluon level by operator product expansion (OPE) (the so-called QCD side); then, by matching the two expressions, we can extract the physical quantities of the considered hadron.

    The rest of the paper is organized as follows. In Sec. II, we construct the interpolating currents and derive the required sum rules. Sec. III is devoted to numerical analysis, and a short summary is given in Sec. IV. In Appendix B, OPE results are shown.

    Following Ref. [37], we introduce the symbols [Ωb,jl,sl,ρ/λ] and Jα1α2αj12j,P,Ωb,jl,sl,ρ/λ to denote the P-wave Ωb multiplets and the interpolating currents, respectively, where j is the total angular momentum; P is the parity; jl and sl are the total angular momentum and spin angular momentum of the light components, respectively; and ρ(λ) denotes the ρ(λ)-mode excitations. The general interpolating currents of Ωb baryons can be written as

    J(x)ϵabc[saT(x)CΓ1sb(x)]Γ2bc(x),

    (2)

    where a, b, and c are color indices, ϵabc is the totally antisymmetric tensor, C is the charge conjugation operator, T denotes the matrix transpose on the Dirac spinor indices, and s(x) and b(x) are the strange and bottom quark fields, respectively. The state function corresponding to the diquark ϵabc[saT(x)CΓ1sb(x)] can be written as |color|flavor,spin,space and should be antisymmetric under the interchange of the two strange quarks. Now, the color part and flavor part are antisymmetric and symmetric, respectively. The spin part is antisymmetric for the scalar diquark ϵabc[saT(x)Cγ5sb(x)] and symmetric for the axial-vector diquark ϵabc[saT(x)Cγμsb(x)]. The spatial wave function is antisymmetric and symmetric corresponding to the the ρ-mode and λ-mode excitation, respectively. For example, if the spin angular momentum of the diquark is 0, the excitation in the Ωb state should be the ρ-mode, and we have the baryon-multiplet [Ωb, 1, 0, ρ]. Consequently, the P-wave Ωb states can be classified into four multiplets, i.e., [ Ωb, 1, 0, ρ], [Ωb, 0, 1, λ], [Ωb, 1, 1, λ], and [ Ωb, 2, 1, λ], and the corresponding interpolating currents are

    ● [Ωb, 1, 0, ρ]:

    J1/2,,Ωb,1,0,ρ(x)=iϵabc{[DμsT(x)]aCγ5sb(x)sT(x)Cγ5[Dμs(x)]b}γμγ5bc(x),Jα3/2,,Ωb,1,0,ρ(x)=iϵabc{[DμsT(x)]aCγ5sb(x)sT(x)Cγ5[Dμs(x)]b}Γαμbc(x),

    (3)

    with Γαμ=gαμ14γαγμ,

    ● [Ωb, 0, 1, λ]:

    J1/2,,Ωb,0,1,λ(x)=iϵabc{[DμsT(x)]aCγμsb(x)+sT(x)Cγμ[Dμs(x)]b}bc(x),

    (4)

    ● [Ωb, 1, 1, λ]:

    J1/2,,Ωb,1,1,λ(x)=iϵabc{[DμsT(x)]aCγνsb(x)+sT(x)Cγν[Dμs(x)]b}σμνbc(x),Jα3/2,,Ωb,1,1,λ(x)=iϵabc{[DμsT(x)]aCγνsb(x)+sT(x)Cγν[Dμs(x)]b}Γαμν1bc(x),

    (5)

    with Γαμν1=(gαμγνgανγμ14γαγμγν+14γαγνγμ)γ5,

    ● [Ωb, 2, 1, λ]:

    Jα3/2,,Ωb,2,1,λ(x)=iϵabc{[DμsT(x)]aCγνsb(x)+sT(x)Cγν[Dμs(x)]b}Γαμν2bc(x),Jα1α25/2,,Ωb,2,1,λ(x)=iϵabc{[DμsT(x)]aCγνsb(x)+sT(x)Cγν[Dμs(x)]b}Γα1α2μνbc(x),

    (6)

    where

    Γαμν2=(gαμγν+gανγμ12gμνγα)γ5,

    (7)

    Γα1α2μν=gα1μgα2ν+gα1νgα2μ13gα1α2gμν16gα1μγα2γν16gα1νγα2γμ16gα2νγα1γμ16gα2μγα1γν.

    (8)

    In the above equations, Dμ(x)=μigsAμ(x) is the gauge-covariant derivative; a, b, and c are color indices; C is the charge conjugation operator; T denotes the matrix transpose on the Dirac spinor indices; and s(x) and b(x) are the strange and bottom quark fields, respectively.

    To obtain the mass sum rules for the P-wave excited Ωb states, we begin with the following two-point correlation function of the interpolating currents constructed in the previous subsection,

    Πα1α2αj12β1β2βj12(p)=idx4eipx0T[Jα1α2αj12j,P,Ωb,jl,sl,ρ/λ(x)×ˉJβ1β2βj12j,P,Ωb,jl,sl,ρ/λ(0)]0.

    (9)

    First, we need to phenomenologically represent the two-point correlation function (9) in terms of hadronic parameters. To this end, we insert a complete set of states with the same quantum numbers as the interpolating field, perform the integral over space-time coordinates, and finally obtain

    Π(Phy)α1αj12β1βj12(p)=1m2j,P,Ωb,jl,sl,ρ/λp2×0|Jα1αj12j,P,Ωb,jl,sl,ρ/λ|j,P,Ωb,jl,sl,ρ/λ,p×j,P,Ωb,jl,sl,ρ/λ,p|ˉJβ1βj12j,P,Ωb,jl,sl,ρ/λ|0+higherresonances.

    (10)

    We parameterize the matrix element 0|Jα1α2αj12j,P,Ωb,jl,sl,ρ/λ|j,P,Ωb,jl,sl,ρ/λ,p in terms of the current-hadron coupling constant (pole residue) fj,P,Ωb,jl,sl,ρ/λ and spinor uα1α2αj12(p),

    0|Jα1α2αj12j,P,Ωb,jl,sl,ρ/λ|j,P,Ωb,jl,sl,ρ/λ,p=fj,P,Ωb,jl,sl,ρ/λuα1α2αj12(p).

    (11)

    As a result, we have

    ● for spin-12 baryon:

    Π(Phy)(p)=f21/2m21/2p2(p+m1/2)+higherresonances,

    (12)

    ● for spin-32 baryon:

    Π(Phy)α1β1(p)=f23/2m23/2p2(p+m3/2)(gα1β1+γα1γβ13+2pα1pβ13m23/2pα1γβ1pβ1γα13m3/2)+higherresonances,

    (13)

    ● for spin-52 baryon:

    Π(Phy)α1α2β1β2(p)=f25/2m25/2p2(p+m5/2)[˜gα1β1˜gα2β2+˜gα1β2˜gα2β12˜gα1α2˜gβ1β25110(γα1γβ1+γα1pβ1γβ1pα1m5/2pα1pβ1m25/2)˜gα2β2110(γα2γβ1+γα2pβ1γβ1pα2m5/2pα2pβ1m25/2)˜gα1β2110(γα1γβ2+γα1pβ2γβ2pα1m5/2pα1pβ2m25/2)˜gα2β1110(γα2γβ2+γα2pβ2γβ2pα2m5/2pα2pβ2m25/2)˜gα1β1]+higherresonances,

    (14)

    where we have used the following formulas

    su(p,s)ˉu(p,s)=p+m1/2,

    (15)

    suα1(p,s)ˉuβ1(p,s)=(p+m3/2)(gα1β1+γα1γβ13+2pα1pβ13m23/2pα1γβ1pβ1γα13m3/2),

    (16)

    suα1α2(p,s)ˉuβ1β2(p,s)=(p+m5/2)[˜gα1β1˜gα2β2+˜gα1β2˜gα2β12˜gα1α2˜gβ1β25110(γα1γβ1+γα1pβ1γβ1pα1m5/2pα1pβ1m25/2)˜gα2β2110(γα2γβ1+γα2pβ1γβ1pα2m5/2pα2pβ1m25/2)˜gα1β2110(γα1γβ2+γα1pβ2γβ2pα1m5/2pα1pβ2m25/2)˜gα2β1110(γα2γβ2+γα2pβ2γβ2pα2m5/2pα2pβ2m25/2)˜gα1β1],

    (17)

    with ˜gμν=gμνpμpνp2.

    Conversely, the correlation function (9) can be calculated theoretically via the OPE method at the quark-gluon level. We take the current J1/2,,Ωb,1,0,ρ(x) as an example to illustrate the involved technologies. Inserting the interpolating current J1/2,,Ωb,1,0,ρ(x) (3) into the correlation function (9) and contracting the relevant quark fields using Wick's theorem, we find

    Π(OPE)(p)=4iϵabcϵabcd4xeipxγμγ5S(b)cc(x)γμγ5×{Tr[γ5S(s)bb(x)γ5CμxμyS(s)Taa(xy)C]Tr[γ5μxS(s)bb(x)γ5CμyS(s)Taa(xy)C]}y=0+4ϵabcϵabcd4xeipxgsAμad(x)γμγ5S(b)cc(x)γμγ5×{Tr[γ5μyS(s)bb(xy)γ5CS(s)Tda(x)C]Tr[γ5S(s)bb(x)γ5CμyS(s)Tda(xy)C]}y=0+0|gsˉsσGs|096ϵabcϵabcd4xeipxgsγμγ5S(b)cc(x)γμγ5×(λn2)ad{(λn2)daxνTr[γ5μyS(s)bb(xy)γ5σμν](λn2)bbxνTr[γ5μyS(s)da(xy)γ5σμν]}y=0,

    (18)

    where a, b, are color indices, λn,n=1,2,,8 are the Gell-Mann matrix, Aμad(x)=Anμ(x)(λn2)ad is the gluon field, gs is the strong interaction constant, and S(b)(x) and S(s)(x) are the full bottom- and strange-quark propagators, respectively, whose expressions are given in Appendix A. Inserting the expressions for the full quark propagators into (18) and performing the involved integrals, we have

    Π(OPE)(p)=p((mb+2ms)2dsρ(s)sp2+m2s0|ˉss|0212(m2bp2))+otherLorentzstructures,

    (19)

    where ρ(s) is the QCD spectral density

    ρ(s)=364π41aminda(1a)3a2(m2bas)3+3m2s16π41aminda(1a)2a(m2bas)23ms0|ˉss|04π21aminda(1a)(m2bas)m2b0|g2sGG|0256π41aminda(1a)3a250|g2sGG|0256π41aminda(1a)(m2bas)m2s0|g2sGG|0192π4(1amin)2ms0|ˉss|00|g2sGG|096π2M2B(1amin),

    (20)

    with amin=m2b/s; here, ms is the mass of the strange quark, mb is the mass of the bottom quark. and M2B is the Borel parameter, introduced to make the Borel transform in the next step.

    Finally, we match the phenomenological side (12) and the QCD representation (19) for the Lorentz structure p,

    f21/2,,Ωb,1,0,ρm21/2,,Ωb,1,0,ρp2+higherresonances=(mb+2ms)2dsρ(s)sp2+m2s0|ˉss|0212(m2bp2),

    (21)

    According to the quark-hadron duality, the higher resonances can be approximated by the QCD spectral density above some effective threshold s1/2,,Ωb,1,0,ρ0,

    f21/2,,Ωb,1,0,ρm21/2,,Ωb,1,0,ρp2+s1/2,,Ωb,1,0,ρ0dsρ(s)sp2=(mb+2ms)2dsρ(s)sp2+m2s0|ˉss|0212(m2bp2).

    (22)

    Subtracting the contributions of the excited and continuum states, we obtain

    f21/2,,Ωb,1,0,ρm21/2,,Ωb,1,0,ρp2=s1/2,,Ωb,1,0,ρ0(mb+2ms)2dsρ(s)sp2+m2s0|ˉss|0212(m2bp2),

    (23)

    To improve the convergence of the OPE series and suppress the contributions from the excited and continuum states, it is necessary to make a Borel transform. As a result, we have

    f21/2,,Ωb,1,0,ρem21/2,,Ωb,1,0,ρ/M2B=s1/2,,Ωb,1,0,ρ0(mb+2ms)2dsρ(s)es/M2B+m2s0|ˉss|0212em2b/M2B,

    (24)

    where M2B is the Borel parameter. Applying the operator dd(1/M2B) to (24) and dividing the resulting equation with (24), we obtain the mass sum rule

    m21/2,,Ωb,1,0,ρ=dd(1/M2B)(s1/2,,Ωb,1,0,ρ0(mb+2ms)2dsρ(s)es/M2B+m2s0|ˉss|0212em2b/M2B)s1/2,,Ωb,1,0,ρ0(mb+2ms)2dsρ(s)es/M2B+m2s0|ˉss|0212em2b/M2B.

    (25)

    In Sec. III, we will numerically analyze (25) and (24) and estimate the values of the mass m1/2,,Ωb,1,0,ρ and the pole residue f1/2,,Ωb,1,0,ρ.

    For other interpolating currents, we do the same analysis, and the corresponding OPE results are given in Appendix B.

    The sum rule (25) contains some parameters, various condensates, and quark masses, whose values are presented in Table 1. The values of mb and ms are the ¯MS values. In addition to these parameters, we need to determine the working intervals of the threshold parameter sj,P,Ωb,jl,sl,ρ/λ0 and the Borel mass M2B in which the masses and pole residues are stable. We take the continuum threshold to be approximately mj,P,Ωb,jl,sl,ρ/λ+(0.7±0.1)GeV, while the Borel parameter is determined by demanding that both the contributions of the higher states and continuum are sufficiently suppressed and the contributions coming from higher dimensional operators are small.

    Table 1

    Table 1.  Input parameters required for calculations.
    Parameter Value
    ˉss (0.8±0.1)ˉqq
    ˉqq (0.24±0.01)3GeV3
    gsˉsσGs (0.8±0.1)ˉssGeV2
    g2sGG 0.88±0.25GeV4
    mb (4.18±0.03)GeV[40]
    ms (0.095±0.005)GeV[40]
    DownLoad: CSV
    Show Table

    We define two quantities: the ratio of the pole contribution to the total contribution (Pole Contribution, abbreviated PC) and the ratio of the highest dimensional term in the OPE series to the total OPE series (Convergence, abbreviated CVG), as follows,

    PCsj,P,Ωb,jl,sl,ρ/λ0(mb+2ms)2dsρ(s)esM2B(mb+2ms)2dsρ(s)esM2B,CVGsj,P,Ωb,jl,sl,ρ/λ0(mb+2ms)2dsρ(d=7)(s)esM2Bsj,P,Ωb,jl,sl,ρ/λ0(mb+2ms)2dsρ(s)esM2B,

    (26)

    where ρ(d=7)(s) are the terms proportional to 0|ˉss|00|g2sGG|0 in the spectral density.

    For the current J1/2,,Ωb,1,0,ρ(x), the numerical results are shown in Fig. 1. In Fig. 1(a), we compare the various condensate contributions as functions of M2B with s1/2,,Ωb,1,0,ρ0=6.952GeV2. From the figure, it is clear that the OPE has good convergence. Fig. 1(b) shows PC and CVG varying with M2B at s1/2,,Ωb,1,0,ρ0=6.952GeV2. The figure shows that the requirement PC50% gives M2B5.5GeV2. The dependences of the mass m1/2,,Ωb,1,0,ρ and the pole residue f1/2,,Ωb,1,0,ρ on the Borel parameter M2B are depicted in Fig. 1(c) and (d) at three different values of s1/2,,Ωb,1,0,ρ0, respectively. It is obvious that the mass and the pole residue are stable in the interval 4.5GeV2M2B5.5GeV2. The mass and the pole residue are estimated to be m1/2,,Ωb,1,0,ρ=(6.28+0.110.10)GeV and f1/2,,Ωb,1,0,ρ=(0.35±0.06)GeV4, respectively.

    Figure 1

    Figure 1.  (color online) For the interpolating current J1/2,,Ωb,1,0,ρ(x): (a) denotes the various condensate contributions as functions of M2B with s1/2,,Ωb,1,0,ρ0=6.952GeV2; (b) represents PC and CVG varying with M2B at s1/2,,Ωb,1,0,ρ0=6.952GeV2; (c) and (d) depict the dependence of the mass and the pole residue on M2B with three different values of s1/2,,Ωb,1,0,ρ0, respectively.

    For other interpolating currents, the same analysis can be performed. We summarize our results in Table 2 and compare the obtained masses with the results in Ref. [20] estimated using the QCD sum rule method in the framework of heavy quark effective theory. It is clear that they are in agreement with each other within the inherent uncertainties of the QCD sum rule method, except for the multiplet [Ωb, 0, 1, λ]. We should provide some arguments regarding the result of the interpolating current J1/2,,Ωb,0,1,λ(x) shown in Fig. 2. From Eqs. (B3) and (B4), we can see that all terms of the OPE series are proportional to the strange quark mass ms or m2s, except for the second term in (B4). As a result, the gluon-condensate term is much larger than the other terms, and OPE is invalid in this case. Moreover, the corresponding mass and pole residue are much lower than the others. All in all, our model can not give reasonable results in this case.

    Table 2

    Table 2.  Masses and pole residues of the P-wave excited Ωb states.
    Multiples Baryons (jP) Masses/GeV Pole residues/GeV4
    This work Ref. [20]
    [Ωb, 1, 0, ρ] Ωb(12) 6.28+0.110.10 6.32+0.120.10 0.35±0.06
    Ωb(32) 6.31+0.100.11 6.32+0.120.10 0.19±0.03
    [Ωb, 0, 1, λ] Ωb(12) 5.75+0.050.02 6.34±0.11 0.0183+0.00130.0007
    [Ωb, 1, 1, λ] Ωb(12) 6.33+0.100.11 6.34+0.090.08 0.62±0.10
    Ωb(32) 6.37+0.100.11 6.34+0.090.08 0.36+0.060.05
    [Ωb, 2, 1, λ] Ωb(32) 6.34+0.090.10 6.35+0.130.11 0.71±0.11
    Ωb(52) 6.54+0.070.08 6.36+0.130.11 0.15±0.02
    DownLoad: CSV
    Show Table

    Figure 2

    Figure 2.  (color online) For the interpolating current J1/2,,Ωb,0,1,λ(x): (a) denotes the various condensate contributions as functions of M2B with s1/2,,Ωb,0,1,λ0=6.52GeV2; (b) represents RP and RH varying with M2B at s1/2,,Ωb,0,1,λ0=6.52GeV2; (c) and (d) depict the dependence of the mass and the pole residue on M2B with three different values of s1/2,,Ωb,0,1,λ0, respectively.

    In this paper, we consider all P-wave Ωb states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues using the QCD sum rule method. The results are summarized in Table 2. Because of the large uncertainties in our calculation compared with the small difference in the masses of the excited Ωb states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave Ωb states represented by the interpolating currents investigated in the present work to gain a better understanding of the four excited Ωb states observed by the LHCb collaboration. For example, we could study their decay widths. Our results in this paper are necessary input parameters when studying their decay widths using the QCD sum rule method or light-cone sum rule method.

    One of the authors, Yong-Jiang Xu, thanks Hua-Xing Chen for useful discussion on the construction of interpolating currents.

    The full quark propagators are

    Sqij(x)=ix2π2x4δijmq4π2x2δijˉqq12δij+iˉqq48mqxδijx2192gsˉqσGqδij+ix2x1152mqgsˉqσGqδijigstaijGaμν32π2x2(xσμν+σμνx)+

    for light quarks, and

    SQij(x)=id4k(2π)4eikx[k+mQk2m2QδijgstaijGaμν4σμν(k+mQ)+(k+mQ)σμν(k2m2Q)2+g2sGG12δijmQk2+mQk(k2m2Q)4+]

    for heavy quarks. In these expressions, ta=λa2 and λa are the Gell-Mann matrices, gs is the strong interaction coupling constant, and i,j are color indices.

    We choose the Lorentz structures p, pgαβ, and pgα1α2gβ1β2 to obtain the sum rules for spin-1/2, spin-3/2, and spin- 5/2 baryons, respectively. In this appendix, we will give the corresponding OPE results.

    For the interpolating current Jα3/2,,Ωb,1,0,ρ(x),

    Π(OPE)αβ(p)=pgαβ((mb+2ms)2dsρ(s)sp2m2s0|ˉss|0224(m2bp2))+otherLorentzstructures,

    where ρ(s) is the QCD spectral density,

    ρ(s)=1384π4amin

    For the interpolating current J_{1/2,-,\Omega_{b},0,1,\lambda}(x) ,

    \Pi^{(\rm OPE)}(p) = {\not{p}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{2m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{3(m^{2}_{b}-p^{2})}+\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{192\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B3}

    where \rho(s) is the QCD spectral density,

    \begin{aligned}[b] \rho(s) = &-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}}{a}(m^{2}_{b}-as)^{2}-\frac{\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(m^{2}_{b}-as) \\&+\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2} +\frac{3m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{16\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa. \end{aligned}\tag{B4}

    For the interpolating current J_{1/2,-,\Omega_{b},1,1,\lambda}(x) ,

    \Pi^{(\rm OPE)}(p) = {\not{p}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{192\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B5}

    where \rho(s) is the QCD spectral density,

    \begin{aligned}[b] \rho(s) = &-\frac{1}{8\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}(m^{2}_{b}-as)^{3}+\frac{27m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}}{a}(m^{2}_{b}-as)^{2}+\frac{3m_{s}\langle0|\bar{s}s|0\rangle}{\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(m^{2}_{b}-as)\\&-\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}-\frac{3\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{2}}{a}(m^{2}_{b}-as) +\frac{\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(m^{2}_{b}-as)\\& -\frac{3m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}(1-a_{\min})^{2}-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{16\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(4-7a) +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{24\pi^{2}M^{2}_{B}}(1-a_{\min}) \\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{96\pi^{2}s}a_{\min}. \end{aligned} \tag{B6}

    For the interpolating current J^{\alpha}_{3/2,-,\Omega_{b},1,1,\lambda}(x) ,

    \Pi^{(\rm OPE)\alpha\beta}(p) = {\not{p}}g^{\alpha\beta}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{576\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B7}

    where \rho(s) is the QCD spectral density,

    \begin{aligned}[b] \rho(s) = &\frac{1}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(3+a)}{a^{2}}(m^{2}_{b}-as)^{3}-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}(2+a)}{a}(m^{2}_{b}-as)^{2}\\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{2\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(1+a)(m^{2}_{b}-as)+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(3+a)}{a^{2}}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{768\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{2}(4-a)}{a}(m^{2}_{b}-as) -\frac{\langle0|g^{2}_{s}GG|0\rangle}{768\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(1+a)(m^{2}_{b}-as)\\& +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2}(2+a_{\min})-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{48\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(3-4a+4a^{2})\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{144\pi^{2}M^{2}_{B}}(1-a_{\min})(1+a_{\min}) -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{288\pi^{2}s}a_{\min}(1-a_{\min}). \end{aligned}\tag{B8}

    For the interpolating current J^{\alpha}_{3/2,-,\Omega_{b},2,1,\lambda}(x) ,

    \Pi^{(\rm OPE)\alpha\beta}(p) = {\not{p}}g^{\alpha\beta}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{5m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{576\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B9}

    where \rho(s) is the QCD spectral density,

    \begin{aligned}[b] \rho(s) = &\frac{1}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(7+13a)}{a^{2}}(m^{2}_{b}-as)^{3}-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}(6+a)}{a}(m^{2}_{b}-as)^{2}\\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{2\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(5-7a)(m^{2}_{b}-as)+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(7+13a)}{a^{2}}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(2+a)(m^{2}_{b}-as) +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2}(6+a_{\min})\\&+\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{48\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(1-4a+18a^{2}) -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{144\pi^{2}M^{2}_{B}}(1-a_{\min})(5-7a_{\min})\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{288\pi^{2}s}a_{\min}(1+3a_{\min}). \end{aligned}\tag{B10}

    For the interpolating current J^{\alpha_{1}\alpha_{2}}_{5/2,-,\Omega_{b},2,1,\lambda}(x) ,

    \Pi^{(\rm OPE)\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}}(p) = {\not{p}}g^{\alpha_{1}\alpha_{2}}g^{\beta_{1}\beta_{2}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{1728\pi^{2}(m^{2}_{b}-p^{2})}\right) +{\rm{other\; Lorentz\; structures}}, \tag{B11}

    where \rho(s) is the QCD spectral density,

    \begin{aligned}[b] \rho(s) = &\frac{1}{288\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(1+a)}{a}(m^{2}_{b}-as)^{3}-\frac{1}{288\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{4}(1+2a)}{a}s(m^{2}_{b}-as)^{2}\\& -\frac{1}{144\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)^{5}s^{2}(m^{2}_{b}-as)-\frac{m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a (1-a)^{2}(m^{2}_{b}-as)^{2}\\&+\frac{m^{2}_{s}}{48\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a (1-a)^{3}s(m^{2}_{b}-as)-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{18\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a a(1-a)^{2}(3m^{2}_{b}-(a+1)s)\\&+\frac{m^{2}_{b}m_{s}\langle0|\bar{s}s|0\rangle}{18\pi^{2}}a_{\min}(1-a_{\min})^{3} +\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(1+a)}{a}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(2-a^{2})(m^{2}_{b}-as) +\frac{\langle0|g^{2}_{s}GG|0\rangle}{6912\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)^{2}(3-4a^{2})s\\& +\frac{\langle0|g^{2}_{s}GG|0\rangle s}{3456\pi^{4}}(1-a_{\min})^{4}+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}a_{\min}(1-a_{\min})^{3}\\& -\frac{\langle0|g^{2}_{s}GG|0\rangle s^{2}}{10368\pi^{4}M^{2}_{\rm B}}(1-a_{\min})^{5}-\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}(1-a_{\min})^{2}(1-4a_{\min})\\& +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle s}{3456\pi^{4}M^{2}_{\rm B}}(1-a_{\min})^{3}-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{72\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa^{2}(1-2a)\\&-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{72\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa(1-a)-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{432\pi^{2}}a_{\min}(1-a_{\min})(1-8a_{\min})\\&-\frac{m^{2}_{b}m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{108\pi^{2}M^{2}_{\rm B}}a_{\min}(1-a_{\min})^{2} -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{1296\pi^{2}M^{2}_{\rm B}}(1-a_{\min})^{2}(4+a_{\min})\\& +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle s}{1296\pi^{2}M^{4}_{\rm B}}(1-a_{\min})^{2}(5-4a_{\min})-\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle s^{2}}{1296\pi^{2}M^{6}_{\rm B}}(1-a_{\min})^{3}\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{5184\pi^{2}s}a_{\min} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{5184\pi^{2}M^{2}_{\rm B}}a_{\min}. \end{aligned}\tag{B12}

    In the above equations, a_{\min} = m^{2}_{b}/s, and M^{2}_{\rm B} is the Borel parameter.

    [1] R.Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017) doi: 10.1103/PhysRevLett.118.182001
    [2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 124, 082002 (2020) doi: 10.1103/PhysRevLett.124.082002
    [3] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. Lett. 118, 61001 (2017) doi: 10.1209/0295-5075/118/61001
    [4] M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017) doi: 10.1103/PhysRevD.95.114012
    [5] H. X. Chen, Q. Mao, W. Chen et al., Phys. Rev. D 95, 094008 (2017) doi: 10.1103/PhysRevD.95.094008
    [6] G. Yang and J. L. Ping, Phys. Rev. D 97, 034023 (2018) doi: 10.1103/PhysRevD.97.034023
    [7] K. L. Wang, L. Y. Xiao, X. H. Zhong et al., Phys. Rev. D 95, 116010 (2017) doi: 10.1103/PhysRevD.95.116010
    [8] W. Wang and R. L. Zhu, Phys. Rev. D 96, 014024 (2017) doi: 10.1103/PhysRevD.96.014024
    [9] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95, 094018 (2017) doi: 10.1103/PhysRevD.95.094018
    [10] M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017) doi: 10.1103/PhysRevLett.119.042001
    [11] H. X. Huang, J. L. Ping, and F. Wang, Phys. Rev. D 97, 034027 (2018) doi: 10.1103/PhysRevD.97.034027
    [12] Z. G. Wang, Eur. Phys. J. C 77, 325 (2017) doi: 10.1140/epjc/s10052-017-4895-5
    [13] Z. Zhao, D. D. Ye, and A. L. Zhang, Phys. Rev. D 95, 114024 (2017) doi: 10.1103/PhysRevD.95.114024
    [14] B. Chen and X. Liu, Phys. Rev. D 96, 094015 (2017) doi: 10.1103/PhysRevD.96.094015
    [15] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. C 77, 395 (2017) doi: 10.1140/epjc/s10052-017-4953-z
    [16] C. S. An and H. Chen, Phys. Rev. D 96, 034012 (2017) doi: 10.1103/PhysRevD.96.034012
    [17] Z. G. Wang, X. N. Wei, and Z. H. Yan, Eur. Phys. J. C 77, 832 (2017) doi: 10.1140/epjc/s10052-017-5409-1
    [18] Q. Mao, H. X. Chen, A. Hosaka et al., Phys. Rev. D 96, 074021 (2017) doi: 10.1103/PhysRevD.96.074021
    [19] W. Liang and Q. F. Lü, Eur. Phys. J. C 80, 198 (2020) doi: 10.1140/epjc/s10052-020-7759-3
    [20] H. X. Chen, E. L. Cui, A. Hosaka et al., Eur. Phys. J. C 80, 256 (2020) doi: 10.1140/epjc/s10052-020-7824-y
    [21] W. H. Liang and E. Oset, Phys. Rev. D 101, 054033 (2020) doi: 10.1103/PhysRevD.101.054033
    [22] Z. G. Wang, Int. J. Mod. Phys. A 35, 2050043 (2020) doi: 10.1142/S0217751X20500438
    [23] L. Y. Xiao, K. L. Wang, M. S. Liu et al., Eur. Phys. J. C 80, 279 (2020) doi: 10.1140/epjc/s10052-020-7823-z
    [24] H. Mutuk, Eur. Phys. J. A 56, 146 (2020) doi: 10.1140/epja/s10050-020-00161-5
    [25] H. M. Yang and H. X. Chen, Phys. Rev. D 101, 114013 (2020) doi: 10.1103/PhysRevD.101.114013
    [26] M. Karliner and J. L. Rosner, Phys. Rev. D 102, 014027 (2020) doi: 10.1103/PhysRevD.102.014027
    [27] K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D 102, 034007 (2020) doi: 10.1103/PhysRevD.102.034007
    [28] L. Y. Xiao and X. H. Zhong, Phys. Rev. D 102, 014009 (2020) doi: 10.1103/PhysRevD.102.014009
    [29] K. L. Wang, L. Y. Xiao, and X. H. Zhong, Phys. Rev. D 102, 034029 (2020) doi: 10.1103/PhysRevD.102.034029
    [30] H. M. Yang, H. X. Chen, and Q. Mao, Phys. Rev. D 102, 114009 (2020) doi: 10.1103/PhysRevD.102.114009
    [31] H. M. Yang and H. X. Chen, Phys. Rev. D 104, 034037 (2021) doi: 10.1103/PhysRevD.104.034037
    [32] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. A 57, 201 (2021) doi: 10.1140/epja/s10050-021-00523-7
    [33] H. Q. Zhu, N. N. Ma, and Y. Huang, Eur. Phys. J. C 80, 1184 (2020) doi: 10.1140/epjc/s10052-020-08747-5
    [34] H. J. Wang, Z. Y. Di, and Z. G. Wang, Commun. Theor. Phys. 73, 035201 (2021) doi: 10.1088/1572-9494/abc7b1
    [35] H. Q. Zhu and Y. Huang, Chin. Phys. C 44, 083101 (2020) doi: 10.1088/1674-1137/44/8/083101
    [36] Z. G. Wang and H. J. Wang, Chin. Phys. C 45, 013109 (2021) doi: 10.1088/1674-1137/abc1d3
    [37] H. X. Chen, W. Chen, Q. Mao et al., Phys. Rev. D 91, 054034 (2015) doi: 10.1103/PhysRevD.91.054034
    [38] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979) doi: 10.1016/0550-3213(79)90022-1
    [39] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 448 (1979) doi: 10.1016/0550-3213(79)90023-3
    [40] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
  • [1] R.Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017) doi: 10.1103/PhysRevLett.118.182001
    [2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 124, 082002 (2020) doi: 10.1103/PhysRevLett.124.082002
    [3] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. Lett. 118, 61001 (2017) doi: 10.1209/0295-5075/118/61001
    [4] M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017) doi: 10.1103/PhysRevD.95.114012
    [5] H. X. Chen, Q. Mao, W. Chen et al., Phys. Rev. D 95, 094008 (2017) doi: 10.1103/PhysRevD.95.094008
    [6] G. Yang and J. L. Ping, Phys. Rev. D 97, 034023 (2018) doi: 10.1103/PhysRevD.97.034023
    [7] K. L. Wang, L. Y. Xiao, X. H. Zhong et al., Phys. Rev. D 95, 116010 (2017) doi: 10.1103/PhysRevD.95.116010
    [8] W. Wang and R. L. Zhu, Phys. Rev. D 96, 014024 (2017) doi: 10.1103/PhysRevD.96.014024
    [9] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95, 094018 (2017) doi: 10.1103/PhysRevD.95.094018
    [10] M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017) doi: 10.1103/PhysRevLett.119.042001
    [11] H. X. Huang, J. L. Ping, and F. Wang, Phys. Rev. D 97, 034027 (2018) doi: 10.1103/PhysRevD.97.034027
    [12] Z. G. Wang, Eur. Phys. J. C 77, 325 (2017) doi: 10.1140/epjc/s10052-017-4895-5
    [13] Z. Zhao, D. D. Ye, and A. L. Zhang, Phys. Rev. D 95, 114024 (2017) doi: 10.1103/PhysRevD.95.114024
    [14] B. Chen and X. Liu, Phys. Rev. D 96, 094015 (2017) doi: 10.1103/PhysRevD.96.094015
    [15] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. C 77, 395 (2017) doi: 10.1140/epjc/s10052-017-4953-z
    [16] C. S. An and H. Chen, Phys. Rev. D 96, 034012 (2017) doi: 10.1103/PhysRevD.96.034012
    [17] Z. G. Wang, X. N. Wei, and Z. H. Yan, Eur. Phys. J. C 77, 832 (2017) doi: 10.1140/epjc/s10052-017-5409-1
    [18] Q. Mao, H. X. Chen, A. Hosaka et al., Phys. Rev. D 96, 074021 (2017) doi: 10.1103/PhysRevD.96.074021
    [19] W. Liang and Q. F. Lü, Eur. Phys. J. C 80, 198 (2020) doi: 10.1140/epjc/s10052-020-7759-3
    [20] H. X. Chen, E. L. Cui, A. Hosaka et al., Eur. Phys. J. C 80, 256 (2020) doi: 10.1140/epjc/s10052-020-7824-y
    [21] W. H. Liang and E. Oset, Phys. Rev. D 101, 054033 (2020) doi: 10.1103/PhysRevD.101.054033
    [22] Z. G. Wang, Int. J. Mod. Phys. A 35, 2050043 (2020) doi: 10.1142/S0217751X20500438
    [23] L. Y. Xiao, K. L. Wang, M. S. Liu et al., Eur. Phys. J. C 80, 279 (2020) doi: 10.1140/epjc/s10052-020-7823-z
    [24] H. Mutuk, Eur. Phys. J. A 56, 146 (2020) doi: 10.1140/epja/s10050-020-00161-5
    [25] H. M. Yang and H. X. Chen, Phys. Rev. D 101, 114013 (2020) doi: 10.1103/PhysRevD.101.114013
    [26] M. Karliner and J. L. Rosner, Phys. Rev. D 102, 014027 (2020) doi: 10.1103/PhysRevD.102.014027
    [27] K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D 102, 034007 (2020) doi: 10.1103/PhysRevD.102.034007
    [28] L. Y. Xiao and X. H. Zhong, Phys. Rev. D 102, 014009 (2020) doi: 10.1103/PhysRevD.102.014009
    [29] K. L. Wang, L. Y. Xiao, and X. H. Zhong, Phys. Rev. D 102, 034029 (2020) doi: 10.1103/PhysRevD.102.034029
    [30] H. M. Yang, H. X. Chen, and Q. Mao, Phys. Rev. D 102, 114009 (2020) doi: 10.1103/PhysRevD.102.114009
    [31] H. M. Yang and H. X. Chen, Phys. Rev. D 104, 034037 (2021) doi: 10.1103/PhysRevD.104.034037
    [32] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. A 57, 201 (2021) doi: 10.1140/epja/s10050-021-00523-7
    [33] H. Q. Zhu, N. N. Ma, and Y. Huang, Eur. Phys. J. C 80, 1184 (2020) doi: 10.1140/epjc/s10052-020-08747-5
    [34] H. J. Wang, Z. Y. Di, and Z. G. Wang, Commun. Theor. Phys. 73, 035201 (2021) doi: 10.1088/1572-9494/abc7b1
    [35] H. Q. Zhu and Y. Huang, Chin. Phys. C 44, 083101 (2020) doi: 10.1088/1674-1137/44/8/083101
    [36] Z. G. Wang and H. J. Wang, Chin. Phys. C 45, 013109 (2021) doi: 10.1088/1674-1137/abc1d3
    [37] H. X. Chen, W. Chen, Q. Mao et al., Phys. Rev. D 91, 054034 (2015) doi: 10.1103/PhysRevD.91.054034
    [38] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979) doi: 10.1016/0550-3213(79)90022-1
    [39] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 448 (1979) doi: 10.1016/0550-3213(79)90023-3
    [40] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
  • 加载中

Cited by

1. Xin, Q., Wang, Z.-G., Lü, F. The Λ-type P-wave bottom baryon states via the QCD sum rules[J]. Chinese Physics C, 2023, 47(9): 093106. doi: 10.1088/1674-1137/ace81f
2. Chen, H.-X., Chen, W., Liu, X. et al. An updated review of the new hadron states[J]. Reports on Progress in Physics, 2023, 86(2): 026201. doi: 10.1088/1361-6633/aca3b6

Figures(2) / Tables(2)

Get Citation
Yong-Jiang Xu, Yong-Lu Liu and Ming-Qiu Huang. P-wave Ωb states: masses and pole residues[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac3df2
Yong-Jiang Xu, Yong-Lu Liu and Ming-Qiu Huang. P-wave Ωb states: masses and pole residues[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac3df2 shu
Milestone
Received: 2021-10-25
Article Metric

Article Views(1490)
PDF Downloads(44)
Cited by(2)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

P-wave Ωb states: masses and pole residues

Abstract: In this study, we consider all P-wave \Omega_{b} states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues using the QCD sum rule method. Because of the large uncertainties in our calculation compared with the small difference in the masses of the excited \Omega_{b} states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave \Omega_{b} states represented by the interpolating currents investigated in the present work to gain a better understanding of the four excited \Omega_{b} states observed by the LHCb collaboration.

    HTML

    I.   INTRODUCTION
    • In 2017, the LHCb collaboration observed five narrow excited \Omega_{c} states, i.e., \Omega_{c}(3000) , \Omega_{c}(3050) , \Omega_{c}(3066) , \Omega_{c}(3090) , and \Omega_{c}(3119) , in the \Xi^{+}_{c}K^{-} mass spectrum [1]. Recently, they reported four excited \Omega_{b} states in the \Xi^{0}_{b}K^{-} mass spectrum [2]:

      \begin{aligned}[b] &\Omega_{b}(6316): m = 6315.64\pm0.31\pm0.07\pm0.50\;{\rm{MeV}},\quad\Gamma<2.8\;{\rm{MeV}},\\ &\Omega_{b}(6330): m = 6330.30\pm0.28\pm0.07\pm0.50\;{\rm{MeV}},\quad\Gamma<3.1\;{\rm{MeV}},\\ &\Omega_{b}(6340): m = 6339.71\pm0.26\pm0.05\pm0.50\;{\rm{MeV}},\quad \Gamma<1.5\;{\rm{MeV}},\\ &\Omega_{b}(6350): m = 6349.88\pm0.35\pm0.05\pm0.50\;{\rm{MeV}},\quad\Gamma = 1.4^{+1.0}_{-0.8}\pm0.1\;{\rm{MeV}}. \end{aligned}

      (1)

      Following this experimental progresses, there have been many theoretical works concerning various properties of these excited \Omega_{Q} ( Q = b,c ) states [3-26] and other excited heavy baryons [27-36].

      Two kinds of excitations, the ρ-mode and λ-mode, exist in these excited \Omega_{Q} states. The ρ-mode excitation is the excitation between two strange quarks, while the λ-mode one is the excitation between the strange diquark and bottom (charm) quark. In Ref. [37], the authors systematically considered all possible baryon currents with a derivative for internal ρ- and λ-mode excitations and studied the P-wave charmed baryons using the QCD sum rule method in the framework of heavy quark effective theory. In Refs. [12, 22], the authors studied these excited states using the QCD sum rule method in the framework of QCD.

      In this paper, we construct the full QCD counterparts of the interpolating currents considered in Ref. [37] and study P-wave \Omega_{b} excited states using the QCD sum rule method [38, 39]. The basic idea of the QCD sum rule method is that the correlation function of interpolating currents of hadrons can be represented in terms of hadronic parameters (the so-called hadronic side) and calculated at quark-gluon level by operator product expansion (OPE) (the so-called QCD side); then, by matching the two expressions, we can extract the physical quantities of the considered hadron.

      The rest of the paper is organized as follows. In Sec. II, we construct the interpolating currents and derive the required sum rules. Sec. III is devoted to numerical analysis, and a short summary is given in Sec. IV. In Appendix B, OPE results are shown.

    II.   DERIVATION OF THE SUM RULES

      A.   Interpolating currents

    • Following Ref. [37], we introduce the symbols [ \Omega_{b},j_{l},s_{l},\rho/\lambda ] and J^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda} to denote the P-wave \Omega_{b} multiplets and the interpolating currents, respectively, where j is the total angular momentum; P is the parity; j_{l} and s_{l} are the total angular momentum and spin angular momentum of the light components, respectively; and ρ(λ) denotes the ρ(λ)-mode excitations. The general interpolating currents of \Omega_{b} baryons can be written as

      \begin{equation} J(x)\sim\epsilon^{abc}[s^{aT}(x)C\Gamma_{1}s^{b}(x)]\Gamma_{2}b^{c}(x), \end{equation}

      (2)

      where a, b, and c are color indices, \epsilon^{abc} is the totally antisymmetric tensor, C is the charge conjugation operator, T denotes the matrix transpose on the Dirac spinor indices, and s(x) and b(x) are the strange and bottom quark fields, respectively. The state function corresponding to the diquark \epsilon^{abc}[s^{aT}(x)C\Gamma_{1}s^{b}(x)] can be written as \rm |color\rangle\otimes \rm |flavor,\; spin,\; space\rangle and should be antisymmetric under the interchange of the two strange quarks. Now, the color part and flavor part are antisymmetric and symmetric, respectively. The spin part is antisymmetric for the scalar diquark \epsilon^{abc}[s^{aT}(x)C\gamma_{5}s^{b}(x)] and symmetric for the axial-vector diquark \epsilon^{abc}[s^{aT}(x)C\gamma_{\mu}s^{b}(x)] . The spatial wave function is antisymmetric and symmetric corresponding to the the ρ-mode and λ-mode excitation, respectively. For example, if the spin angular momentum of the diquark is 0, the excitation in the \Omega_{b} state should be the ρ-mode, and we have the baryon-multiplet [ \Omega_{b} , 1, 0, ρ]. Consequently, the P-wave \Omega_{b} states can be classified into four multiplets, i.e., [ \Omega_{b} , 1, 0, ρ], [ \Omega_{b} , 0, 1, λ], [ \Omega_{b} , 1, 1, λ], and [ \Omega_{b} , 2, 1, λ], and the corresponding interpolating currents are

      ● [ \Omega_{b} , 1, 0, ρ]:

      \begin{aligned}[b] J_{1/2,-,\Omega_{b},1,0,\rho}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{5}s^{b}(x)\\&- s^{T}(x)C\gamma_{5}[D_{\mu}s(x)]^{b}\}\gamma^{\mu}\gamma_{5}b^{c}(x),\\ J^{\alpha}_{3/2,-,\Omega_{b},1,0,\rho}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{5}s^{b}(x)\\&- s^{T}(x)C\gamma_{5}[D_{\mu}s(x)]^{b}\}\Gamma^{\alpha\mu}b^{c}(x), \end{aligned}

      (3)

      with \Gamma^{\alpha\mu} = g^{\alpha\mu}-\frac{1}{4}\gamma^{\alpha}\gamma^{\mu} ,

      ● [ \Omega_{b} , 0, 1, λ]:

      \begin{aligned}[b] J_{1/2,-,\Omega_{b},0,1,\lambda}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma^{\mu}s^{b}(x)\\&+ s^{T}(x)C\gamma^{\mu}[D_{\mu}s(x)]^{b}\}b^{c}(x), \end{aligned}

      (4)

      ● [ \Omega_{b} , 1, 1, λ]:

      \begin{aligned}[b] J_{1/2,-,\Omega_{b},1,1,\lambda}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{\nu}s^{b}(x)\\&+ s^{T}(x)C\gamma_{\nu}[D_{\mu}s(x)]^{b}\}\sigma^{\mu\nu}b^{c}(x),\\ J^{\alpha}_{3/2,-,\Omega_{b},1,1,\lambda}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{\nu}s^{b}(x)\\&+ s^{T}(x)C\gamma_{\nu}[D_{\mu}s(x)]^{b}\}\Gamma^{\alpha\mu\nu}_{1}b^{c}(x), \end{aligned}

      (5)

      with \Gamma^{\alpha\mu\nu}_{1} = \left(g^{\alpha\mu}\gamma^{\nu}-g^{\alpha\nu}\gamma^{\mu}- \dfrac{1}{4}\gamma^{\alpha}\gamma^{\mu}\gamma^{\nu}+\dfrac{1}{4}\gamma^{\alpha}\gamma^{\nu}\gamma^{\mu}\right)\gamma_{5},

      ● [ \Omega_{b} , 2, 1, λ]:

      \begin{aligned}[b] J^{\alpha}_{3/2,-,\Omega_{b},2,1,\lambda}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{\nu}s^{b}(x)\\&+ s^{T}(x)C\gamma_{\nu}[D_{\mu}s(x)]^{b}\}\Gamma^{\alpha\mu\nu}_{2}b^{c}(x),\\ J^{\alpha_{1}\alpha_{2}}_{5/2,-,\Omega_{b},2,1,\lambda}(x) =& {\rm i}\epsilon_{abc}\{[D_{\mu}s^{T}(x)]^{a}C\gamma_{\nu}s^{b}(x)\\&+ s^{T}(x)C\gamma_{\nu}[D_{\mu}s(x)]^{b}\}\Gamma^{\alpha_{1}\alpha_{2}\mu\nu}b^{c}(x), \end{aligned}

      (6)

      where

      \begin{equation} \Gamma^{\alpha\mu\nu}_{2} = \left(g^{\alpha\mu}\gamma^{\nu}+g^{\alpha\nu}\gamma^{\mu}-\frac{1}{2}g^{\mu\nu}\gamma^{\alpha}\right)\gamma_{5}, \end{equation}

      (7)

      \begin{aligned}[b] \Gamma^{\alpha_{1}\alpha_{2}\mu\nu} = &g^{\alpha_{1}\mu}g^{\alpha_{2}\nu}+g^{\alpha_{1}\nu}g^{\alpha_{2}\mu} -\frac{1}{3}g^{\alpha_{1}\alpha_{2}}g^{\mu\nu}\\&-\frac{1}{6}g^{\alpha_{1}\mu}\gamma^{\alpha_{2}}\gamma^{\nu} -\frac{1}{6}g^{\alpha_{1}\nu}\gamma^{\alpha_{2}}\gamma^{\mu}\\&-\frac{1}{6}g^{\alpha_{2}\nu}\gamma^{\alpha_{1}}\gamma^{\mu} -\frac{1}{6}g^{\alpha_{2}\mu}\gamma^{\alpha_{1}}\gamma^{\nu}. \end{aligned}

      (8)

      In the above equations, D_{\mu}(x) = \partial_{\mu}-{\rm i}g_{s}A_{\mu}(x) is the gauge-covariant derivative; a, b, and c are color indices; C is the charge conjugation operator; T denotes the matrix transpose on the Dirac spinor indices; and s(x) and b(x) are the strange and bottom quark fields, respectively.

    • B.   Sum rules

    • To obtain the mass sum rules for the P-wave excited \Omega_{b} states, we begin with the following two-point correlation function of the interpolating currents constructed in the previous subsection,

      \begin{aligned}[b] \Pi^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}\beta_{1}\beta_{2}\cdots\beta_{j-\frac{1}{2}}}(p) =& {\rm i}\int {\rm d}x^{4}{\rm e}^{{\rm i}px}\langle0\mid {T}[J^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}(x)\\&\times \bar{J}^{\,\beta_{1}\beta_{2}\cdots\beta_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}(0)]\mid0\rangle. \end{aligned}

      (9)

      First, we need to phenomenologically represent the two-point correlation function (9) in terms of hadronic parameters. To this end, we insert a complete set of states with the same quantum numbers as the interpolating field, perform the integral over space-time coordinates, and finally obtain

      \begin{aligned}[b] \Pi^{({\rm Phy})\alpha_{1}\cdots\alpha_{j-\frac{1}{2}}\beta_{1}\cdots\beta_{j-\frac{1}{2}}}(p) = & \frac{1}{m^{2}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}-p^{2}}\\&\times\langle0|J^{\alpha_{1}\cdots\alpha_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda} |j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda,p\rangle\\&\times\langle j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda,p| \bar{J}^{\beta_{1}\cdots\beta_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}|0\rangle\\& +{\rm{higher \;resonances}}. \end{aligned}

      (10)

      We parameterize the matrix element \langle0|J^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda} |j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda,p\rangle in terms of the current-hadron coupling constant (pole residue) f_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda} and spinor u^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}(p) ,

      \begin{aligned}[b]& \langle0|J^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda} |j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda,p\rangle \\=& f_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}u^{\alpha_{1}\alpha_{2}\cdots\alpha_{j-\frac{1}{2}}}(p). \end{aligned}

      (11)

      As a result, we have

      ● for spin- \dfrac{1}{2} baryon:

      \begin{equation} \Pi^{({\rm Phy})}(p) = \frac{f^{2}_{1/2}}{m^{2}_{1/2}-p^{2}}(\not{p}+m_{1/2})+{\rm{higher \;resonances}}, \end{equation}

      (12)

      ● for spin- \dfrac{3}{2} baryon:

      \begin{aligned}[b] \Pi^{({\rm Phy})\alpha_{1}\beta_{1}}(p) = &\frac{f^{2}_{3/2}}{m^{2}_{3/2}-p^{2}}(\not{p}+m_{3/2})\Bigg(-g^{\alpha_{1}\beta_{1}} +\frac{\gamma^{\alpha_{1}}\gamma^{\beta_{1}}}{3}\\\\&+\frac{2p^{\alpha_{1}}p^{\beta_{1}}}{3m^{2}_{3/2}} -\frac{p^{\alpha_{1}}\gamma^{\beta_{1}}-p^{\beta_{1}}\gamma^{\alpha_{1}}}{3m_{3/2}}\Bigg) \\&+{\rm{higher \;resonances}}, \end{aligned}

      (13)

      ● for spin- \dfrac{5}{2} baryon:

      \begin{aligned}[b] \Pi^{({\rm Phy})\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}}(p) = &\frac{f^{2}_{5/2}}{m^{2}_{5/2}-p^{2}}(\not{p}+m_{5/2}) \Bigg[\frac{\tilde{g}^{\alpha_{1}\beta_{1}}\tilde{g}^{\alpha_{2}\beta_{2}}+\tilde{g}^{\alpha_{1}\beta_{2}}\tilde{g}^{\alpha_{2}\beta_{1}}}{2} -\frac{\tilde{g}^{\alpha_{1}\alpha_{2}}\tilde{g}^{\beta_{1}\beta_{2}}}{5}-\frac{1}{10}\left(\gamma^{\alpha_{1}}\gamma^{\beta_{1}} +\frac{\gamma^{\alpha_{1}}p^{\beta_{1}}-\gamma^{\beta_{1}}p^{\alpha_{1}}}{m_{5/2}}-\frac{p^{\alpha_{1}}p^{\beta_{1}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{2}\beta_{2}}\\&-\frac{1}{10}\left(\gamma^{\alpha_{2}}\gamma^{\beta_{1}} +\frac{\gamma^{\alpha_{2}}p^{\beta_{1}}-\gamma^{\beta_{1}}p^{\alpha_{2}}}{m_{5/2}}-\frac{p^{\alpha_{2}}p^{\beta_{1}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{1}\beta_{2}}-\frac{1}{10}\left(\gamma^{\alpha_{1}}\gamma^{\beta_{2}} +\frac{\gamma^{\alpha_{1}}p^{\beta_{2}}-\gamma^{\beta_{2}}p^{\alpha_{1}}}{m_{5/2}}-\frac{p^{\alpha_{1}}p^{\beta_{2}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{2}\beta_{1}}\\&-\frac{1}{10}\left(\gamma^{\alpha_{2}}\gamma^{\beta_{2}} +\frac{\gamma^{\alpha_{2}}p^{\beta_{2}}-\gamma^{\beta_{2}}p^{\alpha_{2}}}{m_{5/2}}-\frac{p^{\alpha_{2}}p^{\beta_{2}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{1}\beta_{1}}\Bigg]+{\rm{higher \;resonances}}, \end{aligned}

      (14)

      where we have used the following formulas

      \begin{equation} \sum\limits_{s}u(p,s)\bar{u}(p,s) = \not{p}+m_{1/2}, \end{equation}

      (15)

      \sum\limits_{s}u^{\alpha_{1}}(p,s)\bar{u}^{\beta_{1}}(p,s) = (\not{p}+m_{3/2})\left(-g^{\alpha_{1}\beta_{1}} +\frac{\gamma^{\alpha_{1}}\gamma^{\beta_{1}}}{3}+\frac{2p^{\alpha_{1}}p^{\beta_{1}}}{3m^{2}_{3/2}} -\frac{p^{\alpha_{1}}\gamma^{\beta_{1}}-p^{\beta_{1}}\gamma^{\alpha_{1}}}{3m_{3/2}}\right),

      (16)

      \begin{aligned}[b] \sum\limits_{s}u^{\alpha_{1}\alpha_{2}}(p,s)\bar{u}^{\beta_{1}\beta_{2}}(p,s) = &(\not{p}+m_{5/2})\Bigg[\frac{\tilde{g}^{\alpha_{1}\beta_{1}}\tilde{g}^{\alpha_{2}\beta_{2}}+\tilde{g}^{\alpha_{1}\beta_{2}}\tilde{g}^{\alpha_{2}\beta_{1}}}{2} -\frac{\tilde{g}^{\alpha_{1}\alpha_{2}}\tilde{g}^{\beta_{1}\beta_{2}}}{5}-\frac{1}{10}\left(\gamma^{\alpha_{1}}\gamma^{\beta_{1}} +\frac{\gamma^{\alpha_{1}}p^{\beta_{1}}-\gamma^{\beta_{1}}p^{\alpha_{1}}}{m_{5/2}}-\frac{p^{\alpha_{1}}p^{\beta_{1}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{2}\beta_{2}}\\&-\frac{1}{10}\left(\gamma^{\alpha_{2}}\gamma^{\beta_{1}} +\frac{\gamma^{\alpha_{2}}p^{\beta_{1}}-\gamma^{\beta_{1}}p^{\alpha_{2}}}{m_{5/2}}-\frac{p^{\alpha_{2}}p^{\beta_{1}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{1}\beta_{2}}-\frac{1}{10}\left(\gamma^{\alpha_{1}}\gamma^{\beta_{2}} +\frac{\gamma^{\alpha_{1}}p^{\beta_{2}}-\gamma^{\beta_{2}}p^{\alpha_{1}}}{m_{5/2}}-\frac{p^{\alpha_{1}}p^{\beta_{2}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{2}\beta_{1}}\\&-\frac{1}{10}\left(\gamma^{\alpha_{2}}\gamma^{\beta_{2}} +\frac{\gamma^{\alpha_{2}}p^{\beta_{2}}-\gamma^{\beta_{2}}p^{\alpha_{2}}}{m_{5/2}}-\frac{p^{\alpha_{2}}p^{\beta_{2}}}{m^{2}_{5/2}}\right) \tilde{g}^{\alpha_{1}\beta_{1}}\Bigg], \end{aligned}

      (17)

      with \tilde{g}^{\mu\nu} = g^{\mu\nu}-\dfrac{p^{\mu}p^{\nu}}{p^{2}} .

      Conversely, the correlation function (9) can be calculated theoretically via the OPE method at the quark-gluon level. We take the current J_{1/2,-,\Omega_{b},1,0,\rho}(x) as an example to illustrate the involved technologies. Inserting the interpolating current J_{1/2,-,\Omega_{b},1,0,\rho}(x) (3) into the correlation function (9) and contracting the relevant quark fields using Wick's theorem, we find

      \begin{aligned}[b] \Pi^{(\rm OPE)}(p) = &-4{\rm i}\epsilon_{abc}\epsilon_{a^{\prime}b^{\prime}c^{\prime}}\int {\rm d}^{4}x {\rm e}^{{\rm i}px}\gamma_{\mu}\gamma_{5}S^{(b)}_{cc^{\prime}}(x)\gamma_{\mu^{\prime}}\gamma_{5}\\ & \times \Big\{{\rm Tr}\Big[\gamma_{5}S^{(s)}_{bb^{\prime}}(x)\gamma_{5}C\partial^{\mu}_{x}\partial^{\mu^{\prime}}_{y}S^{(s)T}_{aa^{\prime}}(x-y)C\Big]- {\rm Tr}\Big[\gamma_{5}\partial^{\mu}_{x}S^{(s)}_{bb^{\prime}}(x)\gamma_{5}C\partial^{\mu^{\prime}}_{y}S^{(s)T}_{aa^{\prime}}(x-y)C\Big]\Big\}_{y = 0}\\ &+4\epsilon_{abc}\epsilon_{a^{\prime}b^{\prime}c^{\prime}}\int {\rm d}^{4}x {\rm e}^{{\rm i}px}g_{s}A^{\mu ad}(x)\gamma_{\mu}\gamma_{5}S^{(b)}_{cc^{\prime}}(x)\gamma_{\mu^{\prime}}\gamma_{5}\\ & \times \Big\{{\rm Tr}\Big[\gamma_{5}\partial^{\mu^{\prime}}_{y}S^{(s)}_{bb^{\prime}}(x-y)\gamma_{5}CS^{(s)T}_{da^{\prime}}(x)C\Big]- {\rm Tr}\Big[\gamma_{5}S^{(s)}_{bb^{\prime}}(x)\gamma_{5}C\partial^{\mu^{\prime}}_{y}S^{(s)T}_{da^{\prime}}(x-y)C\Big]\Big\}_{y = 0}\\ &+\frac{\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{96}\epsilon_{abc}\epsilon_{a^{\prime}b^{\prime}c^{\prime}}\int {\rm d}^{4}x {\rm e}^{{\rm i}px}g_{s}\gamma_{\mu}\gamma_{5}S^{(b)}_{cc^{\prime}}(x)\gamma_{\mu^{\prime}}\gamma_{5}\\ & \times \left(\frac{\lambda_{n}}{2}\right)^{ad}\left\{\left(\frac{\lambda_{n}}{2}\right)^{da^{\prime}}x_{\nu} {\rm Tr}\Big[\gamma_{5}\partial^{\mu^{\prime}}_{y}S^{(s)}_{bb^{\prime}}(x-y)\gamma_{5}\sigma^{\mu\nu}\Big]-\left(\frac{\lambda^{n}}{2}\right)^{bb^{\prime}}x_{\nu} {\rm Tr}\Big[\gamma_{5}\partial^{\mu^{\prime}}_{y}S^{(s)}_{da^{\prime}}(x-y)\gamma_{5}\sigma^{\mu\nu}\Big]\right\}_{y = 0}, \end{aligned}

      (18)

      where a, b, \cdots are color indices, \lambda^{n},n = 1,2,\cdots,8 are the Gell-Mann matrix, A^{\mu ad}(x) = A^{n\mu}(x)\left(\dfrac{\lambda_{n}}{2}\right)^{ad} is the gluon field, g_{s} is the strong interaction constant, and S^{(b)}(x) and S^{(s)}(x) are the full bottom- and strange-quark propagators, respectively, whose expressions are given in Appendix A. Inserting the expressions for the full quark propagators into (18) and performing the involved integrals, we have

      \Pi^{(\rm OPE)}(p) = \not{p}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}},

      (19)

      where \rho(s) is the QCD spectral density

      \begin{aligned}[b] \rho(s) = &-\frac{3}{64\pi^{4}}\int^{1}_{a_{\rm min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}(m^{2}_{b}-as)^{3}+\frac{3m^{2}_{s}}{16\pi^{4}}\int^{1}_{a_{\rm min}}{\rm d}a \frac{(1-a)^{2}}{a}(m^{2}_{b}-as)^{2}\\ &-\frac{3m_{s}\langle0|\bar{s}s|0\rangle}{4\pi^{2}}\int^{1}_{a_{min}}{\rm d}a (1-a)(m^{2}_{b}-as)-\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{256\pi^{4}}\int^{1}_{a_{\rm min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}\\ &-\frac{5\langle0|g^{2}_{s}GG|0\rangle}{256\pi^{4}}\int^{1}_{a_{\rm min}}{\rm d}a(1-a)(m^{2}_{b}-as) -\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{192\pi^{4}}(1-a_{\rm min})^{2} -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{96\pi^{2}M^{2}_{\rm B}}(1-a_{\rm min}), \end{aligned}

      (20)

      with a_{\rm min} = m^{2}_{b}/s; here, m_{s} is the mass of the strange quark, m_{b} is the mass of the bottom quark. and M^{2}_{\rm B} is the Borel parameter, introduced to make the Borel transform in the next step.

      Finally, we match the phenomenological side (12) and the QCD representation (19) for the Lorentz structure \not{p},

      \frac{f^{2}_{1/2,-,\Omega_{b},1,0,\rho}}{m^{2}_{1/2,-,\Omega_{b},1,0,\rho}-p^{2}}+{\rm{higher \;resonances}} = \int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12(m^{2}_{b}-p^{2})},

      (21)

      According to the quark-hadron duality, the higher resonances can be approximated by the QCD spectral density above some effective threshold s^{1/2,-,\Omega_{b},1,0,\rho}_{0} ,

      \frac{f^{2}_{1/2,-,\Omega_{b},1,0,\rho}}{m^{2}_{1/2,-,\Omega_{b},1,0,\rho}-p^{2}} +\int^{\infty}_{s^{1/2,-,\Omega_{b},1,0,\rho}_{0}}{\rm d}s\frac{\rho(s)}{s-p^2} = \int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12(m^{2}_{b}-p^{2})}.

      (22)

      Subtracting the contributions of the excited and continuum states, we obtain

      \begin{equation} \frac{f^{2}_{1/2,-,\Omega_{b},1,0,\rho}}{m^{2}_{1/2,-,\Omega_{b},1,0,\rho}-p^{2}} = \int^{s^{1/2,-,\Omega_{b},1,0,\rho}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12(m^{2}_{b}-p^{2})}, \end{equation}

      (23)

      To improve the convergence of the OPE series and suppress the contributions from the excited and continuum states, it is necessary to make a Borel transform. As a result, we have

      \begin{equation} f^{2}_{1/2,-,\Omega_{b},1,0,\rho}{\rm e}^{-m^{2}_{1/2,-,\Omega_{b},1,0,\rho}/M^{2}_{B}} = \int^{s^{1/2,-,\Omega_{b},1,0,\rho}_{0}}_{(m_{b}+2m_{s})^{2}} {\rm d} s\rho(s) {\rm e}^{-s/M^{2}_{B}} +\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12} {\rm e}^{-m^{2}_{b}/M^{2}_{B}}, \end{equation}

      (24)

      where M^{2}_{\rm B} is the Borel parameter. Applying the operator -\frac{\rm d}{{\rm d}(1/M^{2}_{B})} to (24) and dividing the resulting equation with (24), we obtain the mass sum rule

      m^{2}_{1/2,-,\Omega_{b},1,0,\rho} = \frac{-\dfrac{\rm d}{{\rm d}(1/M^{2}_{B})}\left(\displaystyle\int^{s^{1/2,-,\Omega_{b},1,0,\rho}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho(s){\rm e}^{-s/M^{2}_{B}} +\dfrac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12}{\rm e}^{-m^{2}_{b}/M^{2}_{B}}\right)}{ \displaystyle\int^{s^{1/2,-,\Omega_{b},1,0,\rho}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho(s){\rm e}^{-s/M^{2}_{B}} +\dfrac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{12}{\rm e}^{-m^{2}_{b}/M^{2}_{B}}}.

      (25)

      In Sec. III, we will numerically analyze (25) and (24) and estimate the values of the mass m_{1/2,-,\Omega_{b},1,0,\rho} and the pole residue f_{1/2,-,\Omega_{b},1,0,\rho} .

      For other interpolating currents, we do the same analysis, and the corresponding OPE results are given in Appendix B.

    III.   NUMERICAL ANALYSIS
    • The sum rule (25) contains some parameters, various condensates, and quark masses, whose values are presented in Table 1. The values of m_{b} and m_{s} are the \overline{MS} values. In addition to these parameters, we need to determine the working intervals of the threshold parameter s^{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}_{0} and the Borel mass M^{2}_{\rm B} in which the masses and pole residues are stable. We take the continuum threshold to be approximately m_{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}+ (0.7\pm 0.1)\; {\rm{GeV}}, while the Borel parameter is determined by demanding that both the contributions of the higher states and continuum are sufficiently suppressed and the contributions coming from higher dimensional operators are small.

      Parameter Value
      \langle\bar{s}s\rangle (0.8\pm0.1)\langle\bar{q}q\rangle
      \langle\bar{q}q\rangle -(0.24\pm0.01)^{3}{\rm{GeV}}^{3}
      \langle g_{s}\bar{s}\sigma Gs\rangle (0.8\pm0.1)\langle\bar{s}s\rangle {\rm{GeV}}^{2}
      \langle g^{2}_{s}GG\rangle 0.88\pm0.25\;{\rm{GeV}}^{4}
      m_{b} (4.18\pm0.03){\rm{GeV}} [40]
      m_{s} (0.095\pm0.005){\rm{GeV}} [40]

      Table 1.  Input parameters required for calculations.

      We define two quantities: the ratio of the pole contribution to the total contribution (Pole Contribution, abbreviated PC) and the ratio of the highest dimensional term in the OPE series to the total OPE series (Convergence, abbreviated CVG), as follows,

      \begin{aligned}[b] {\rm{PC}}\equiv &\frac{\displaystyle\int^{s^{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho(s){\rm e}^{-\frac{s}{M^{2}_{B}}}} {\displaystyle\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho(s){\rm e}^{-\frac{s}{M^{2}_{B}}}}, \\{\rm{CVG}}\equiv &\frac{\displaystyle\int^{s^{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho^{(d = 7)}(s){\rm e}^{-\frac{s}{M^{2}_{B}}}} {\displaystyle\int^{s^{j,P,\Omega_{b},j_{l},s_{l},\rho/\lambda}_{0}}_{(m_{b}+2m_{s})^{2}}{\rm d}s\rho(s){\rm e}^{-\frac{s}{M^{2}_{B}}}}, \end{aligned}

      (26)

      where \rho^{(d = 7)}(s) are the terms proportional to \langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle in the spectral density.

      For the current J_{1/2,-,\Omega_{b},1,0,\rho}(x) , the numerical results are shown in Fig. 1. In Fig. 1(a), we compare the various condensate contributions as functions of M^{2}_{\rm B} with s^{1/2,-,\Omega_{b},1,0,\rho}_{0} = 6.95^{2}\;{\rm{GeV}}^{2} . From the figure, it is clear that the OPE has good convergence. Fig. 1(b) shows PC and CVG varying with M^{2}_{\rm B} at s^{1/2,-,\Omega_{b},1,0,\rho}_{0} = 6.95^{2}\;{\rm{GeV}}^{2} . The figure shows that the requirement {\rm{PC}}\geqslant 50 % gives M^{2}_{\rm B}\leqslant 5.5\;{\rm{GeV}}^{2}. The dependences of the mass m_{1/2,-,\Omega_{b},1,0,\rho} and the pole residue f_{1/2,-,\Omega_{b},1,0,\rho} on the Borel parameter M^{2}_{\rm B} are depicted in Fig. 1(c) and (d) at three different values of s^{1/2,-,\Omega_{b},1,0,\rho}_{0} , respectively. It is obvious that the mass and the pole residue are stable in the interval 4.5\;{\rm{GeV}}^{2}\leqslant M^{2}_{\rm B}\leqslant 5.5\;{\rm{GeV}}^{2}. The mass and the pole residue are estimated to be m_{1/2,-,\Omega_{b},1,0,\rho} = (6.28^{+0.11}_{-0.10}){\rm{GeV}} and f_{1/2,-,\Omega_{b},1,0,\rho} = (0.35\pm0.06){\rm{GeV}}^{4} , respectively.

      Figure 1.  (color online) For the interpolating current J_{1/2,-,\Omega_{b},1,0,\rho}(x) : (a) denotes the various condensate contributions as functions of M^{2}_{\rm B} with s^{1/2,-,\Omega_{b},1,0,\rho}_{0} = 6.95^{2}\;{\rm{GeV}}^{2} ; (b) represents PC and CVG varying with M^{2}_{\rm B} at s^{1/2,-,\Omega_{b},1,0,\rho}_{0} = 6.95^{2}\;{\rm{GeV}}^{2} ; (c) and (d) depict the dependence of the mass and the pole residue on M^{2}_{\rm B} with three different values of s^{1/2,-,\Omega_{b},1,0,\rho}_{0} , respectively.

      For other interpolating currents, the same analysis can be performed. We summarize our results in Table 2 and compare the obtained masses with the results in Ref. [20] estimated using the QCD sum rule method in the framework of heavy quark effective theory. It is clear that they are in agreement with each other within the inherent uncertainties of the QCD sum rule method, except for the multiplet [ \Omega_{b} , 0, 1, λ]. We should provide some arguments regarding the result of the interpolating current J_{1/2,-,\Omega_{b},0,1,\lambda}(x) shown in Fig. 2. From Eqs. (B3) and (B4), we can see that all terms of the OPE series are proportional to the strange quark mass m_{s} or m^{2}_{s} , except for the second term in (B4). As a result, the gluon-condensate term is much larger than the other terms, and OPE is invalid in this case. Moreover, the corresponding mass and pole residue are much lower than the others. All in all, our model can not give reasonable results in this case.

      Multiples Baryons ( j^{P} ) Masses/ {\rm{GeV}} Pole residues/ {\rm{GeV}}^{4}
      This work Ref. [20]
      [ \Omega_{b} , 1, 0, ρ] \Omega_{b} ( \frac{1}{2}^{-} ) 6.28^{+0.11}_{-0.10} 6.32^{+0.12}_{-0.10} 0.35\pm0.06
      \Omega_{b} ( \frac{3}{2}^{-} ) 6.31^{+0.10}_{-0.11} 6.32^{+0.12}_{-0.10} 0.19\pm0.03
      [ \Omega_{b} , 0, 1, λ] \Omega_{b} ( \frac{1}{2}^{-} ) 5.75^{+0.05}_{-0.02} 6.34\pm0.11 0.0183^{+0.0013}_{-0.0007}
      [ \Omega_{b} , 1, 1, λ] \Omega_{b} ( \frac{1}{2}^{-} ) 6.33^{+0.10}_{-0.11} 6.34^{+0.09}_{-0.08} 0.62\pm0.10
      \Omega_{b} ( \frac{3}{2}^{-} ) 6.37^{+0.10}_{-0.11} 6.34^{+0.09}_{-0.08} 0.36^{+0.06}_{-0.05}
      [ \Omega_{b} , 2, 1, λ] \Omega_{b} ( \frac{3}{2}^{-} ) 6.34^{+0.09}_{-0.10} 6.35^{+0.13}_{-0.11} 0.71\pm0.11
      \Omega_{b} ( \frac{5}{2}^{-} ) 6.54^{+0.07}_{-0.08} 6.36^{+0.13}_{-0.11} 0.15\pm0.02

      Table 2.  Masses and pole residues of the P-wave excited \Omega_{b} states.

      Figure 2.  (color online) For the interpolating current J_{1/2,-,\Omega_{b},0,1,\lambda}(x) : (a) denotes the various condensate contributions as functions of M^{2}_{\rm B} with s^{1/2,-,\Omega_{b},0,1,\lambda}_{0} = 6.5^{2}\;{\rm{GeV}}^{2} ; (b) represents RP and RH varying with M^{2}_{\rm B} at s^{1/2,-,\Omega_{b},0,1,\lambda}_{0} = 6.5^{2}\;{\rm{GeV}}^{2} ; (c) and (d) depict the dependence of the mass and the pole residue on M^{2}_{\rm B} with three different values of s^{1/2,-,\Omega_{b},0,1,\lambda}_{0} , respectively.

    IV.   CONCLUSION
    • In this paper, we consider all P-wave \Omega_{b} states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues using the QCD sum rule method. The results are summarized in Table 2. Because of the large uncertainties in our calculation compared with the small difference in the masses of the excited \Omega_{b} states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave \Omega_{b} states represented by the interpolating currents investigated in the present work to gain a better understanding of the four excited \Omega_{b} states observed by the LHCb collaboration. For example, we could study their decay widths. Our results in this paper are necessary input parameters when studying their decay widths using the QCD sum rule method or light-cone sum rule method.

    ACKNOWLEDGMENTS
    • One of the authors, Yong-Jiang Xu, thanks Hua-Xing Chen for useful discussion on the construction of interpolating currents.

    APPENDIX A: QUARK PROPAGATORS
    • The full quark propagators are

      \begin{aligned}[b] S^{q}_{ij}(x) = &\frac{i \not{x}}{2\pi^{2}x^4}\delta_{ij}-\frac{m_{q}}{4\pi^2x^2}\delta_{ij}-\frac{\langle\bar{q}q\rangle}{12}\delta_{ij} +{\rm i}\frac{\langle\bar{q}q\rangle}{48}m_{q}\not{x}\delta_{ij}-\frac{x^2}{192}\langle g_{s}\bar{q}\sigma Gq\rangle \delta_{ij}\\ &+{\rm i}\frac{x^2\not{x}}{1152}m_{q}\langle g_{s}\bar{q}\sigma Gq\rangle \delta_{ij}-{\rm i}\frac{g_{s}t^{a}_{ij}G^{a}_{\mu\nu}}{32\pi^2x^2}(\not{x}\sigma^{\mu\nu}+\sigma^{\mu\nu}\not{x})+\cdots \end{aligned} \tag{A1}

      for light quarks, and

      \begin{aligned}[b] S^{Q}_{ij}(x) =& {\rm i}\int\frac{{\rm d}^{4}k}{(2\pi)^4}{\rm e}^{-{\rm i}kx}\Bigg[\frac{\not{k}+m_{Q}}{k^2-m^{2}_{Q}}\delta_{ij} -\frac{g_{s}t^{a}_{ij}G^{a}_{\mu\nu}}{4}\frac{\sigma^{\mu\nu}(\not{k}+m_{Q})+(\not{k}+m_{Q})\sigma^{\mu\nu}} {(k^2-m^{2}_{Q})^{2}}+\frac{\langle g^{2}_{s}GG\rangle}{12}\delta_{ij}m_{Q}\frac{k^2+m_{Q}\not{k}}{(k^2-m^{2}_{Q})^{4}}+\cdots\Bigg] \end{aligned}\tag{A2}

      for heavy quarks. In these expressions, t^{a} = \dfrac{\lambda^{a}}{2} and \lambda^{a} are the Gell-Mann matrices, g_{s} is the strong interaction coupling constant, and i, j are color indices.

    APPENDIX B: SPECTRAL DENSITIES
    • We choose the Lorentz structures {\not{p}} , { \not{p}}g^{\alpha\beta} , and { \not{p}}g^{\alpha_{1}\alpha_{2}}g^{\beta_{1}\beta_{2}} to obtain the sum rules for spin-{1}/{2}, spin-{3}/{2}, and spin- {5}/{2} baryons, respectively. In this appendix, we will give the corresponding OPE results.

      For the interpolating current J^{\alpha}_{3/2,-,\Omega_{b},1,0,\rho}(x) ,

      \begin{aligned}[b]\\[-3pt] \Pi^{(\rm OPE)\alpha\beta}(p) = {\not{p}}g^{\alpha\beta}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} -\frac{m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{24(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}},\end{aligned}\tag{B1}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &\frac{1}{384\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(4+a)}{a^{2}}(m^{2}_{b}-as)^{3}-\frac{m^{2}_{s}}{64\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}(2+a)}{a}(m^{2}_{b}-as)^{2}\\&+\frac{m_{s}\langle0|\bar{s}s|0\rangle}{8\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a a(1-a)(m^{2}_{b}-as)+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{4608\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(4+a)}{a^{2}}\\&+\frac{\langle0|g^{2}_{s}GG|0\rangle}{512\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(2+a)(m^{2}_{b}-as) +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{2304\pi^{4}}(1-a_{\min})^{2}(2+a_{\min})\\& +\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{24\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa(2-a)+\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{576\pi^{2}M^{2}_{\rm B}}a_{\min}(1-a_{\min}). \end{aligned}\tag{B2}

      For the interpolating current J_{1/2,-,\Omega_{b},0,1,\lambda}(x) ,

      \Pi^{(\rm OPE)}(p) = {\not{p}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{2m^{2}_{s}\langle0|\bar{s}s|0\rangle^{2}}{3(m^{2}_{b}-p^{2})}+\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{192\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B3}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}}{a}(m^{2}_{b}-as)^{2}-\frac{\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(m^{2}_{b}-as) \\&+\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2} +\frac{3m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{16\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa. \end{aligned}\tag{B4}

      For the interpolating current J_{1/2,-,\Omega_{b},1,1,\lambda}(x) ,

      \Pi^{(\rm OPE)}(p) = {\not{p}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{192\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B5}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &-\frac{1}{8\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}(m^{2}_{b}-as)^{3}+\frac{27m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}}{a}(m^{2}_{b}-as)^{2}+\frac{3m_{s}\langle0|\bar{s}s|0\rangle}{\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(m^{2}_{b}-as)\\&-\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}}{a^{2}}-\frac{3\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{2}}{a}(m^{2}_{b}-as) +\frac{\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(m^{2}_{b}-as)\\& -\frac{3m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{128\pi^{4}}(1-a_{\min})^{2}-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{16\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(4-7a) +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{24\pi^{2}M^{2}_{B}}(1-a_{\min}) \\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{96\pi^{2}s}a_{\min}. \end{aligned} \tag{B6}

      For the interpolating current J^{\alpha}_{3/2,-,\Omega_{b},1,1,\lambda}(x) ,

      \Pi^{(\rm OPE)\alpha\beta}(p) = {\not{p}}g^{\alpha\beta}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{576\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B7}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &\frac{1}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(3+a)}{a^{2}}(m^{2}_{b}-as)^{3}-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}(2+a)}{a}(m^{2}_{b}-as)^{2}\\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{2\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(1+a)(m^{2}_{b}-as)+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(3+a)}{a^{2}}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{768\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{2}(4-a)}{a}(m^{2}_{b}-as) -\frac{\langle0|g^{2}_{s}GG|0\rangle}{768\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(1+a)(m^{2}_{b}-as)\\& +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2}(2+a_{\min})-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{48\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(3-4a+4a^{2})\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{144\pi^{2}M^{2}_{B}}(1-a_{\min})(1+a_{\min}) -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{288\pi^{2}s}a_{\min}(1-a_{\min}). \end{aligned}\tag{B8}

      For the interpolating current J^{\alpha}_{3/2,-,\Omega_{b},2,1,\lambda}(x) ,

      \Pi^{(\rm OPE)\alpha\beta}(p) = {\not{p}}g^{\alpha\beta}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{5m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{576\pi^{2}(m^{2}_{b}-p^{2})}\right)+{\rm{other\; Lorentz\; structures}}, \tag{B9}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &\frac{1}{96\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(7+13a)}{a^{2}}(m^{2}_{b}-as)^{3}-\frac{3m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{2}(6+a)}{a}(m^{2}_{b}-as)^{2}\\&-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{2\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a (1-a)(5-7a)(m^{2}_{b}-as)+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(7+13a)}{a^{2}}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(2+a)(m^{2}_{b}-as) +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{384\pi^{4}}(1-a_{\min})^{2}(6+a_{\min})\\&+\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{48\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a(1-4a+18a^{2}) -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{144\pi^{2}M^{2}_{B}}(1-a_{\min})(5-7a_{\min})\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{288\pi^{2}s}a_{\min}(1+3a_{\min}). \end{aligned}\tag{B10}

      For the interpolating current J^{\alpha_{1}\alpha_{2}}_{5/2,-,\Omega_{b},2,1,\lambda}(x) ,

      \Pi^{(\rm OPE)\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}}(p) = {\not{p}}g^{\alpha_{1}\alpha_{2}}g^{\beta_{1}\beta_{2}}\left(\int^{\infty}_{(m_{b}+2m_{s})^{2}}{\rm d}s\frac{\rho(s)}{s-p^2} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{1728\pi^{2}(m^{2}_{b}-p^{2})}\right) +{\rm{other\; Lorentz\; structures}}, \tag{B11}

      where \rho(s) is the QCD spectral density,

      \begin{aligned}[b] \rho(s) = &\frac{1}{288\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(1+a)}{a}(m^{2}_{b}-as)^{3}-\frac{1}{288\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a\frac{(1-a)^{4}(1+2a)}{a}s(m^{2}_{b}-as)^{2}\\& -\frac{1}{144\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)^{5}s^{2}(m^{2}_{b}-as)-\frac{m^{2}_{s}}{32\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a (1-a)^{2}(m^{2}_{b}-as)^{2}\\&+\frac{m^{2}_{s}}{48\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a (1-a)^{3}s(m^{2}_{b}-as)-\frac{m_{s}\langle0|\bar{s}s|0\rangle}{18\pi^{2}}\int^{1}_{a_{\min}}{\rm d}a a(1-a)^{2}(3m^{2}_{b}-(a+1)s)\\&+\frac{m^{2}_{b}m_{s}\langle0|\bar{s}s|0\rangle}{18\pi^{2}}a_{\min}(1-a_{\min})^{3} +\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a \frac{(1-a)^{3}(1+a)}{a}\\&-\frac{\langle0|g^{2}_{s}GG|0\rangle}{1152\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)(2-a^{2})(m^{2}_{b}-as) +\frac{\langle0|g^{2}_{s}GG|0\rangle}{6912\pi^{4}}\int^{1}_{a_{\min}}{\rm d}a(1-a)^{2}(3-4a^{2})s\\& +\frac{\langle0|g^{2}_{s}GG|0\rangle s}{3456\pi^{4}}(1-a_{\min})^{4}+\frac{m^{2}_{b}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}a_{\min}(1-a_{\min})^{3}\\& -\frac{\langle0|g^{2}_{s}GG|0\rangle s^{2}}{10368\pi^{4}M^{2}_{\rm B}}(1-a_{\min})^{5}-\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle}{3456\pi^{4}}(1-a_{\min})^{2}(1-4a_{\min})\\& +\frac{m^{2}_{s}\langle0|g^{2}_{s}GG|0\rangle s}{3456\pi^{4}M^{2}_{\rm B}}(1-a_{\min})^{3}-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{72\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa^{2}(1-2a)\\&-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{72\pi^{2}}\int^{1}_{a_{\min}}{\rm d}aa(1-a)-\frac{m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{432\pi^{2}}a_{\min}(1-a_{\min})(1-8a_{\min})\\&-\frac{m^{2}_{b}m_{s}\langle0|g_{s}\bar{s}\sigma\cdot Gs|0\rangle}{108\pi^{2}M^{2}_{\rm B}}a_{\min}(1-a_{\min})^{2} -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{1296\pi^{2}M^{2}_{\rm B}}(1-a_{\min})^{2}(4+a_{\min})\\& +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle s}{1296\pi^{2}M^{4}_{\rm B}}(1-a_{\min})^{2}(5-4a_{\min})-\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle s^{2}}{1296\pi^{2}M^{6}_{\rm B}}(1-a_{\min})^{3}\\& -\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{5184\pi^{2}s}a_{\min} +\frac{m_{s}\langle0|\bar{s}s|0\rangle\langle0|g^{2}_{s}GG|0\rangle}{5184\pi^{2}M^{2}_{\rm B}}a_{\min}. \end{aligned}\tag{B12}

      In the above equations, a_{\min} = m^{2}_{b}/s, and M^{2}_{\rm B} is the Borel parameter.

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return