-
In the framework of the QCD factorization approach [4, 23], the effective Hamiltonian matrix elements can be written as
$ \langle{M_1M_2}|\mathcal{H}_{\rm eff}|B\rangle = \sum_{p = u,c}\lambda_{p}^{(D)}\langle{M_1M_2}|\mathcal{T}_A^p+\mathcal{T}_B^p|B\rangle, $
(1) where
$ \mathcal{H}_{\rm eff} $ is the effective weak Hamiltonian,$ \lambda_p^{(D)} = $ $ V_{pb}V_{pD}^* $ ,$ V_{pb} $ and$ V_{pD} $ are the CKM matrix elements, and$ \mathcal{T}_A^p $ and$ \mathcal{T}_B^p $ describe the contributions from non-annihilation and annihilation amplitudes, respectively; they can be expressed in terms of$ a_i^p $ and$ b_i^p $ .Generally,
$ a_i^p $ includes the contributions from naive factorization, vertex correction, penguin amplitude and spectator scattering, and can be expressed as follows [4]:$ \begin{aligned}[b] a_i^p{(M_1M_2)} =& {\left(c_i+\frac{c_{i\pm1}}{N_c}\right)}N_i{(M_2)}+\frac{c_{i\pm1}}{N_c}\frac{C_F\alpha_s}{4\pi}\\&\times{\bigg[V_i{(M_2)}+\frac{4\pi^2}{N_c}H_i{(M_1M_2)}\bigg]}+P_i^p{(M_2)}, \end{aligned} $
(2) where
$ c_i $ are the Wilson coefficients,$ N_i{(M_2)} $ is the leading-order coefficient, and$ V_i{(M_2)} $ ,$ H_i{(M_1M_2)} $ and$ P_i^p{(M_1M_2)} $ are one-loop vertex corrections, hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the B meson, and penguin contractions, respectively.$ C_F = {(N_c^2-1)}/ $ $ {2N_c} $ , with$ N_c = 3 $ [4].The weak annihilation contributions can be expressed in terms of
$ b_i $ and$ b_{i,EW} $ , which are:$ \begin{aligned}[b] b_1 =& \frac{C_F}{N_c^2}c_1A_1^i, \quad b_2 = \frac{C_F}{N_c^2}c_2A_1^i, \\ b_3^p =& \frac{C_F}{N_c^2}\bigg[c_3A_1^i+c_5(A_3^i+A_3^f)+N_cc_6A_3^f \bigg],\\ b_4^p =& \frac{C_F}{N_c^2}\bigg[c_4A_1^i+c_6A_2^i \bigg], \\ b_{3,EW}^p =& \frac{C_F}{N_c^2}\bigg[c_9A_1^i+C_7(A_3^i+A_3^f)+N_cc_8A_3^f \bigg],\\ b_{4,EW}^p = &\frac{C_F}{N_c^2}\bigg[c_{10}A_1^i+c_8A_2^i \bigg], \end{aligned} $
(3) where the subscripts 1, 2, 3 of
$ A_n^{i,f}(n = 1,2,3) $ stand for the annihilation amplitudes induced from$ (V-A)(V-A) $ ,$ (V-A)(V+A) $ , and$ (S-P)(S+P) $ operators, respectively, and the superscripts i and f refer to gluon emission from the initial- and final-state quarks, respectively. The explicit expressions for$ A_n^{i,f} $ can be found in Ref. [24].In the expressions for the spectator and annihilation corrections, there are end-point divergences
$ X = $ $ \int_0^1 {\rm d}x/(1-x) $ , which can be parametrized as [17]$ X_{H,A} = (1+\rho_{H,A} {\rm e}^{{\rm i}\phi_{H,A}})\ln\frac{m_B}{\Lambda_h}, $
(4) with
$ \Lambda_h $ being a typical scale of order 500$ \mathrm{MeV} $ ,$ \rho_{A,H} $ an unknown real parameter and$ \phi_{A,H} $ the free strong phase in the range$ [0,2\pi] $ . -
For the four-body decay
$ \bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ $ , we consider the two-body cascade decay mode$ \bar{B}^0\rightarrow[K^-\pi^+]_{S/V} $ $ [\pi^-\pi^+]_{V/S}\rightarrow K^-\pi^+\pi^-\pi^+ $ . Within the QCDF framework in Ref. [4], we can deduce the two-body weak decay amplitudes of$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^-\pi^+]_{V/S} $ , which are:$ \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\rho ) =& {\rm i}G_F\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\rho) +\frac{3}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\rho)\bigg] f_\rho m_\rho \varepsilon_\rho^*\cdot p_BF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\rho}^2)\\& +\bigg[\alpha_4^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{2}\alpha_{4,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] \bar{f}_{\bar{K}^{*0}_{0i}}m_\rho \varepsilon_\rho^*\cdot p_BA_0^{\bar{B}^0\rho}(m_{\bar{K}^{*0}_{0i}}^2)\\& +\bigg[\frac{1}{2}b_3^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{4}b_{3,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}\bigg\},\end{aligned} $ (5) $ \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\omega) =& {\rm i}G_F\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\omega)+2\alpha_3^p(\bar{K}^{*0}_{0i}\omega) +\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\omega)\bigg] f_\omega m_\omega \varepsilon_\omega^*\cdot p_BF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\omega}^2)\\& +\bigg[\frac{1}{2}\alpha_{4,EW}^p(\omega\bar{K}^{*0}_{0i})-\alpha_4^p(\omega\bar{K}^{*0}_{0i})\bigg] \bar{f}_{\bar{K}^{*0}_{0i}}m_\omega \varepsilon_\omega^*\cdot p_BA_0^{\bar{B}^0\omega}(m_{\bar{K}^{*0}_{0i}}^2)\\& +\bigg[\frac{1}{4}b_{3,EW}^p(\omega\bar{K}^{*0}_{0i})-\frac{1}{2}b_3^p(\omega\bar{K}^{*0}_{0i})\bigg] f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}\bigg\},\end{aligned} $
(6) with
$ \bar{K}^{*0}_{0i} = \bar{K}^*_0(700)^0,\;\bar{K}^*_0(1430)^0 $ corresponding to$ i = 1,\;2 $ , respectively, and$ \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_if_{0j}) =& -{\rm i}G_F\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_if_{0j})+2\alpha_3^p(\bar{K}^{*0}_if_{0j})+\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg]\\& \times\bar{f}_{f_{0j}^n}m_{\bar{K}^{*0}_i} \varepsilon_{\bar{K}^{*0}_i}^*\cdot p_BA_0^{\bar{B}^0 \bar{K}^{*0}_i}(m_{f_{0j}}^2)+\bigg[\sqrt{2}\alpha_3^p(\bar{K}^{*0}_if_{0j})+\sqrt{2}\alpha_4^p(\bar{K}^{*0}_if_{0j})\\& -\frac{1}{\sqrt{2}}\alpha_{3,EW}^p(\bar{K}^{*0}_if_{0j})-\frac{1}{\sqrt{2}}\alpha_{4,EW}^p(\bar{K}^{*0}_if_{0j})\bigg]\bar{f}_{f_{0j}^s}m_{\bar{K}^{*0}_i} \varepsilon_{\bar{K}^{*0}_i}^*\cdot p_BA_0^{\bar{B}^0\bar{K}^{*0}_i}(m_{f_{0j}}^2)\\& +\bigg[\frac{1}{2}\alpha_{4,EW}^p(f_{0j}\bar{K}^{*0}_i)-\alpha_4^p(f_{0j}\bar{K}^{*0}_i)\bigg]f_{\bar{K}^{*0}_i}m_{\bar{K}^{*0}_i} \varepsilon_{\bar{K}^{*0}_i}^*\cdot p_B F_1^{\bar{B}^0f_{0j}}(m_{\bar{K}^{*0}_i}^2)+\bigg[\frac{1}{\sqrt{2}}b_3^p(\bar{K}^{*0}_if_{0j})\\& -\frac{1}{2\sqrt{2}}b_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg]f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^s+\bigg[\frac{1}{2}b_3^p(f_{0j}\bar{K}^{*0}_i)-\frac{1}{4}b_{3,EW}^p(f_{0j}\bar{K}^{*0}_i)\bigg]f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^n\bigg\},\end{aligned} $
(7) with
$ \bar{K}^{*0}_i = \bar{K}^*(892)^0,\;\bar{K}^*(1410)^0,\;\bar{K}^*(1680)^0 $ corresponding to$ i = 1,\;2,\;3 $ , respectively, and$ f_{0j} = f_0(500) $ ,$ f_0(980) $ when$ j = 1,2 $ , respectively. In Eqs. (5)-(7),$ F_1^{\bar{B}^0 \rightarrow S}(m_V^2) $ and$ A_0^{\bar{B}^0\rightarrow V}(m_S^2) $ are the form factors for$ \bar{B}^0 $ to scalar and vector meson transitions, respectively,$ f_V $ ,$ \bar{f}_S $ , and$ f_{\bar{B}^0} $ are the decay constants of the vector, scalar, and$ \bar{B}^0 $ mesons, respectively,$ \bar{f}_{f_{0j}}^s $ and$ \bar{f}_{f_{0j}}^n $ are the decay constants of the$ f_{0j} $ mesons coming from the up and strange quark components, respectively.In the framework of the two two-body decays, the four-body decay can be factorized into three pieces as follows:
$ \mathcal{M}(\bar{B}^0\rightarrow [K^-\pi^+]_S[\pi^-\pi^+]_V\rightarrow K^-\pi^+\pi^-\pi^+) = \frac{\langle SV|\mathcal{H}_{\rm eff}|\bar{B}^0\rangle \langle K^-\pi^+|\mathcal{H}_{S K^-\pi^+}|S\rangle \langle \pi^-\pi^+|\mathcal{H}_{V \pi^-\pi^+}|V\rangle}{s_{S}s_{V}}, $ (8) and
$ \mathcal{M}(\bar{B}^0\rightarrow [K^-\pi^+]_{V}[\pi^-\pi^+]_{S}\rightarrow K^-\pi^+\pi^-\pi^+) = \frac{\langle VS|\mathcal{H}_{\rm eff}|\bar{B}^0\rangle \langle K^-\pi^+|\mathcal{H}_{V K^-\pi^+}|V\rangle \langle \pi^-\pi^+|\mathcal{H}_{S\pi^-\pi^+}|S\rangle}{s_Vs_S}, $
(9) where
$ \mathcal{H}_{\rm eff} $ is the effective weak Hamiltonian,$ \langle M_1M_2|\mathcal{H}_s|V\rangle = g_{VM_1M_2}(p_{M_1}-p_{M_2})\cdot\epsilon_V $ and$ \langle M_1M_2|\mathcal{H}_s|S\rangle = $ $ g_{SM_1M_2} $ ,$ g_{VM_1M_2} $ and$ g_{SM_1M_2} $ are the strong coupling constants of the corresponding vector and scalar mesons decays, and$ s_{S/V} $ are the reciprocals of the dynamical functions$ T_{S/V} $ for the corresponding resonances. The specific kinds and expressions of$ T_{S/V} $ are given in the fifth column of Table 1 and Appendix C, respectively.Resonance Mass/ $\mathrm{MeV}$ Width/ $\mathrm{MeV}$ $J^P$ Model $\sigma$ $475\pm75$ $550\pm150$ $0^+$ BUGG $\rho$ $775.26\pm0.25$ $149.1\pm0.8$ $1^-$ GS $\omega$ $782.65\pm0.12$ $8.49\pm0.08$ $1^-$ RBW $f_0(980)$ $990\pm20$ $65\pm45$ $0^+$ FLATT $\acute{\mathrm{E}}$ $\bar{\kappa}$ $824\pm30$ $478\pm50$ $0^+$ RBW $\bar{K}^*(892)^0$ $895.5\pm0.20$ $47.3\pm0.5$ $1^-$ RBW $\bar{K}^*(1410)^0$ $1421\pm9$ $236\pm18$ $1^-$ RBW $\bar{K}^*_0(1430)^0$ $1425\pm50$ $270\pm80$ $0^+$ LASS $\bar{K}^*(1680)^0$ $1718\pm18$ $322\pm110$ $1^-$ RBW Table 1. Masses, widths and decay models of the intermediate resonances [25].
When considering the contributions from the
$ \bar{B}^0\rightarrow $ $ [K^-\pi^+]_S[\pi^-\pi^+]_V\rightarrowK^-\pi^+\pi^-\pi^+ $ and$ \bar{B}^0\rightarrow[K^-\pi^+]_{V}[\pi^-\pi^+]_{S}\rightarrow $ $ K^-\pi^+\pi^-\pi^+ $ channels as listed in Eqs. (8) and (9), the total decay amplitude of the$ \bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^- $ decay can be written as (As for the relative strong phase$ \delta $ between these two interference amplitudes, we set$ \delta = 0 $ as in Refs. [5, 30, 31])$ \begin{aligned}[b] \mathcal{M} =&\mathcal{M}(\bar{B}^0\rightarrow [K^-\pi^+]_S[\pi^-\pi^+]_V\rightarrow K^-\pi^+\pi^-\pi^+ )\\&+\mathcal{M}(\bar{B}^0\rightarrow [K^-\pi^+]_{V}[\pi^-\pi^+]_{S}\rightarrow K^-\pi^+\pi^-\pi^+). \end{aligned}$
(10) -
One can use the five variables
$ s_{\pi\pi} $ ,$ s_{K\pi} $ ,$ \phi $ ,$ \theta_\pi $ and$ \theta_K $ to describe the kinematics of the four-body decay$ \bar{B}^0\rightarrow K^-(p_1)\pi^+(p_2)\pi^-(p_3)\pi^+(p_4) $ [26-29], where$ s_{\pi\pi} $ and$ s_{K\pi} $ are the invariant mass squared of the$ \pi\pi $ system and$ K\pi $ system, respectively,$ \phi$ is the angle between the$ \pi\pi $ and$ K\pi $ planes, and$ \theta_\pi $ (or$ \theta_K) $ is the angle of the$ \pi^+ $ (or$ K^- $ ) in the$ \pi\pi $ (or$ K\pi $ ) center-of-mass system with respect to the$ \pi\pi $ (or$ K\pi $ ) line of flight in the$ \bar{B}^0 $ rest frame. Their specific physical ranges can be found in detail in Refs. [12, 26-29].For presentation and calculation, it is more convenient to replace the individual momenta
$ p_1 $ ,$ p_2 $ ,$ p_3 $ ,$ p_4 $ with the following kinematic variables:$ \begin{aligned}[b] & P = p_1+p_2,\quad Q = p_1-p_2,\\& L = p_3+p_4,\quad N = p_3-p_4.\end{aligned} $
(11) Using the above formula, we can get:
$ \begin{aligned}[b] P^2 =& s_{K\pi},\quad Q^2 = 2(p_K^2+p_\pi^2)-s_{K\pi},\quad L^2 = s_{\pi\pi},\\ P\cdot L =& \frac{1}{2}(m_{\bar{B}^0}^2-s_{K\pi}-s_{\pi\pi}),\quad P\cdot N = X\cos\theta_\pi,\\ L\cdot Q =& \sigma(s_{K\pi})X\cos\theta_K,\end{aligned} $
(12) where
$ \sigma(s_{K\pi}) = \sqrt{1-(m_K^2+m_\pi^2)/s_{K\pi}}. $
(13) With the decay amplitude, one can get the decay rate of the four-body decay [32],
$ {\rm d}^5\Gamma = \frac{1}{4(4\pi)^6m_{\bar{B}^0}^3}\sigma(s_{\pi\pi})X(s_{\pi\pi},s_{K\pi})\sum_{\mathrm{spins}}|\mathcal{M}|^2{\rm d}\Omega, $
(14) where
$ \sigma(s_{\pi\pi}) = \sqrt{1-4m_\pi^2/s_{\pi\pi}} $ , and$ \Omega $ represents the phase space with$ {\rm d}\Omega = {\rm d}s_{\pi\pi}{\rm d}s_{K\pi}{\rm dcos}\theta_\pi {\rm dcos}\theta_K{\rm d}\phi $ .The differential CP asymmetry parameter and the localized integrated CP asymmetry take the following forms:
$ \mathcal{A_{CP}} = \frac{|\mathcal{M}|^2-|\bar{\mathcal{M}}|^2}{|\mathcal{M}|^2+|\bar{\mathcal{M}}|^2}, $
(15) and
$ \mathcal{A^\mathrm{\Omega}_{CP}} = \frac{\int {\rm d}\Omega(|\mathcal{M}|^2-|\bar{\mathcal{M}}|^2)}{\int {\rm d}\Omega(|\mathcal{M}|^2+|\bar{\mathcal{M}}|^2)}, $
(16) respectively.
-
When dealing with the scalar mesons, we adopt Scenario 1 in Ref. [17], in which those with masses below or near 1 GeV (
$ \sigma $ ,$ f_0(980) $ ,$ \kappa $ ) and near 1.5$ \mathrm{GeV} $ ($ K^*_0(1430) $ ) are suggested as the lowest-lying$ q\bar{q} $ states and the first excited state, respectively. For the decay constants of the$ f_{0j} $ mesons, we consider the$ f_0(500)-f_0(980) $ mixing with the mixing angle$ |\varphi_m| = 17^0 $ (see Appendix A for details). For the decay constants and Gegenbauer moments of the$ \bar{K}^*(1410)^0 $ and the$ \bar{K}^*(1680)^0 $ mesons, we assume they have the same central values as that of$ \bar{K}^*(892)^0 $ and assign their uncertainties to be$ \pm0.1 $ [33]. With the QCDF approach, we have obtained the amplitudes of the two-body decays$ \bar{B}^0\rightarrow SV $ and$ \bar{B}^0\rightarrow VS $ , which are listed in Eqs. (5)-(7). Generally, the end-point divergence parameter$ \rho_A $ is constrained in the range$ [0,1] $ and$ \phi_A $ is treated as a free strong phase. The experimental data for B two-body decays can provide important information to restrict the ranges of these two parameters. In fact, compared with the$ B\rightarrow PV/VP/PP $ decays, there is much less experimental data for the$ B \rightarrow VS/PS $ and$ B\rightarrow SV/SP $ decays, so the values of$ \rho_A $ and$ \phi_A $ for these decays are not well-determined. Therefore, we adopt$ \rho_{A,H}<0.5 $ and$ 0\leqslant\phi_{A,H}\leqslant 2\pi $ , as in Refs. [17, 24]. With more experimental data, both of these could be defined in small regions in the future.Substituting Eqs. (5)-(7) into Eq. (15), we obtain the
$ CP $ -violating asymmetries of the two-body decays$ \bar{B}^0\rightarrow SV $ and$ \bar{B}^0\rightarrow VS $ with the parameters given in Table 1 and Appendix F, which are listed in Table 2. From Table 2, one can see our theoretical results for the$ CP $ asymmetries of$ \bar{B}^0\rightarrow \bar{K}^*(892)^0 f_0(980) $ and$ \bar{B}^0\rightarrow $ $ \bar{K}^*_0(1430)^0 $ $ \omega $ are consistent with the data from the BaBar collaboration. However, the predicted central values of the$ CP $ asymmetries of$ \bar{B}^0\rightarrow \bar{K}^*_0(1430)^0 \rho $ and$ \bar{B}^0\rightarrow $ $ \bar{K}^*_0(1430)^0\omega $ are larger than those in Ref. [18]. The main difference between our work and Ref. [18] is the structure of the$ \bar{K}^*_0(1430)^0 $ meson, which is explored in S1 in our work and S2 in Ref. [18]. Furthermore, we predict the$ CP $ asymmetries of some other decay channels. We find the signs of the$ CP $ asymmetries are negative in$ \bar{B}^0\rightarrow \bar{\kappa}\rho $ ,$ \bar{B}^0\rightarrow \bar{K}^*(1410)^0 f_0(980) $ and$ \bar{B}^0\rightarrow $ $ \bar{K}^*(1680)^0 f_0(980) $ decays, with the first of these being one order of magnitude larger than the other two. For the positive values of the$ CP $ asymmetries in our work, those for the$ \bar{B}^0\rightarrow\bar{\kappa}\omega $ and$ \bar{B}^0\rightarrow\bar{K}^*(892)^0\sigma $ decays are also one order of magnitude larger than the others. We have also calculated the branching fractions of the two-body decays$ \bar{B}^0\rightarrow SV $ and$ \bar{B}^0\rightarrow VS $ which are listed in Table 3. Our results are consistent with the available experimental data for the$ \bar{B}^0\rightarrow \bar{K}^*(892)^0f_0(980) $ ,$ \bar{B}^0\rightarrow $ $ \bar{K}^*_0(1430)^0\rho $ and$ \bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega $ decays. Meanwhile, we find the magnitudes of the branching fractions are of order$ 10^{-5} $ for$ \bar{B}^0\rightarrow\bar{K}^*(892)^0f_0(980) $ ,$ \bar{B}^0\rightarrow\bar{K}^*(1410)^0\sigma $ and$ \bar{B}^0\rightarrow $ $ \bar{K}^*(1410)^0f_0(980) $ , but of order$ 10^{-6} $ for$ \bar{B}^0\rightarrow\bar{\kappa}\rho $ ,$ \bar{B}^0\rightarrow\bar{\kappa}\omega $ ,$ \bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\rho $ and$ \bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega $ . We note that the predicted branching fraction of$ \bar{B}^0\rightarrow\bar{K}^*(892)^0 $ $ \sigma $ is the smallest, of the order of$ 10^{-7} $ .Decay mode BaBar PDG [25] [18] This work $\bar{\kappa}$ $\rho$ − − − $-10.66\pm3.14$ $\bar{\kappa}$ $\omega$ − − − $17.43\pm6.53$ $\bar{K}^*(892)^0$ $\sigma$ − − − $25.57\pm10.42$ $\bar{K}^*(892)^0$ $f_0(980)$ $7\pm10\pm2$ $7\pm10$ − $9.31\pm1.04$ $\bar{K}^*(1410)^0$ $\sigma$ − − − $0.43\pm0.13$ $\bar{K}^*(1410)^0$ $f_0(980)$ − − − $-2.01\pm0.19$ $\bar{K}^*_0(1430)^0$ $\rho$ − − $0.54^{+0.45+0.02+3.76}_{-0.46-0.02-1.80}$ $6.03\pm0.97$ $\bar{K}^*_0(1430)^0$ $\omega$ $-7\pm9\pm2$ − $0.03^{+0.37+0.01+0.29}_{-0.35-0.01-3.00}$ $-9.53\pm3.88$ $\bar{K}^*(1680)^0$ $\sigma$ − − − $3.03\pm0.77$ $\bar{K}^*(1680)^0$ $f_0(980)$ − − − $-2.76\pm0.20$ Table 2. Direct
$ CP $ violations (in units of$ 10^{-2} $ ) of the two-body decays$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} $ . The experimental branching fractions are taken from Ref. [34]. The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters.For different intermediate resonance states, we use different models to deal with their dynamical functions. These are listed in detail in Table 1 and Appendix D;
$ \sigma $ ,$ \rho^0(770) $ ,$ f_0(980) $ and$ \bar{K}^*_0(1430) $ are modeled with the Bugg model [37], Gounaris-Sakurai function [38], Flatté formalism [39] and LASS lineshape [40-42], respectively, while the others are described by the relativistic Breit-Wigner function [43]. Inserting Eqs. (A1)-(A3) into Eqs. (16) and (14), we can directly obtain the$ CP $ asymmetries and branching fractions of all the individual four-body decay channels$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow $ $ K^-\pi^+\pi^+\pi^- $ by integrating the phase space of Eq. (14), both of which are summarized in Table 4. From this table, we can conclude that the ranges of these$ CP $ asymmetries and branching fractions are about$ [-7.03, $ $ 24.33]\times10^{-2} $ and$ [0.11, 27.3]\times $ $ 10^{-6} $ , respectively. Considering the contributions from all the four-body decays listed in Table 4, we can obtain the localized integrated CP asymmetries and branching fractions of the$ \bar{B}^0\rightarrow $ $ K^-\pi^+\pi^+\pi^- $ decay by integrating the phase space. Our results are in the ranges$ \mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-) = [-0.365, $ $ 0.447] $ and$ \mathcal{B}(\bar{B}^0\rightarrow $ $ K^-\pi^+\pi^+\pi^-) = $ $ [6.11,185.32]\times10^{-8} $ when the invariant masses of$ K^-\pi^+ $ and$ \pi^-\pi^+ $ are in the ranges$ 0.35<m_{K^-\pi^+}<2.04 \, \mathrm{GeV} $ and$ 0<m_{\pi^-\pi^+}<1.06\; \mathrm{GeV} $ , where the$ K\pi $ channel is dominated by the$ \kappa $ ,$ \bar{K}^*(892)^0 $ ,$ \bar{K}^*(1410)^0 $ ,$ \bar{K}^*_0(1430) $ and$ \bar{K}^*(1680)^0 $ resonances, the$ \pi\pi $ channel is dominated by the$ \sigma $ ,$ \rho^0(770) $ ,$ \omega(782) $ and$ f_0(980) $ resonances, and the ranges of$ \rho_A $ and$ \phi_A $ are taken as$ [0,0.5] $ and$ [0,2\pi] $ , respectively. Both of them are expected to be tested experimentally in the near future.Decay mode BaBar Belle LHCb [24] PDG [25] QCDF [18] pQCD [35, 36] This work $\bar{\kappa}$ $\rho$ − − − − − − $1.35\pm0.47$ $\bar{\kappa}$ $\omega$ − − − − − − $3.87\pm1.65$ $\bar{K}^*(892)^0$ $\sigma$ − − − − − − $0.11\pm0.04$ $\bar{K}^*(892)^0$ $f_0(980)$ $11.4\pm1.4$ $<4.4$ − $7.8^{+4.2}_{-3.6}$ $9.1^{+1.0+1.0+5.3}_{-0.4-0.5-0.7}$ $11.2\sim13.7$ $9.48\pm2.88$ $\bar{K}^*(1410)^0$ $\sigma$ − − − − − − $25.41\pm9.13$ $\bar{K}^*(1410)^0$ $f_0(980)$ − − − − − − $14.39\pm4.22$ $\bar{K}^*_0(1430)^0$ $\rho$ $27\pm4\pm2\pm3$ − $10.0^{+2.4+0.5+12.1}_{-2.0-0.4-3.1}$ $27.0\pm6.0$ $4.1^{+1.1+0.2+2.6}_{-1.0-0.2-0.1}$ $4.8^{+1.1+1.0+0.3}_{-0.0-1.0-0.3}$ $8.13\pm2.03$ $\bar{K}^*_0(1430)^0$ $\omega$ $6.4^{+1.4+0.3+4.0}_{-1.2-0.2-0.9}$ − − $16.0\pm3.4$ $9.3^{+2.7+0.3+3.9}_{-2.2-0.3-1.3}$ $9.3^{+2.1+3.6+1.2}_{-2.0-2.9-1.0}$ $5.02\pm1.06$ $\bar{K}^*(1680)^0$ $\sigma$ − − − − − − $27.64\pm8.59$ $\bar{K}^*(1680)^0$ $f_0(980)$ − − − − − − $21.76\pm8.33$ Table 3. Branching fractions (in units of
$ 10^{-6} $ ) of the two-body decays$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} $ . We have used$ \mathcal{B}(f_0(980)\rightarrow \pi^+\pi^-) = $ $ 0.5 $ to obtain the experimental branching fractions for$ f_0(980)V $ . The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters.Decay mode CP asymmetries Branching fractions $\bar{\kappa}$ $\rho$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $-10.03\pm5.01$ $1.46\pm0.51$ $\bar{\kappa}$ $\omega$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $18.34\pm5.17$ $4.10\pm0.63$ $\bar{K}^*(892)^0$ $\sigma$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $24.33\pm9.01$ $0.11\pm0.05$ $\bar{K}^*(892)^0$ $f_0(980)$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $-3.85\pm1.01$ $9.22\pm4.15$ $\bar{K}^*(1410)^0$ $\sigma$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $0.41\pm0.53$ $21.18\pm6.32$ $\bar{K}^*(1410)^0$ $f_0(980)$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $-2.38\pm0.49$ $16.01\pm4.04$ $\bar{K}^*_0(1430)^0$ $\rho$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $-7.03\pm2.47$ $2.03\pm0.41$ $\bar{K}^*_0(1430)^0$ $\omega$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $10.39\pm3.42$ $2.55\pm0.87$ $\bar{K}^*(1680)^0$ $\sigma$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $8.05\pm3.01$ $27.30\pm7.05$ $\bar{K}^*(1680)^0$ $f_0(980)$ $(\rightarrow K^-\pi^+\pi^+\pi^-)$ $-5.03\pm0.62$ $19.89\pm4.01$ Table 4. Direct CP violations (in units of
$ 10^{-2} $ ) and branching fractions (in units of$ 10^{-6} $ ) of the four-body decays$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- $ . The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters. -
Considering the related weak and strong decays, one can obtain the four-body decay amplitudes of the
$ \bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- $ channels as follows:$\tag{A1} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\rho\rightarrow K^-\pi^+\pi^+\pi^- ) =& \frac{{\rm i}G_Fg_{\bar{K}^{*0}_{0i}K\pi}g_{\rho\pi\pi}}{S_{\bar{K}^{*0}_{0i}}S_\rho }\bigg[(P\cdot N)+(L\cdot N)+\frac{1}{m_{\rho}^2}(L\cdot P+L^2)(L\cdot N)\bigg]\\ &\times\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\rho) +\frac{3}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\rho)\bigg] f_\rho m_{\bar{B}^0}p_cF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\rho}^2)\\& +\bigg[\alpha_4^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{2}\alpha_{4,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_cA_0^{\bar{B}^0\rho}(m_{\bar{K}^{*0}_{0i}}^2)\\& +\bigg[\frac{1}{2}b_3^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{4}b_{3,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] \frac{f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c}{m_\rho}\bigg\},\end{aligned} $ $\tag{A2} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\omega\rightarrow K^-\pi^+\pi^+\pi^- ) =& \frac{{\rm i}G_Fg_{\bar{K}^{*0}_{0i}K\pi}g_{\omega\pi\pi}}{S_{\bar{K}^{*0}_{0i}}S_\omega}\bigg[(P\cdot N)+(L\cdot N)+\frac{1}{m_{\omega}^2}(L\cdot P+L^2)(L\cdot N)\bigg]\\& \times\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\omega)+2\alpha_3^p(\bar{K}^{*0}_{0i}\omega) +\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\omega)\bigg]\\& \times f_\omega m_{\bar{B}^0}p_cF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\omega}^2) +\bigg[\frac{1}{2}\alpha_{4,EW}^p(\omega\bar{K}^{*0}_{0i})-\alpha_4^p(\omega\bar{K}^{*0}_{0i})\bigg]\bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c\\& \times A_0^{\bar{B}^0\omega}(m_{\bar{K}^{*0}_{0i}}^2) +\bigg[\frac{1}{4}b_{3,EW}^p(\omega\bar{K}^{*0}_{0i})-\frac{1}{2}b_3^p(\omega\bar{K}^{*0}_{0i})\bigg] \frac{f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c}{m_\omega}\bigg\},\end{aligned} $
and
$\tag{A3} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_if_{0j}\rightarrow K^-\pi^+\pi^+\pi^-) = &-\frac{{\rm i}G_Fg_{\bar{K}^{*0}_iK\pi}g_{f_{0j}\pi\pi}}{S_{\bar{K}^{*0}_i}S_{f_{0j}}} \bigg[-(P\cdot Q)-(L\cdot Q)+\frac{1}{{m_{\bar{K}^{*0}_i}}^2}(P^2+P\cdot L)(P\cdot Q)]\bigg]\\&\times \sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_if_{0j})+2\alpha_3^p(\bar{K}^{*0}_if_{0j}) +\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg]\\& \times \bar{f}_{f_{0j}^n} m_{\bar{B}^0}p_cA_0^{\bar{B}^0 \bar{K}^{*0}_i}(m_{f_{0j}}^2)+\bigg[\sqrt{2}\alpha_3^p(\bar{K}^{*0}_if_{0j})+\sqrt{2}\alpha_4^p(\bar{K}^{*0}_if_{0j})\\ &-\frac{1}{\sqrt{2}}\alpha_{3,EW}^p(\bar{K}^{*0}_i\sigma)-\frac{1}{\sqrt{2}}\alpha_{4,EW}^p(\bar{K}^{*0}_i\sigma)\bigg]\bar{f}_{\sigma^s} m_{\bar{B}^0}p_cA_0^{\bar{B}^0\bar{K}^{*0}_i}(m_{f_{0j}}^2)\\& +\bigg[\frac{1}{2}\alpha_{4,EW}^p(f_{0j}\bar{K}^{*0}_i)-\alpha_4^p(f_{0j}\bar{K}^{*0}_i)\bigg]f_{\bar{K}^{*0}_i}m_{\bar{B}^0}p_c F_1^{\bar{B}^0f_{0j}}(m_{\bar{K}^{*0}_i}^2)\\& +\bigg[\frac{1}{\sqrt{2}}b_3^p(\bar{K}^{*0}_if_{0j})-\frac{1}{2\sqrt{2}}b_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg] \frac{f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^s m_{\bar{B}^0}p_c}{m_{\bar{K}^{*0}_i}}\\& +\bigg[\frac{1}{2}b_3^p(f_{0j}\bar{K}^{*0}_i)-\frac{1}{4}b_{3,EW}^p(f_{0j}\bar{K}^{*0}_i)\bigg]\frac{f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^nm_{\bar{B}^0}p_c}{m_{\bar{K}^{*0}_i}}\bigg\}.\end{aligned} $
-
We adopt the Bugg model [37] to parameterize the
$ \sigma $ resonance:$\tag{B1} T_R(m_{\pi\pi}) = 1/[M^2-s_{\pi\pi}-g_1^2(s_{\pi\pi})\frac{s_{\pi\pi}-s_A}{M^2-s_A}z(s_{\pi\pi})-{\rm i}M\Gamma_{\mathrm{tot}}(s_{\pi\pi})], $
where
$ z(s_{\pi\pi}) = j_1(s_{\pi\pi})-j_1(M^2) $ with$j_1(s_{\pi\pi}) = \dfrac{1}{\pi}\bigg[2+ \rho_1 \times $ $ \ln\bigg(\dfrac{1-\rho_1}{1+\rho_1}\bigg)\bigg]$ ,$ \Gamma_{\mathrm{tot}}(s_{\pi\pi}) = \displaystyle\sum\limits _{i = 1}^4 \Gamma_i(s_{\pi\pi}) $ with:$\tag{B2} \begin{aligned}[b] M\Gamma_1(s_{\pi\pi}) =& g_1^2(s_{\pi\pi})\frac{s_{\pi\pi}-s_A}{M^2-s_A}\rho_1(s_{\pi\pi}),\\ M\Gamma_2(s_{\pi\pi}) =& 0.6g_1^2(s_{\pi\pi})(s_{\pi\pi}/M^2)\mathrm{exp}(-\alpha|s_{\pi\pi}-4m_K^2|)\rho_2(s_{\pi\pi}),\\ M\Gamma_3(s_{\pi\pi}) =& 0.2g_1^2(s_{\pi\pi})(s_{\pi\pi}/M^2)\mathrm{exp}(-\alpha|s_{\pi\pi}-4m_\eta^2|)\rho_3(s_{\pi\pi}),\\ M\Gamma_4(s_{\pi\pi}) =& Mg_4\rho_{4\pi}(s_{\pi\pi})/\rho_{4\pi}(M^2), \end{aligned}$
and:
$\tag{B3} \begin{aligned}[b] g_1^2(s_{\pi\pi}) =& M(b_1+b_2s)\mathrm{exp}[-(s_{\pi\pi}-M^2)/A],\\ \rho_{4\pi}(s_{\pi\pi}) =& 1.0/[1+\mathrm{exp}(7.082-2.845s_{\pi\pi})].\end{aligned}$
In the above two formulas, the relevant parameters are specifically fixed as
$ M = 0.953\;\mathrm{GeV} $ ,$ g_{4\pi} = 0.011\; \mathrm{GeV} $ ,$ s_A = 0.14m_\pi^2 $ ,$ A = 2.426\; \mathrm{GeV}^2 $ ,$ b_1 = 1.302 \;\mathrm{GeV}^2 $ , and$ b^2 = 0.340 $ in Ref. [37]. The phase-space factor parameters$ \rho_1 $ ,$ \rho_2 $ and$ \rho_3 $ have the following forms:$ \tag{B4} \rho_i(s_{\pi\pi}) = \sqrt{1-4\frac{m_i^2}{s_{\pi\pi}}}, $
with
$ m_1 = m_\pi $ ,$ m_2 = m_K $ and$ m_3 = m_\eta $ . -
In the framework of the Gounaris-Sakurai model, which includes an analytic dispersive term, the propagator of the
$ \rho^0(770) $ resonance can be expressed as [38]$ \tag{B5} T_R(m_{\pi\pi}) = \frac{1+D\Gamma_0/m_0}{m_0^2-s_{\pi\pi}+f(m_{\pi\pi})-{\rm i}m_0\Gamma(m_{\pi\pi})}, $
where
$ m_0 $ and$ \Gamma_0 $ are the the mass and decay width of the$ \rho^0(770) $ meson, respectively, and$ f(m_{\pi\pi}) $ is given by$ \tag{B6} f(m_{\pi\pi}) = \Gamma_0\frac{m_0^2}{q_0^3}\left[q^2\left[h(m_{\pi\pi})-h(m_0)\right]+(m_0^2-m_{\pi\pi}^2)q^2_0\frac{\mathrm{d}h}{\mathrm{d}m_{\pi\pi}^2}\bigg|_{m_0}\right], $
where
$ q_0 $ is the value of$ q = |\vec{q}| $ when the mass of the$ \pi\pi $ pair satisfies$ m_{\pi\pi} = m_{\rho^0(770)} $ , with:$ \tag{B7} h(m_{\pi\pi}) = \frac{2}{\pi}\frac{q}{m_{\pi\pi}}\log\bigg(\frac{m_{\pi\pi}+2q}{2m_\pi}\bigg),$
$\tag{B8} \frac{\mathrm{\rm d}h}{\mathrm{\rm d}m_{\pi\pi}^2}\bigg|_{m_0} = h(m_0)\left[(8q_0^2)^{-1}-(2m_0^2)^{-1}\right]+(2\pi m_0^2)^{-1}. $
In Eq. (B5), the concrete form of the constant parameter D is
$ \tag{B9} D = \frac{3}{\pi}\frac{m_\pi^2}{q_0^2}\log\bigg(\frac{m_0+2q_0}{2m_\pi}\bigg)+\frac{m_0}{2\pi q_0}-\frac{m_\pi^2 m_0}{\pi q_0^3}. $
-
In Refs. [39, 44], when studying the
$ f_0(980) $ resonance, we can use the Flatté model to deal with it, which has the following form:$\tag{B10} T_R(m_{\pi\pi}) = \frac{1}{m_R^2-s_{\pi\pi}-{\rm i}m_R(g_{\pi\pi}\rho_{\pi\pi}+g_{KK}F_{KK}^2\rho_{KK})}, $
where
$ m_R $ is the mass of the$ f_0(980) $ meson, and$ g_{\pi\pi} $ (or$ g_{KK} $ )is the coupling constant of the$ f_0(980) $ resonance decay to a$ \pi^+\pi^- $ (or$ K^+K^- $ ) pair. Within the Lorentz-invariant phase space, the phase-space$ \rho $ factors are given by:$\tag{B11} \begin{aligned}[b] \rho_{\pi\pi} =& \frac{2}{3}\sqrt{1-\frac{4m_{\pi^\pm}^2}{s_{\pi\pi}}}+\frac{1}{3}\sqrt{1-\frac{4m_{\pi^0}^2}{s_{\pi\pi}}},\\ \rho_{KK} =& \frac{1}{2}\sqrt{1-\frac{4m_{K^\pm}^2}{s_{\pi\pi}}}+\frac{1}{2}\sqrt{1-\frac{4m_{K^0}^2}{s_{\pi\pi}}}.\end{aligned} $
Compared to the normal Flatté function, a form factor
$ F_{KK} = \mathrm{exp}(-\alpha k^2) $ in Eq. (B10) is introduced above the$ KK $ threshold and serves to reduce the$ \rho_{KK} $ factor as$ s_{\pi\pi} $ increases, where k is the momentum of each kaon in the$ KK $ rest frame, and$ \alpha = (2.0\pm0.25)\;\mathrm{GeV}^{-2} $ [44]. This parametrization slightly decreases the$ f_0(980) $ width above the$ KK $ threshold. The parameter$ \alpha $ is fixed to be$ 2.0 \;\mathrm{GeV}^{-2} $ , which is not very sensitive to the fit. -
Generally, the LASS model can describe the low mass of the
$ K^+\pi^- $ resonance. It has been used widely in theories and experiments [40-42], and has been written as$ \tag{B12} \begin{aligned}[b] T(m_{K\pi}) =& \frac{m_{K\pi}}{|\vec{q}|\cot\delta_B-{\rm i}|\vec{q}|}\\&+{\rm e}^{2{\rm i}\delta_B}\dfrac{m_0\Gamma_0\frac{m_0}{|q_0|}}{m_0^2-s_{K\pi}^2-{\rm i}m_0\Gamma_0\dfrac{|\vec{q}|}{m_{K\pi}}\dfrac{m_0}{|q_0|}},\end{aligned}$
where
$ m_0 $ and$ \Gamma_0 $ are the mass and width of the$ K_0^*(1430) $ state, respectively,$ |\vec{q_0}| $ is the value of$ |\vec{q}| $ when$ m_{K\pi} = m_{K_0^*(1430)} $ ,$ |\vec{q}| $ is the momentum vector of the resonance decay product measured in the resonance rest frame, and$ \cot\delta_B $ has two terms,$ \cot\delta_B = \dfrac{1}{a|\vec{q}|}+\dfrac{1}{2}r|\vec{q}| $ , with$ a = (3.1\pm1.0)\,\mathrm{GeV}^{-1} $ and$ r = (7.0\pm2.3)\,\mathrm{GeV}^{-1} $ being the scattering length and effective range [42], respectively. -
We adopt the relativistic Breit-Wigner function to describe the distributions of the
$ \bar{K}^*_0(700)^0 $ ,$ \bar{K}^*(892)^0 $ ,$ \bar{K}^*(1410)^0 $ and$ \bar{K}^*(1680)^0 $ resonances [43],$\tag{B13} T_R(m_{K\pi}) = \frac{1}{M_R^2-s_{K\pi}-{\rm i}M_R\Gamma_{K\pi}} \quad\quad\quad(R = \bar{\kappa},\bar{K}^*), $
with
$\tag{B14} \Gamma_{K\pi} = \Gamma_0^R\bigg(\frac{p_{K\pi}}{p_R}\bigg)^{2J+1}\bigg(\frac{M_R}{m_{K\pi}}\bigg)F^2_R, $
where
$ M_R $ and$ \Gamma_0^R $ are the mass and width, respectively,$ m_{K\pi} $ is the invariant mass of the$ K\pi $ pair,$ p_{K\pi}(p_R) $ is the momentum of either daughter in the$ K\pi $ (or R) rest frame, and$ F_R $ is the Blatt-Weisskopf centrifugal barrier factor [45], which is listed in Table B1 and depends on a single parameter$ R_r $ , which can be taken as$ R_r = 1.5\;\mathrm{GeV}^{-1} $ [46].Spin $ F_R $ 0 1 1 $\dfrac{\sqrt{1+(R_r p_R)^2} }{\sqrt{1+(R_r p_{AB})^2} }$ Table B1. Summary of the Blatt-Weisskopf penetration form factors.
-
Analogous to the
$ \eta-\eta' $ mixing, using a$ 2 \times 2 $ rotation matrix, the$ f_0(500)-f_0(980) $ mixing can be parameterized as$\tag{C1} \left( \begin{array}{cc} f_0(980)\\ f_0(500)\\ \end{array} \right) = \left( \begin{array}{cc} \cos\varphi_m& \sin\varphi_m \\ -\sin\varphi_m& \cos\varphi_m \end{array} \right ) \left( \begin{array}{cc} f_s\\ f_q\\ \end{array} \right ), $
where
$ f_s\equiv s\bar{s} $ and$ f_q\equiv \dfrac{u\bar{u}+d\bar{d}}{\sqrt{2}} $ , and$ \varphi_m $ is the mixing angle, which has been summarized in Refs. [18, 47]. However, based on the measurement by the LHCb collaboration, the range of$ \varphi_m $ is$ |\varphi_m|<31^0 $ [48]. In our calculation, we adopt$ |\varphi_m| = 17^0 $ [18]. -
The predictions obtained in the QCDF approach depend on many input parameters. The values of the Wolfenstein parameters are taken from Ref. [49]:
$ \bar{\rho} = 0.117\pm0.021 $ ,$ \bar{\eta} = 0.353\pm0.013 $ .For the masses used in the
$ \bar{B}^0 $ decays, we use the following values, except for those listed in Table 1 (in$ \mathrm{GeV} $ ) [49]:$\tag{D1} \begin{aligned}[b]& m_u = m_d = 0.0035,\quad m_s = 0.119, \quad m_b = 4.2,\\& m_{\pi^\pm} = 0.14,\quad m_{K^-} = 0.494,\quad m_{\bar{B}^0} = 5.28,\end{aligned} $
while for the widths we shall use (in units of
$ \mathrm{GeV} $ ) [49]:$\tag{D2} \begin{aligned}[b]& \Gamma_{\rho\rightarrow\pi\pi} = 0.149,\quad\Gamma_{\omega\rightarrow\pi\pi} = 0.00013,\quad\Gamma_{\sigma\rightarrow\pi\pi} = 0.3,\\& \Gamma_{f_0(980)\rightarrow \pi\pi} = 0.33,\quad \Gamma_{\bar{K}^*(892)^0\rightarrow K\pi} = 0.0487,\\&\Gamma_{\bar{K}^*(1410)^0\rightarrow K\pi} = 0.015,\quad \Gamma_{\bar{K}^*(1680)^0\rightarrow K\pi} = 0.10,\\& \Gamma_{K^*_0(1430)\rightarrow K\pi} = 0.251.\end{aligned} $
The Wilson coefficients used in our calculations are taken from Refs. [50-53]:
$ \tag{D3}\begin{aligned}[b]&c_1 = -0.3125, \quad c_2 = 1.1502, \quad c_3 = 0.0174,\\& c_4 = -0.0373,\quad c_5 = 0.0104,\quad c_6 = -0.0459,\\& c_7 = -1.050\times10^{-5},\quad c_8 = 3.839\times10^{-4}, \\& c_9 = -0.0101,\quad c_{10} = 1.959\times10^{-3}. \end{aligned} $
The following relevant decay constants (in
$ \mathrm{GeV} $ ) are used [17, 54, 55]:$\tag{D4} \begin{aligned}[b]& f_{\pi^\pm} = 0.131,\quad f_{\bar{B}^0} = 0.21\pm0.02, \quad f_{K^-} = 0.156\pm0.007, \\& \bar{f}^s_{\sigma} = -0.21\pm0.093,\quad \bar{f}_{\sigma}^u = 0.4829\pm0.076,\\& \bar{f}_{\bar{\kappa}} = 0.34\pm0.02,\quad f_{\rho} = 0.216\pm0.003,\\& f_{\rho}^\perp = 0.165\pm0.009,\quad f_{\omega} = 0.187\pm0.005,\\& f_{\omega}^\perp = 0.151\pm0.009,\quad f_{\bar{K}^*(892)^0} = 0.22\pm0.005,\\&f_{\bar{K}^*(892)^0}^\perp = 0.185\pm0.010,\quad \bar{f}_{\bar{K}^*_0(1430)^0} = -0.300\pm0.030. \\& \bar{f}^s_{f_0(980)} = 0.325\pm0.016,\quad \bar{f}_{f_0(980)}^u = 0.1013\pm0.005.\end{aligned} $
As for the form factors, we use [17, 33, 55, 56]:
$\tag{D5} \begin{aligned}[b]& F_0^{\bar{B}^0\rightarrow K}(0) = 0.35\pm0.04,\quad F_0^{\bar{B}^0\rightarrow \sigma}(0) = 0.45\pm0.15,\quad F^{\bar{B}^0\rightarrow\kappa}(0) = 0.3\pm0.1,\\ &A_0^{\bar{B}^0\rightarrow \bar{K}^*(892)^0}(0) = 0.374\pm0.034, \quad F_0^{\bar{B}^0\rightarrow \pi}(0) = 0.25\pm0.03, \quad F_0^{\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0}(0) = 0.21,\\& A_0^{\bar{B}^0\rightarrow \bar{K}^*(1410)^0}(0) = 0.26\pm0.0275, \quad A_0^{\bar{B}^0\rightarrow \bar{K}^*(1680)^0}(0) = 0.2154\pm0.0281 \quad A_0^{\bar{B}^0\rightarrow \rho}(0) = 0.303\pm0.029,\end{aligned} $
The values of the Gegenbauer moments at
$ \mu = 1\; \mathrm{GeV} $ are taken from [17, 54, 55]:$ \tag{D6}\begin{aligned}[b]& \alpha_1^\rho = 0,\quad \alpha_2^\rho = 0.15\pm0.07, \quad \alpha_{1,\perp}^\rho = 0,\quad \alpha_{2,\perp}^\rho = 0.14\pm0.06, \quad \alpha_1^\omega = 0,\quad \alpha_2^\omega = 0.15\pm0.07, \quad \alpha_{1,\perp}^\omega = 0,\quad \alpha_{2,\perp}^\omega = 0.14\pm0.06, \\& \alpha_1^{\bar{K}^*(892)^0} = 0.03\pm0.02,\quad \alpha_{1,\perp}^{\bar{K}^*(892)^0} = 0.04\pm0.03,\quad \alpha_2^{\bar{K}^*(892)^0} = 0.11\pm0.09,\quad \alpha_{2,\perp}^{\bar{K}^*(892)^0} = 0.10\pm0.08,\\& B_{1,\sigma}^u = -0.42\pm0.074,\quad B_{3,\sigma}^u = -0.58\pm0.23,\quad B_{1,\sigma}^s = -0.35\pm0.061,\quad B_{3,\sigma}^s = -0.43\pm0.18,\\& B_{1,f_0(980)}^u = -0.92\pm0.08,\quad B_{3,f_0(980)}^u = -0.74\pm0.064,\quad B_{1,f_0(980)}^s = -1\pm0.05,\quad B_{3,f_0(980)}^s = -0.8\pm0.04,\\& B_{1,\bar{\kappa}} = -0.92\pm0.11,\quad B_{3,\bar{\kappa}} = 0.15\pm0.09,\quad B_{1,\bar{K}^*_0(1430)^0} = 0.58\pm0.07,\quad B_{3,\bar{K}^*_0(1430)^0} = -1.20\pm0.08.\end{aligned} $
Phenomenological studies on ${{\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^-}}$ decay
- Received Date: 2021-01-16
- Available Online: 2021-05-15
Abstract: Within the quasi-two-body decay model, we study the localized CP violation and branching fraction of the four-body decay