-
According to the suggestion proposed in [29], that the source of thermodynamic system is also that of gravity, the radial component of the stress-energy tensor can act as the thermodynamic pressure,
$ P = T^{r}_{\; r}|_{r_{+}} $ , then at the horizon of Schwarzschild black hole the radial Einstein equation can be written as$ P = \frac{T}{2r_{+}}-\frac{1}{8\pi r^2_{+}}, $
(1) which can be rewritten as a horizon first law after a imaginary displacement of the horizon,
$ \delta E = T\delta S-P\delta V $ , with E as the quasilocal energy and S as the horizon entropy of the black hole [26]. As the temperature T in the Eq. (1) is identified from the thermal quantum field theory, independent of any gravitational field equations [27], while the pressure P in (1), according to the conjecture proposed in [29], is identified as the radial component of the matter stress-energy, it is reasonable to assume that the radial field equation of a gravitational theory under consideration takes the form [27]$ P = D(r_+)+C(r_+)T, $
(2) where C and D are analytic functions of the radius of the black hole,
$ r_+ $ ; in general, they depend on the gravitational theory under consideration. Varying the Eq. (1) and multiplying the geometric volume$ V(r_+) $ , it is straightforward to have a new horizon first law [27]$ \delta G = -S\delta T+V\delta P, $
(3) with the Gibbs free energy as
$ \begin{split} G& = \int^{r_+} V(r)D'(r)\,{\rm d}r+T\int^{r_+} V(r)C'(r){\rm d}r \\ & = PV-ST-\int^{r_+} V'(r)D(r){\rm d}r, \end{split}$
(4) and the entropy as [27]
$ S = \int^{r_+} V'(r)C(r){\rm d}r. $
(5) Under the degenerate Legendre transformation
$ E = G+TS-PV $ , yields the energy as [28]$ E = -\int^{r_+} V'(r)D(r){\rm d}r. $
(6) This procedure was first discussed in Einstein's gravity and Lovelock's gravity, which only give rise to a second-order field equation [27]. It was generalized to
$ f(R) $ gravity with a static spherically symmetric black hole [28] or with a general spherically symmetric black hole [30] and was also applied to the D-dimensional$ f(R) $ theory [31].In the next section, we will investigate whether this procedure can be applied to more complicated cases, such as
$ f(R,R^{\mu\nu}R_{\mu\nu}) $ theory, and whether Eqs. (5) and (6) can still be used to obtain the entropy and the energy in the theory we consider. -
As shown in section 2, the new horizon first law works well in Einstein's theory, Lovelock gravity [27], and
$ f(R) $ theory [28, 30, 31]. Does it still works in other gravitational theories such as$ f(R, R^{\mu\nu}R_{\mu\nu}) $ theory? We consider this question in this section. In four-dimensional spacetime, the general action of$ f(R, R^{\mu\nu}R_{\mu\nu}) $ theory with source is given by$ I = \int {\rm d}^4 x\sqrt{-g}\left[\frac{f(R,R^{\mu\nu}R_{\mu\nu})}{16\pi}+L_m\right], $
(7) where
$ L_{\rm m} $ is the matter Lagrangian and$ f(R, R^{\mu\nu}R_{\mu\nu}) $ is a general function of the Ricci scalar R and the square of the Ricci tensor$ R_{\mu\nu} $ . We take the units$ G = c = \hbar = 1 $ . Varying the action (7) with respect to metric$ g_{\mu\nu} $ yields the gravitational field equations as$ G_{\mu\nu}\equiv R_{\mu\nu}-\frac{1}{2}Rg{_{\mu\nu}} = 8\pi\left[\frac{T_{\mu\nu}}{f_{R}}+\frac{1}{8\pi}\Omega_{\mu\nu}\right], $
(8) where
$ f_{R}\equiv\dfrac{\partial f}{\partial R} $ and$ T_{\mu\nu} = \dfrac{2}{\sqrt{-g}}\dfrac{\delta L_{m}}{\delta g^{\mu\nu}} $ is the energy-momentum tensor of matter.$ \Omega_{\mu\nu} $ is the tress-energy tensor of the effective curvature fluid and is given by$\begin{split} \Omega_{\mu\nu} =& \frac{1}{f_{R}}\left[\frac{1}{2}g_{\mu\nu}(f-Rf_{R})+\nabla_{\mu}\nabla_{\nu}f_{R}-g_{\mu\nu} \Box f_{R}-2f_{X}R^{^{\alpha}}_{\mu}R_{\alpha\nu}\right.\\&\left.-\Box(f_{X}R_{\mu\nu})-g_{\mu\nu}\nabla_{\alpha}\nabla_{\beta}(f_{X}R^{\alpha\beta}) +2\nabla_{\alpha}\nabla_{(\mu}(R^{\alpha}_{\nu)}f_{X})\right], \end{split} $
(9) where
$ A_{(\mu\nu)} = \dfrac{1}{2} (A_{\mu\nu}+A_{\nu\mu} $ ),$ X\equiv R^{\mu\nu}R_{\mu\nu} $ , and$ f_{X}\equiv\dfrac{\partial f}{\partial X} $ . Inserting the following two derivational relations$ \nabla_{\alpha}\nabla_{\beta}(f_{X}R^{\alpha\beta}) = R^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}f_{X}+(\nabla^{\beta}R)(\nabla_{\beta}f_{X})+\frac{1}{2}f_{X}\Box R, $
(10) and
$ \begin{aligned}[b] \nabla_{\alpha}\nabla_{\mu}(f_{X}R^{\alpha}_{\nu})+\nabla_{\alpha}\nabla_{\nu}(f_{X}R^{\alpha}_{\mu}) =& R^{\alpha}_{\nu}\nabla_{\alpha}\nabla_{\mu}f_{X}+R^{\alpha}_{\mu}\nabla_{\alpha}\nabla_{\nu}f_{X}+\frac{1}{2}(\nabla_{\mu}f_{X})(\nabla_{\nu}R)+\frac{1}{2}(\nabla_{\nu}f_{X})(\nabla_{\mu}R)\\ &+(\nabla_{\alpha}f_{X})(\nabla_{\mu}R^{\alpha}_{\nu})+(\nabla_{\alpha}f_{X})(\nabla_{\nu}R^{\alpha}_{\mu})+f_{X}\nabla_{\mu}\nabla_{\nu}R+2f_{X}R_{\alpha\mu\nu\lambda}R^{\alpha\lambda}+2f_{X}R_{\mu\lambda}R^{\lambda}_{\nu}, \end{aligned} $
(11) into Eq. (9), the tress-energy tensor of the effective curvature fluid
$ \Omega_{\mu\nu} $ is simplified as$ \begin{aligned}[b] \Omega_{\mu\nu} =& \frac{1}{f_{R}}\Big[\frac{1}{2}g_{\mu\nu}(f-Rf_{R})+\nabla_{\mu}\nabla_{\nu}f_{R}-g_{\mu\nu}\Box f_{R}-f_{X}\Box R_{\mu\nu}-R_{\mu\nu}\Box f_{X}-g_{\mu\nu}R^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}f_{X}-\frac{1}{2}f_{X}g_{\mu\nu}\Box R\\ &+R^{\alpha}_{\nu}\nabla_{\alpha}\nabla_{\mu}f_{X}+R^{\alpha}_{\mu}\nabla_{\alpha}\nabla_{\nu}f_{X}-f_{X}\nabla_{\mu}\nabla_{\nu}R-2f_{X}R_{\alpha\mu\nu\lambda}R^{\alpha\lambda}\Big]. \end{aligned}$
(12) For a static spherically symmetric black hole whose geometry is given by
$ {\rm d}s^2 = -B(r){\rm d}t^2+\frac{{\rm d}r^2}{B(r)}+r^2{\rm d}\Omega^2, $
(13) where the event horizon is located at
$ r = r_+ $ the largest positive root of$ B(r_+) = 0 $ with$ B'(r_+)\neq 0 $ , the$ (^{1}_{1}) $ components of the Einstein tensor is$ G^{1}_{1} = \frac{1}{r^{2}}\left(-1+rB^{\prime}+B\right), $
(14) with the primes denoting the derivative with respect to r. At the horizon, since
$ B(r_{+}) = 0 $ , it reduces to$ G^{1}_{1} = \frac{1}{r^{2}}\left(-1+rB^{\prime}\right). $
(15) While the radial components of the tress-energy tensor of the effective curvature fluid
$ \Omega_{\mu\nu} $ at the horizon takes the following form$\begin{split} \Omega^{1}_{1} =& \frac{1}{f_{R}}\left[\frac{1}{2}(f-Rf_{R})-\frac{1}{2}B'f'_{R}-B'(f_{X}R^{1}_{1})'\right.\\&\left.-\frac{2f_{X}B'R^{1}_{1}}{r_{+}} +\frac{2f_{X}B'R^{3}_{3}}{r_{+}}-2f_{X}(R ^{1}_{1})^2\right]. \end{split} $
(16) Substituting Eqs. (15) and (16) into Eq. (8), and considering
$ P = T^{r}_{\; r}|_{r_{+}} $ , we derive$\begin{split} 8\pi P =& -\frac{f_{R}}{r^2_{+}}+\frac{f_{R}B'}{r_{+}}-\frac{1}{2}(f-Rf_{R})+\frac{1}{2}B'f'_{R}+B'(f_{X}R^1_1)'\\&+\frac{2f_{X}B'R^1_1}{r_{+}}-\frac{2f_{X}B'R^3_3}{r_{+}}+2f_{X}(R^1_1)^2. \end{split} $
(17) This equation is very complicated; therefore, how can we determine the function
$ C(r_+) $ in Eq. (2)? Even worse, this equation depends on higher derivatives of B, and hence we can no longer follow the same approach as the one we followed for Einstein's theory in which we obtained the entropy and energy from Eqs. (5) and (6) directly. In higher-derivative gravity, to use the horizon first law,$ \delta E = T\delta S-P\delta V $ , usually one should reduce the higher-derivative field equations to lower-derivative field equations via a Legendre transformation [32, 33]. Here we try a new method. If we obtain the entropy by using other methods, then using the new horizon first law (3) and the degenerate Legendre transformation$ E = G+ TS-PV $ , we can derive the energy. As$ f(R,R^{\mu\nu}R_{\mu\nu}) $ is a diffeomorphism invariance of the gravitational theory, the entropy can be obtained using the Wald method, which is presented in the Appendix. Taking into account the volume of the black hole$ V(r_{+}) = 4\pi r^{3}_{+}/3 $ , the pressure in Eq. (17), the Hawking temperature$ T = B'(r_{+})/4\pi $ , and the entropy given in the Appendix, the new horizon first law (3) can be rewritten as$ \begin{split} \delta G =& -\frac{1}{3}\pi r^{2}_{+}(f_{R}+2f_{X}R^{1}_{1})\delta T+\frac{4\pi r^{3}_{+}T}{3}\delta\left(\frac{f_{R}}{2r_{+}}\right)+\frac{4\pi r^{3}_{+}T}{3}\delta\left(\frac{f_{X}R^{1}_{1}}{r_{+}}\right)+\frac{1}{3}\pi r^{3}_{+}\delta(Tf'_{R})+\frac{2}{3}\pi r^{3}_{+}\delta[T(f_{X}R^{1}_{1})']\\ &-\frac{1}{12}r^{3}_{+}\delta(f-Rf_{R})-\frac{1}{6}r^{3}_{+}\delta\left(\frac{f_{R}}{r^{2}_{+}}\right)+\frac{4\pi r^{3}_{+}}{3}\delta\left(\frac{4\pi f_{X}T^{2}}{r^{2}_{+}}\right)-\frac{4\pi r^{3}_{+}}{3}\delta\left(\frac{Tf_{X}}{r^{3}_{+}}\right)+\frac{1}{3}r^{3}_{+}\delta [f_{X}(R^{1}_{1})^{2}], \end{split} $
(18) and
$ TS-PV $ is given by$ \begin{split} TS - PV =& \frac{1}{3}\pi r_ + ^2{f_R}T + \frac{2}{3}\pi r_ + ^2{f_x}R_1^1T - \frac{2}{3}\pi r_ + ^3T{({f_x}R_1^1)^\prime } - \frac{1}{3}\pi r_ + ^3T{{f'}_R}\\& + \frac{1}{6}{f_R}{r_ + } + \frac{1}{{12}}r_ + ^3(f - R{f_R}) - \frac{1}{3}{r_ + }{f_X}{{B'}^2} + \frac{1}{3}{f_X}B' - \frac{1}{3}r_ + ^3{f_X}{(R_1^1)^2}. \end{split}$
(19) According to the degenerate Legendre transformation
$ E = G+TS-PV $ , we have$\begin{split} \delta E =& \delta (G+TS-PV) = \left[\frac{1}{2}f_{R}\delta r_{+}+\frac{1}{4}r^{2}_{+}(f-Rf_{R})\delta r_{+}\right.\\&\left.+r_{+}f_{X}B'R^{3}_{3}\delta r_{+}-r^{2}_{+} f_{X}(R^{1}_{1})^{2}\right]\delta r_{+}, \end{split}$
(20) or equivalently
$\begin{split} E =& \int^{r_{+}}\left[\frac{1}{2}f_{R}+\frac{1}{4}r^{2}_{+}(f-Rf_{R})\right.\left.+r_{+}f_{X}B'R^{3}_{3}-r^{2}_{+} f_{X}(R^{1}_{1})^{2}\right]{\rm d}r_{+}. \end{split} $
(21) When
$ f_{X} = 0 $ , Eq. (21) returns to the result obtained in$ f(R) $ theory [28]. Using Eqs. (21) and (29), we can calculate the energy and the entropy of the black hole in$ f(R,R^{\mu\nu}R_{\mu\nu}) $ theory. -
For application, we consider a simple but important example: the most general quadratic-curvature gravity theory with a cosmological constant in four dimensions; its Lagrangian density is given by an arbitrary combination of scalar curvature-squared and Ricci-squared terms, namely,
$ f(R,R^{\mu\nu}R_{\mu\nu}) = R+\alpha R^{\mu\nu}R_{\mu\nu}+\lambda R^2-2\Lambda, $
(22) where
$ \alpha $ and$ \lambda $ are constants, and$ \Lambda $ is the cosmological constant. For this theory, we have$ f_{R} = 1+2\lambda R $ and$ f_{X} = \alpha $ . We find from (29) that in spacetime with metric (13), the entropy is$ S =\pi r^{2}_{+}(1+2\lambda R+2\alpha R^{1}_{1}). $
(23) Substituting Eq. (22) into Eq. (21), the energy of the black hole is given by
$ \begin{split} E =& \frac{1}{2}\int r^{2}_{+}\left[\frac{1}{r^2_{+}}+\frac{2\lambda R}{r^{2}_{+}}+\frac{1}{2}\alpha R^{\mu\nu}R_{\mu\nu}\right.\\&\left.-\frac{1}{2}\lambda R^{2}+\frac{2\alpha B'R^{3}_{3}}{r_{+}}-2\alpha{R^{1}_{1}}^{2}-\Lambda\right]dr_+\\ = & -\frac{1}{4}\int\left[\left(6\alpha{R^{1}_{1}}^{2}+2R^{1}_{1}\alpha B''+2\alpha{R^{2}_{2}}^{2}+2\Lambda+\lambda R^{2}\right)r^{2}_{+}\right.\\&\left.+4R^{1}_{1}\alpha r_{+}B'-2(2\alpha R^{2}_{2}+2\lambda R+1)\right]{\rm d}r_+. \end{split} $
(24) In the case of a Schwarzschild-(A)ds black hole, for example, whose metric is given by
$ B(r) = 1-\dfrac{2M}{r}-\dfrac{\Lambda r^{2}}{3} $ , the entropy (23) and the energy (29), respectively, return to$ S = \pi r^{2}_{+}(1+2\lambda R+2\alpha R^{1}_{1}) = \pi r^{2}_{+}[1+2(\alpha+4\lambda)\Lambda], $
(25) and
$ E = [1+2(\alpha+4\lambda)\Lambda]M, $
(26) where we have used
$ B(r_+) $ = 0. Eqs. (25) and (26) are consistent with the results obtained in [34, 35]. The energy in [35] was computed using the Abbott-Deser-Tekin method and a qualitatively different way of regularizing the Iyer-Wald charges. On the other hand, in [34] the energy was calculated using the horizon first law after taking a Legendre transformation. When$ \alpha = 0 $ , we obtain the results in$ R+\lambda R^2-2\Lambda $ theory. While for$ \alpha = 0 $ and$ \lambda = 0 $ , we get the results in Einstein's gravity with the cosmological constant. -
In the bulk of the present paper, we studied the entropy and energy of a black hole (13) in
$ f(R,R^{\mu\nu}R_{\mu\nu}) $ theory. To confirm whether our results are reasonable, here we calculate the entropy by using the Wald formula, which takes the following form$ S = -2\pi\oint\frac{\delta L}{\delta R_{abcd}} \epsilon_{ab}\epsilon_{cd}\; {\rm d}V_2, \tag{A1}$
(27) where L is Lagrangian density of the gravitational field,
$ {\rm d}V_2 $ is the volume element on the bifurcation surface$ \Sigma $ , and$ \epsilon_{ab} $ is the binormal vector to$ \Sigma $ normalized as$ \epsilon_{ab}\epsilon^{ab} = -2 $ . For the metric (13) the binormal vectors can easily be found as$ \epsilon_{01} = 1 $ and$ \epsilon_{10} = -1 $ . For$ L = \dfrac{f(R,R_{\mu\nu}R^{\mu\nu})}{16\pi} $ , we can get$ \begin{split} \frac{\delta L}{\delta R_{abcd}}& = \frac{1}{16\pi}\left(f_{R}\frac{\delta R}{\delta R_{abcd}}+f_{X}\frac{\delta R_{\mu\nu}R^{\mu\nu} }{\delta R_{abcd}}\right)\\ & = \frac{1}{16\pi}\left(g^{c[a}g^{b]d}f_{R}+2R^{\mu\nu}g^{\sigma\rho}\delta^{a}_{[\mu}\delta^{b}_{\sigma]}\delta^{c}_{\nu}\delta^{d}_{\rho}f_{X}\right). \end{split}\tag{A2}$
(28) For the metric (13), we have
$ g^{c[a}g^{b]d}\epsilon_{ab}\epsilon_{cd} = -2 $ and$ 2R^{\mu\nu}g^{\sigma\rho}\delta^{a}_{[\mu}\delta^{b}_{\sigma]}\delta^{c}_{\nu}\delta^{d}_{\rho}\xi_{ab}\xi_{cd} = 4R^{00}g^{11} = -4R^{1}_{1} $ . Since the integral (27) is to be evaluated on shell, finally we have the entropy as$ S = \frac{A({r_{+})}}{4}\left(f_{R}+2f_{X}R^{1}_{1}\right) \tag{A3}$
(29) in
$ f(R,R^{\mu\nu}R_{\mu\nu}) $ theory for the black hole (13).
Horizon thermodynamics in ${f(R,R^{\mu\nu}R_{\mu\nu}})$ theory
- Received Date: 2020-04-29
- Available Online: 2020-11-01
Abstract: We investigate whether the new horizon first law still holds in