-
The SW
$ _{T,\mu} $ model is defined by the AdS-Reissner Nordstrom black-hole (AdS-RN) multiplied by a warp factor, given by [37]$ {\rm d}s^2 = \frac{r^2h(r)}{R^2}(-f{\rm d}t^2+{\rm d}\vec{x}^2)+\frac{R^2h(r)}{r^2f}{\rm d}r^2, $
(1) with
$ f = 1-(1+Q^2)\left(\frac{r_h}{r}\right)^4+Q^2\left(\frac{r_h}{r}\right)^6,\qquad h(r) = {\rm e}^{\frac{c^2R^4}{r^2}}, $
(2) where R is the radius of AdS. Q represents the black hole charge, constrained in
$ 0\leqslant Q\leqslant\sqrt{2} $ . r denotes the fifth coordinate with$ r = \infty $ as the boundary and$ r = r_h $ the event horizon. The$ h(r) $ term, characterizing the soft wall model, distorts the background metric and yields the mass scale c (or nonconformality), where c is also called the deformation parameter. Note that here, we will not focus on a specific model with fixed c, but rather study the behavior of$ \hat{q} $ in a class of models parametrized by c. Therefore, we make c dimensionless by normalizing it to fixed T and set$ 0\leqslant c/T\leqslant 2.5 $ , which is believed to be most relevant for a comparison with QCD [45].Moreover, the chemical potential reads
$ \mu = \frac{\sqrt{3}Qr_h}{R^2}. $
(3) The temperature reads
$ T = \frac{r_h}{\pi R^2}\left(1-\frac{Q^2}{2}\right). $
(4) -
Now, we follow the argument in [13] to investigate the behavior of the jet quenching parameter for the background metric (1). In the gravity dual description,
$ \hat{q} $ can be computed from light-like adjoint Wilson loops. Specifically, one considers a null-like rectangular Wilson loop C formed by a quark-antiquark pair with separation L travelling along light-cone time duration$ L_- $ . Under the dipole approximation, which is valid for small L and$ LT<<1 $ ,$ \hat{q} $ can be extracted from the Wilson loop expectation value,$ <W^A[{\cal{C}}]> \approx \exp \left[-\frac{1}{4\sqrt{2}}\hat{q}L_-L^2\right], $
(5) where superscript A represents the adjoint representation.
Using the formulas
$ <W^A[{\cal{C}}]>\approx <W^F[{\cal{C}}]>^2 $ and$ <W^F[{\cal{C}}]>\approx\exp[-S_I] $ , one gets$ \hat{q} = 8\sqrt{2}\frac{S_I}{L_-L^2}, $
(6) with
$ S_I = S-S_0 $ , where S is the total energy of the quark anti-quark pair.$ S_0 $ denotes the inertial mass of two single quarks.$ S_I $ represents the regulated finite on-shell string worldsheet action.To carry out the calculation, one needs to rotate the coordinate to light-cone, e.g.,
$ {\rm d}t = \frac{{\rm d}x^++{\rm d}x^-}{\sqrt{2}},\qquad {\rm d}x_1 = \frac{{\rm d}x^+-{\rm d}x^-}{\sqrt{2}}, $
(7) then metric (1) becomes
$\begin{split} {\rm d}s^2 =& -\frac{r^2h(r)}{R^2}(1+f){\rm d}x^+{\rm d}x^-+\frac{r^2h(r)}{R^2}({\rm d}x_2^2+{\rm d}x_3^2)\\&+\frac{r^2h(r)}{2R^2}(1-f)[({\rm d}x^+)^2+({\rm d}x^-)^2])+\frac{R^2h(r)}{r^2f}{\rm d}r^2. \end{split} $
(8) Considering that the Wilson loop stretches across, e.g.,
$ x_2 $ and lies at$ x^+ = constant,x_3 = constant $ , one may choose the following static gauge$ x^- = \tau, \qquad x_2 = \sigma, $
(9) and assume a profile of
$ r = r(\sigma) $ ; then (8) reduces to$ {\rm d}s^2 = h(r)\left[\frac{1}{2}\left(\frac{r^2}{R^2}-f_1\right){\rm d}\tau^2+\left(\frac{r^2}{R^2}+\frac{\dot{r}^2}{f_1}\right){\rm d}\sigma^2\right], $
(10) with
$ \dot{r} = \dfrac{{\rm d}r}{{\rm d}\sigma} $ ,$ f_1\equiv\dfrac{r^2}{R^2}f $ .Given that, the induced metric reads
$\begin{split} g_{00} =& \frac{h(r)}{2}\left(\frac{r^2}{R^2}-f_1\right), \qquad g_{01} = g_{10} = 0, \\ g_{11} =& h(r)\left(\frac{r^2}{R^2}+\frac{\dot{r}^2}{f_1}\right). \end{split}$
(11) The string is governed by the Nambu-Goto action, given by
$ S = -\frac{1}{2\pi\alpha^\prime}\int {\rm d}\tau {\rm d}\sigma\sqrt{-{\rm det}g_{\alpha\beta}}, $
(12) with
$ g_{\alpha\beta} = G_{\mu\nu}\frac{\partial X^\mu}{\partial\sigma^\alpha} \frac{\partial X^\nu}{\partial\sigma^\beta}, $
(13) where
$ X^\mu $ and$ G_{\mu\nu} $ are the target space coordinates and metric, respectively.Plugging (11) into (12), one has
$ S = \frac{\sqrt{2}L_-}{2\pi\alpha^\prime}\int_0^{\frac{L}{2}}{\rm d}\sigma\sqrt{h^2(r)\left(\frac{r^2}{R^2}-f_1\right)\left(\frac{r^2}{R^2}+\frac{\dot{r}^2}{f_1}\right)}, $
(14) where the boundary condition is
$ r(\pm\dfrac{L}{2}) = \infty $ .As action (14) does not depend explicitly on
$ \sigma $ , one obtains a conserved quantity$ \frac{\partial{\cal{L}}}{\partial\dot{r}}\dot{r}-{\cal{L}} = \frac{-h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)\dfrac{r^2}{R^2}}{\sqrt{h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)\left(\dfrac{r^2}{R^2}+\frac{\dot{r}^2}{f_1}\right)}} = C, $
(15) resulting in
$ \dot{r}^2 = \frac{f_1r^2}{R^2C^2}\Bigg[\frac{h^2(r) r^2\left(\dfrac{r^2}{R^2}-f_1\right)}{R^2}-C^2\Bigg]. $
(16) The above equation involves determining the zeros. Further, the turning point occurs at
$ f_1 = 0 $ , indicating$ \dot{r} = 0 $ at$ r = r_h $ [13].For convenience, we write
$ B\equiv1/C^2 $ . For$ C\rightarrow0 $ (the low energy limit), one can integrate (16) to the leading order in$ 1/B $ , yielding$ L = 2R^2\int_{r_t}^\infty {\rm d}r \sqrt{\frac{1}{\left(\dfrac{r^2}{R^2}-f_1\right)Bf_1r^4h^2(r)}}. $
(17) Substituting (16) into (14), one obtains
$\begin{split} S =& \frac{\sqrt{2}L_-}{2\pi\alpha^\prime}\int_{r_h}^\infty {\rm d}r \sqrt{\frac{h^4(r)\left(\dfrac{r^2}{R^2}-f_1\right)^2r^2}{f_1\left[h^2(r) r^2\left(\dfrac{r^2}{R^2}-f_1\right)-R^2C^2\right]}}\\ =& \frac{\sqrt{2}L_-\sqrt{B}}{2\pi\alpha^\prime}\int_{r_h}^\infty {\rm d}r\dfrac{h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)r}{\sqrt{h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)Bf_1r^2-f_1R^2}}. \end{split} $
(18) Similarly, one expands (18) to the leading order in
$ 1/B $ as,$\begin{split} S =& \frac{\sqrt{2}L_-}{2\pi\alpha^\prime}\int_{r_h}^\infty {\rm d}r\left[1+\frac{R^2}{2h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)Br^2}\right]\\&\times \sqrt{\frac{1}{f_1}h^2(r)\left(\frac{r^2}{R^2}-f_1\right)}.\end{split} $
(19) However, action (19) is divergent. To eliminate the divergence, it should be subtracted by the inertial mass of two single quarks, given by
$ \begin{split} S_0 =& \frac{2L_-}{2\pi\alpha^\prime}\int_{r_h}^\infty {\rm d}r\sqrt{g_{–}g_{rr}}\\ =& \frac{\sqrt{2}L_-}{2\pi\alpha^\prime}\int_{r_h}^\infty {\rm d}r \sqrt{\dfrac{1}{f_1}h^2(r)\left(\dfrac{r^2}{R^2}-f_1\right)}. \end{split} $
(20) Then, the regulated finite on-shell action is given by
$ S_I = S-S_0 = \frac{\sqrt{2}L_-R^2}{4\pi\alpha^\prime B}\int_{r_h}^\infty {\rm d}r\sqrt{\frac{1}{\left(\dfrac{r^2}{R^2}-f_1\right)f_1r^4h^2(r)}}. $
(21) Substituting (17) and (21) into (6), one acquires the jet quenching parameter in the SW
$ _{T,\mu} $ model$ \hat{q} = \frac{I(q)^{-1}}{\pi\alpha^\prime}, $
(22) with
$ I(q) = R^2\int_{r_h}^\infty {\rm d}r\sqrt{\frac{1}{\left(\dfrac{r^2}{R^2}-f_1\right)f_1r^4h^2(r)}}. $
(23) Note that by setting
$ c = \mu = 0 $ in (22), the jet quenching parameter of SYM [13] is reproduced, that is$ \hat{q}_{\rm SYM} = \frac{\pi^{3/2}\Gamma\left(\dfrac{3}{4}\right)}{\Gamma\left(\dfrac{5}{4}\right)}\sqrt{\lambda}T^3, $
(24) where one has used the relations
$ r_h = \pi R^2T $ and$ \dfrac{R^2}{\alpha^\prime} = \sqrt{\lambda} $ .Let us discuss the results. First, we analyze how
$ \mu $ and c modify$ \hat{q} $ . For this purpose, we plot$ \hat{q}/\hat{q}_{\rm SYM} $ as a function of$ \mu/T $ with fixed$ c/T $ for two different temperatures in Fig. 1, where the left panel denotes the$ T = 170 \;{\rm MeV} $ case, and the right panel denotes the$ T = 500 \;{\rm MeV} $ case. From both panels, one sees that at fixed$ c/T $ , increasing$ \mu/T $ leads to increasing$ \hat{q}/\hat{q}_{\rm SYM} $ , indicating that the inclusion of the chemical potential increases the jet quenching parameter, in accordance with [19, 20]. Likewise, one can see from Fig. 2 that at fixed$ \mu/T $ ,$ \hat{q}/\hat{q}_{\rm SYM} $ increases as$ c/T $ increases, implying that the inclusion of nonconformality increases the jet quenching parameter, similar to [35]. Thus, one concludes that the inclusion of chemical potential and nonconformality both increase the jet quenching parameter, thus enhancing the energy loss, consistently with the findings of the drag force [39].Figure 1. (color online)
$ \hat{q}/\hat{q}_{\rm SYM} $ versus$ \mu/T $ with fixed$ c/T $ . Left:$ T = 170 \;{\rm MeV} $ . Right:$ T = 500 \;{\rm MeV} $ . In both panels from top to bottom,$ c/T = 2.5, 1, 0 $ , respectively.Figure 2. (color online)
$ \hat{q}/\hat{q}_{\rm SYM} $ versus$ c/T $ with fixed$ \mu/T $ . Left:$ T = 170 \;{\rm MeV} $ . Right:$ T = 500 \;{\rm MeV} $ . In both panels from top to bottom,$ \mu/T = 5, 1, 0 $ , respectively.Further, we strive to understand the T dependence of
$ \hat{q} $ for this model. To this end, we plot$ \hat{q}/\hat{q}_a $ , with$ \hat{q}_a|_{c = \mu = 0,\; T = 170\; {\rm MeV}} $ , versus T in Fig. 3, where the left panel presents the$ \mu = 0 $ case, while the right one presents the case of$ \mu = 100 \;{\rm MeV} $ . From these figures, one finds that with fixed$ c/T $ ,$ \hat{q}/\hat{q}_a $ increases with T , as expected.Figure 3. (color online)
$ \hat{q}/\hat{q}_a $ versus T with fixed$ c/T $ . Left:$ \mu = 0 $ . Right:$ \mu = 100 \;{\rm MeV} $ . In both panels from top to bottom,$ c/T = 2.5, 1, 0 $ , respectively.Finally, we would like to make a comparison to implications of experimental data. In Table 1, we present some typical values of
$ \hat{q} $ , where we have taken$ N_c = 3 $ and$ \alpha_{\rm SYM} = 0.5 $ (reasonable for temperatures not far above QCD phase transition), and$ \lambda = 6\pi $ [13]. Most of the values are consistent with the extracted values from RHIC data ($ 5\sim25 \;{\rm GeV ^2/fm} $ ) [46, 47]. In contrast, because the presence of$ \mu $ and c both enhance the jet quenching parameter, one may infer that increases in$ \mu $ and c may lower the possible allowed domain of T for the computed$ \hat{q} $ to ensure agreement with the experimental data.$ T\setminus(\mu, c) $ (0, 0) (0, 0.3) (0, 0.7) (0.1, 0) (0.1, 0.3) (0.1, 0.7) (0.3, 0) (0.3, 0.3) (0.3, 0.7) $ 0.3 $ 4.50 4.71 5.70 4.53 4.74 5.73 4.76 4.98 6.0 $ 0.4 $ 10.61 10.89 12.19 10.64 10.93 12.23 10.94 11.23 12.56 $ 0.5 $ 20.69 21.02 22.65 20.70 21.06 22.70 21.08 21.45 23.10 Table 1. Typical values of
$ \hat{q} $ in$ {\rm GeV ^2/fm} $ ; the first line presents$ (\mu, c) $ , and the first column presents T. Here,$ T,\mu,c $ are all expressed in units of${\rm GeV} $ .
Jet quenching parameter from a soft wall AdS/QCD model
- Received Date: 2020-03-21
- Accepted Date: 2020-06-02
- Available Online: 2020-10-01
Abstract: We study the effect of chemical potential and nonconformality on the jet quenching parameter in a holographic QCD model with conformal invariance broken by background dilaton. The presence of chemical potential and nonconformality both increase the jet quenching parameter, thus enhancing the energy loss, consistently with the findings of the drag force.