-
In the framework of FCA, we consider
$ \bar{K}K^*(\eta K^*) $ as a cluster, and$ \eta(\bar{K}) $ interacts with the components of the cluster. The total three-body scattering amplitude$ T $ can be simplified as the sum of two partition functions$ T_1 $ and$ T_2 $ , by summing all diagrams in Fig. 1, starting with the interaction of particle 3 with particle 1(2) of the cluster. The FCA equations can be written in terms of$ T_1 $ and$ T_2 $ , which give the total scattering amplitude$ T $ , and read [25, 26, 51]$ T_1 = t_1+t_1G_0T_2, $
(1) $ T_2 = t_2+t_2G_0T_1, $
(2) $ T = T_1+T_2, $
(3) where the amplitudes
$ t_1 $ and$ t_2 $ represent the unitary scattering amplitudes with coupled channels for the interactions of particle 3 with particle 1 and 2, respectively. The function$ G_0 $ in the above equations is the propagator for particle 3 between the particle 1 and 2 components of the cluster, which we discuss below.We calculate the total scattering amplitude
$ T $ in the low energy regime, close to the threshold of the$ \eta \bar{K} K^* $ system or below, where FCA is a good approximation. The on-shell approximation for the three particles is also used.Following the field normalization of Refs. [52, 53], we can write the
$ S $ matrix for the single scattering term [Fig. 1(a) and 1(e)] as①$\begin{split} S^{(1)} =& S_1^{(1)}+S_2^{(1)} = \frac{(2\pi)^4}{{\cal{V}}^2}\delta^4(k_3+k_{\rm{cls}}-k_3'-k_{\rm{cls}}') \\ &\times\frac{1}{\sqrt{2w_3}}\frac{1}{\sqrt{2w_3'}} \left(\frac{-{\rm i}t_1}{\sqrt{2w_1}} \frac{1}{\sqrt{2w_1'}} + \frac{-{\rm i}t_2}{\sqrt{2w_2}} \frac{1}{\sqrt{2w_2'}}\right), \end{split}$
(4) where
$ {\cal{V}} $ stands for the volume of a box in which the states are normalized to unity, while the momentum$ k(k') $ and the on-shell energy$ w(w') $ refer to the initial (final) particles.The double scattering contributions are obtained from Fig. 1(b) and 1(f). The expression for the
$ S $ matrix for double scattering [$ S_2^{(2)} = S_1^{(2)} $ ] is given by$ \begin{split} S^{(2)} =& -{\rm i}t_1t_2\frac{(2\pi)^4}{{\cal{V}}^2} \delta^4(k_3+k_{\rm{cls}}-k_3'-k_{\rm{cls}}') \\ & \times\frac{1}{\sqrt{2w_3}} \frac{1}{\sqrt{2w_3'}} \frac{1}{\sqrt{2w_1}} \frac{1}{\sqrt{2w_1'}} \frac{1}{\sqrt{2w_2}} \frac{1}{\sqrt{2w_2'}} \\& \times \int \frac{{\rm d}^3q}{(2\pi)^3} F_{\rm{cls}}(q) \frac{1}{{q^0}^2-|{\vec{q}}|^2-m_3^2+{\rm i} \epsilon}, \end{split}$
(5) where
$ F_{\rm{cls}}(q) $ is the form factor of the cluster which is a bound state of particles 1 and 2. The information about the bound state is encoded in the form factor$ F_{\rm{cls}}(q) $ in Eq. (5), which is the Fourier transform of the cluster wave function. The variable$ q^0 $ is the energy carried by particle 3 in the center-of-mass frame of particle 3 and the cluster, and is given by$ q^0(s) = \frac{s+m_3^2-m_{\rm{cls}}^2}{2\sqrt{s}}, $
(6) where
$ s $ is the invariant mass squared of the$ \eta \bar{K} K^* $ system.For the form factor
$ F_{\rm{cls}}(q) $ , we take the following expression for$ s $ wave bound states only, as discussed in Refs. [52-54]:$ \begin{split} F_{\rm{cls}}(q) = &\frac{1}{N}\int_{\vert \vec{p} \vert < \Lambda,\vert \vec{p}-\vec{q} \vert < \Lambda} {\rm d}^3 \vec{p} \; \frac{1}{2w_1(\vec{p})}\frac{1}{2w_2(\vec{p})} \\& \times\frac{1}{m_{\rm{cls}}-w_1(\vec{p})-w_2(\vec{p})} \frac{1}{2w_1(\vec{p}-\vec{q})}\frac{1}{2w_2(\vec{p}-\vec{q})} \\& \times\frac{1}{m_{\rm{cls}}-w_1(\vec{p}-\vec{q})-w_2(\vec{p}-\vec{q})}, \end{split} $
(7) where the normalization factor
$ N $ is$ N = \int_{\vert \vec{p} \vert < \Lambda} {\rm d}^3 \vec{p} \; \left( \frac{1}{2w_1(\vec{p})}\frac{1}{2w_2(\vec{p})} \frac{1}{m_{\rm{cls}}-w_1(\vec{p})-w_2(\vec{p})}\right)^2, $
with
$ m_{\rm{cls}} $ the mass of the cluster. Note that the width of$ K^* $ should also be included in$ F_{\rm{cls}}(q) $ [30]. However, as shown below, the masses of$ f_1(1285) $ and$ K_1(1270) $ are below the threshold of$ \bar{K}K^* $ and$ \eta K^* $ , and the effect of the width of$ K^* $ is small and can be neglected.Similarly, the full
$ S $ matrix for the scattering of particle 3 on the cluster is given by$ \begin{split} S =& -{\rm i}T\frac{(2\pi)^4}{{\cal{V}}^2}\delta^4(k_3+k_{\rm{cls}}-k_3'-k_{\rm{cls}}') \\ &\times\frac{1}{\sqrt{2w_3}} \frac{1}{\sqrt{2w_3'}} \frac{1}{\sqrt{2w_{\rm{cls}}}} \frac{1}{\sqrt{2w_{\rm{cls}}'}}. \end{split} $
(8) By comparing Eqs. (4), (5), and (8), we see that it is necessary to introduce a weight in
$ t_1 $ and$ t_2 $ so that Eqs. (4) and (5) include the factors that appear in Eq. (8). This is achieved by,$ \begin{align} \tilde{t}_1 = t_1\sqrt{\frac{2w_{\rm{cls}}}{2w_1}}\sqrt{\frac{2w_{\rm{cls}}'}{2w_1'}}, \; \; \; \; \; \; \tilde{t}_2 = t_2\sqrt{\frac{2w_{\rm{cls}}}{2w_2}}\sqrt{\frac{2w_{\rm{cls}}'}{2w_2'}}. \end{align} $
Eq. (3) can then be solved to give
$ \begin{align} T = \frac{\tilde{t}_1+\tilde{t}_2+2\tilde{t}_1\tilde{t}_2G_0}{1-\tilde{t}_1\tilde{t}_2G_0^2}, \end{align} $
(9) where
$ G_0 $ depends on the invariant mass of the$ \eta \bar{K}K^* $ system, and is given by$ G_0(s) = \frac{1}{2m_{\rm{cls}}}\int \frac{{\rm d}^3q}{(2\pi)^3} \frac{F_{\rm{cls}}(q)}{{q^0}^2 - |\vec{q}\; |^2-m_3^2+{\rm i} \epsilon} . $
(10) -
It is worth noting that the argument of the total scattering amplitude
$ T $ can be regarded as a function of the total invariant mass$ \sqrt{s} $ of the three-body system, while the arguments of two-body scattering amplitudes$ t_1 $ and$ t_2 $ depend on the two-body invariant masses$ \sqrt{s_1} $ and$ \sqrt{s_2} $ .$ s_1 $ and$ s_2 $ are the invariant masses squared of the external particle$ 3 $ with momentum$ k_3 $ , and particle 1 (2) inside the cluster with momentum$ k_1 $ ($ k_2 $ ), which are given by$ \begin{split} s_1 =& m_3^2+m_1^2+\frac{(s-m_3^2-m_{ \rm{\rm{cls}}}^2)(m_{\rm{cls}}^2+m_1^2-m_2^2)}{2m_{\rm{cls}}^2}, \\ s_2 =& m_3^2+m_2^2+\frac{(s-m_3^2-m_{\rm{cls}}^2)(m_{\rm{cls}}^2+m_2^2-m_1^2)}{2m_{\rm{cls}}^2}, \end{split} $
where
$ m_l $ $ (l = 1,2,3) $ are the masses of the corresponding particles in the three-body system.It is worth mentioning that in order to evaluate the two-body scattering amplitudes
$ t_1 $ and$ t_2 $ , the isospin of the cluster should be considered. For the case of the$ \eta $ -$ (\bar{K}K^*)_{f_1(1285)} $ system, the cluster$ \bar{K}K^* $ has isospin$ I_{\bar{K}K^*} = 0 $ . Therefore, we have$ \begin{align} \vert \bar{K} K^* \rangle_{I = 0} = \frac{1}{\sqrt{2}}\left| \left(\frac{1}{2} ,-\frac{1}{2}\right) \right\rangle-\frac{1}{\sqrt{2}}\left| \left(-\frac{1}{2} ,\frac{1}{2} \right)\right\rangle, \end{align} $
(11) where the kets on the right-hand side indicate the
$ I_z $ components of particles$ \bar{K} $ and$ K^* $ ,$ \vert (I_z^{\bar{K}} ,I_z^{K^*} )\rangle $ . For the case of the total isospin$ I_{\eta(\bar{K}K^*)} = 0 $ , the single scattering amplitude is written as [20]$ \begin{split} \langle \eta(\bar{K}K^*)\vert t \vert \eta(\bar{K}K^*) \rangle =&\Bigg( \langle0 0 \vert \otimes \frac{1}{\sqrt{2}}\Bigg( \Bigg\langle \Bigg(\frac{1}{2} ,-\frac{1}{2}\Bigg) \Bigg\vert - \Bigg\langle \Bigg(-\frac{1}{2} ,\frac{1}{2}\Bigg)\Bigg \vert \Bigg) \Bigg) (t_{31}+t_{32}) \Bigg( \vert 0 0 \rangle \otimes \frac{1}{\sqrt{2}}\Bigg( \Bigg\vert \Bigg(\frac{1}{2} ,-\frac{1}{2}\Bigg) \Bigg\rangle - \Bigg\vert \Bigg(-\frac{1}{2} ,\frac{1}{2} \Bigg)\Bigg\rangle \Bigg) \Bigg) \\ =& \Bigg( \frac{1}{\sqrt{2}} \Bigg\langle \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg) \Bigg\vert - \frac{1}{\sqrt{2}}\Bigg\langle \Bigg(\frac{1}{2}\!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg)\Bigg \vert \Bigg) t_{31} \Bigg( \frac{1}{\sqrt{2}}\Bigg \vert \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg)\Bigg \rangle - \frac{1}{\sqrt{2}} \Bigg\vert \Bigg(\frac{1}{2}\!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg)\Bigg \rangle \Bigg) \\ &+\Bigg( \frac{1}{\sqrt{2}}\Bigg\langle \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg) \Bigg\vert - \frac{1}{\sqrt{2}}\Bigg\langle \Bigg(\frac{1}{2}\!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg) \Bigg\vert \Bigg) t_{32} \Bigg( \frac{1}{\sqrt{2}}\Bigg \vert \Bigg(\frac{1}{2} \!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg) \Bigg\rangle - \frac{1}{\sqrt{2}} \Bigg\vert \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg) \Bigg\rangle \Bigg) , \end{split} $
(12) where the notation for the states in the last term is
$ \vert(I_{\eta \bar{K}}I_{\eta \bar{K}}^z,I_{K^*}^z)\rangle $ for$ t_{31} $ and$ \vert(I_{\eta K^*}I_{\eta K^*}^z,I_{\bar{K}}^z)\rangle $ for$ t_{32} $ . This leads to the following amplitudes for single scattering [Fig. 1(a) and 1(e)] in the$ \eta $ -$ (\bar{K}K^*)_{f_1(1285)} $ system,$ \begin{align} t_1 = t_{\eta \bar{K} \to \eta \bar{K}}^{I = 1/2}, \quad t_2 = t_{\eta K^* \to \eta K^*}^{I = 1/2}. \end{align} $
(13) In the
$ \bar{K} $ -$ (\eta K^*)_{K_1(1270)} $ system, the cluster$ \eta K^* $ can only have isospin$ I_{\eta K^*} = 1/2 $ . Therefore, for the total isospin$ I_{\bar{K}(\eta K^*)} = 0 $ , the scattering amplitude is written as [20]$\begin{split} \langle \bar{K}(\eta K^*)\vert t \vert \bar{K}(\eta K^*) \rangle = & \frac{1}{\sqrt{2}} \Bigg( \Bigg\langle\frac{1}{2} \frac{1}{2} \vert \otimes \Bigg\langle \Bigg(\frac{1}{2} ,-\frac{1}{2}\Bigg) \Bigg\vert - \Bigg\langle\frac{1}{2} \!\!-\!\!\frac{1}{2} \Bigg\vert \otimes \Bigg\langle \Bigg(\frac{1}{2} ,\frac{1}{2}\Bigg)\Bigg \vert \Bigg) (t_{31}+t_{32}) \frac{1}{\sqrt{2}} \Bigg( \Bigg\vert \frac{1}{2} \frac{1}{2} \Bigg\rangle \otimes \Bigg\vert \Bigg(\frac{1}{2} ,-\frac{1}{2}\Bigg) \Bigg\rangle - \Bigg\vert \frac{1}{2} \!\!-\!\!\frac{1}{2} \Bigg\rangle \otimes \Bigg\vert \Bigg(\frac{1}{2} ,\frac{1}{2} \Bigg)\Bigg\rangle \Bigg) \\ =& \Bigg( \frac{1}{\sqrt{2}} \Bigg\langle \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg) \Bigg\vert - \frac{1}{\sqrt{2}}\Bigg\langle \Bigg(\frac{1}{2}\!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg)\Bigg \vert \Bigg) t_{31} \Bigg( \frac{1}{\sqrt{2}}\Bigg \vert \Bigg(\frac{1}{2}\frac{1}{2},-\frac{1}{2}\Bigg)\Bigg \rangle - \frac{1}{\sqrt{2}} \Bigg\vert \Bigg(\frac{1}{2}\!\!-\!\!\frac{1}{2},\frac{1}{2}\Bigg)\Bigg \rangle \Bigg) \\& +\frac{1}{\sqrt{2}}\Bigg( \frac{1}{\sqrt{2}}\Bigg\langle (00,0) + \frac{1}{\sqrt{2}}\Bigg\langle (00,0) \Bigg\vert \Bigg) t_{32} \frac{1}{\sqrt{2}}\Bigg( \frac{1}{\sqrt{2}} \Bigg\vert (00,0)\Bigg \rangle + \frac{1}{\sqrt{2}} \Bigg\vert (00,0) \Bigg\rangle \Bigg). \end{split} $
(14) This leads to the following amplitudes for single scattering in the
$ \bar{K} $ -$ (\eta K^*)_{K_1(1270)} $ system,$ \begin{align} t_1 = t_{\bar{K} \eta \to \bar{K} \eta}^{I = 1/2}, \quad t_2 = t_{\bar{K} K^* \to \bar{K} K^*}^{I = 0}. \end{align} $
(15) We see that only the transition
$ \bar{K}K^* \to \bar{K}K^* $ with$ I = 0 $ gives a contribution, since the total isospin$ I_{\bar{K}(\eta K^*)} = 0 $ and the$ \eta $ meson has isospin zero. -
An important ingredient in the calculations of the total scattering amplitude for the
$ \eta \bar{K} K^* $ system using FCA are the two-body$ \eta K $ ,$ \eta K^* $ , and$ \bar{K} K^* $ unitarized$ s $ wave interactions from the chiral unitary approach. These two-body scattering amplitudes are studied with the dimensional regularization procedure, and they depend on the subtraction constants$ a_{\eta K} $ ,$ a_{\eta K^*} $ and$ a_{\bar{K}K^*} $ , and also on the regularization scale$ \mu $ . Note that there is only one parameter for the dimensional regularization procedure, since any change in$ \mu $ is reabsorbed by the change in$ a(\mu) $ through$ a(\mu') - a(\mu) = {\rm ln}(\frac{\mu'^2}{\mu^2}) $ , so that the scattering amplitude is scale independent. In this work, we use the parameters from Refs. [21, 49, 50]:$ a_{\eta K} = -1.38 $ and$ \mu = m_K $ for$ I_{\eta K} = 1/2 $ ;$ a_{\eta K^*} = -1.85 $ and$ \mu = 1000 $ MeV for$ I_{\eta K^*} = 1/2 $ ;$ a_{\bar{K}K^*} = -1.85 $ and$ \mu = 1000 $ MeV for$ I_{\bar{K}K^*} = 0 $ . With these parameters, we get the masses of$ f_1(1285) $ and$ K_1(1270) $ at their estimated values.In Figs. 2(a) and (b), we show the numerical results for
$ |t_{\bar{K} K^* \to \bar{K} K^*}^{I = 0}|^2 $ and$ |t_{\eta K^* \to \eta K^*}^{I = 1/2}|^2 $ , respectively, where we see clear peaks for the$ f_1(1285) $ and$ K_1(1270) $ states.Figure 2. (a) Modulus squared of
$ t_{\bar{K} K^* \to \bar{K} K^*}^{I = 0} $ as a function of the invariant mass$ M_{\bar{K}K^*} $ of the$ \bar{K}K^* $ subsystem. (b) Modulus squared of$ t_{\eta K^* \to \eta K^*}^{I = 1/2} $ as a function of the invariant mass$ M_{\eta K^*} $ of the$ \eta K^* $ subsystem. -
To connect with the dimensional regularization procedure, we choose the cutoff
$ \Lambda $ such that the two-body loop function at the threshold coincides in both methods. Thus, we take$ \Lambda = 990 $ MeV such that$ f_1(1285) $ is as obtained in Refs. [55, 56], while for$ K_1(1270) $ , we take$ \Lambda = 1000 $ MeV. The cutoff is tuned to get a pole at$ 1288- i74 $ for the$ K_1(1270) $ state.In Figs. 3 and 4, we show the respective form-factors for
$ f_1(1285) $ and$ K_1(1270) $ , where we take$ m_{\rm{cls}} = 1281.3 $ MeV for$ f_1(1285) $ and 1284 MeV for$ K_1(1270) $ , as obtained in Ref. [49]. In FCA, we keep the wave function of the cluster unchanged in the presence of the third particle. In order to estimate the uncertainties of FCA due to this "frozen" condition, we admit that the wave function of the cluster could be modified by the presence of the third particle. To do so, we perform calculations with different cutoffs. The results, shown in Figs. 3 and 4, are obtained with$ \Lambda = 890 $ ,$ 990 $ and$ 1090 $ MeV for$ f_1(1285) $ , while for$ K_1(1270) $ we take$ \Lambda = 900 $ , 1000 and 1100 MeV.Figure 3. Forms-factor Eq. (7) as a function of
$ q = |\vec{q}\; | $ for the cutoff$ \Lambda = 890 $ (dashed),$ 990 $ (solid), and$ 1090 $ MeV (dotted) for$ f_1(1285) $ as the$ \bar{K}K^* $ bound state.Figure 4. As in Fig. 3, but for
$ K_1(1270) $ as the$ \eta K^* $ bound state. The dashed, solid and dotted curves are for$ \Lambda = 900 $ , 1000, and 1100 MeV, respectively.In Fig. 5, we show the real (solid line) and imaginary (dashed line) parts of
$ G_0 $ as a function of the invariant mass of the$ \eta $ -$ (\bar{K}K^*)_{f_1(1285)} $ system for$ \Lambda = 890 $ ,$ 990 $ and$ 1090 $ MeV.Figure 5. (color online) Real (solid line) and imaginary (dashed line) parts of
$ G_0 $ for the$ \eta $ -$ (\bar{K}K^*)_{f_1(1285)} $ system and$ \Lambda = 890 $ (blue),$ 990 $ (red) and$ 1090 $ MeV (green).The results for
$ G_0 $ of the$ \bar{K} $ -$ (\eta K^*)_{K_1(1270)} $ system are shown in Fig. 6, where the real (solid line) and imaginary (dashed line) parts are for$ \Lambda = 900 $ ,$ 1000 $ and$ 1100 $ MeV.From Figs. 5 and 6, it can be seen that the imaginary part of
$ G_0(s) $ is not sensitive to the value of the cutoff, while the real part slightly changes with the cutoff.
Prediction of possible exotic states in the ${\eta \bar{K}K^*}$ system
- Received Date: 2019-10-28
- Accepted Date: 2019-12-20
- Available Online: 2020-05-01
Abstract: We investigate the