Processing math: 30%

Study of the sdνˉν rare hyperon decays in the Standard Model and new physics

  • FCNC processes offer important tools to test the Standard Model (SM) and to search for possible new physics. In this work, we investigate the sdνˉν rare hyperon decays in SM and beyond. We find that in SM the branching ratios for these rare hyperon decays range from 1014 to 1011 . When all the errors in the form factors are included, we find that the final branching ratios for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from new physics, the generalized SUSY extension of SM and the minimal 331 model, the decay widths for these channels can be enhanced by a factor of 27.
  • The flavor changing neutral current (FCNC) transitions provide a critical test of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism in the Standard Model (SM), and allow to search for possible new physics. In SM, the FCNC transition sdνˉν proceeds through the Z-penguin and electroweak box diagrams, and thus the decay probabilities are strongly suppressed. In this case, a precise study allows to perform very stringent tests of SM and ensures large sensitivity to potential new degrees of freedom.

    A large number of studies have been performed of the K+π+νˉν and KLπ0νˉν processes, and reviews of these two decay modes can be found in [16]. On the theoretical side, using the most recent input parameters, the SM predictions for the two branching ratios are [7]

    B(K+π+νˉν)SM=(8.4±1.0)×1011,

    (1)

    B(KLπ0νˉν)SM=(3.4±0.6)×1011.

    (2)

    The dominant uncertainty comes from the CKM matrix elements and the charm contribution. On the experimental side, the NA62 experiment at the CERN SPS has reported the first search for K+π+νˉν using the decay-in-flight technique, and the corresponding observed upper limit is [8] :

    B(K+π+νˉν)exp<14×1010,at 95% CL.

    (3)

    Similarly, the E391a collaboration reported the 90% C.L. upper bound [9]

    B(KLπ0νˉν)exp2.6×108.

    (4)

    The KOTO experiment, an upgrade of the E391a experiment, aims at a first observation of the KLπ0νˉν decay at J-PARC around 2020 [3, 10]. Given the goal of a 10% precision by NA62, the authors of Ref. [11] intend to carry out lattice QCD calculations to determine the long-distance contributions to the K+π+νˉν amplitude.

    Analogous to K+π+νˉν and KLπ0νˉν, the rare hyperon decays BiBfνˉν also proceed via sdνˉν at the quark level, and thus offer important tools to test SM and to search for possible new physics. Compared to the widely considered K+π+νˉν and KLπ0νˉν, there are few studies devoted to rare hyperon decays BiBfνˉν. This work aims to perform a preliminary theoretical research of the rare hyperon decays both in and beyond SM.

    A study of the hyperon decays at the BESIII experiment is proposed using the hyperon parents of the J/ψ decay. The electron-positron collider BEPCII provides a clean experimental environment. About 106-108 hyperons, Λ, Σ, Ξ and Ω, are produced in the J/ψ and ψ(2S) decays with the proposed data samples at the BESIII experiment. Based on these samples, the sensitivity of the measurement of the branching ratios of hyperon decays is in the range of 105-108. The author of Ref. [12] proposed that rare decays and decays with invisible final states may be probed.

    The paper is organized as follows. In Sec. 2, our computing framework is presented. Sec. 3 is devoted to performing the numerical calculations. The branching ratios of several rare hyperon decays are calculated in SM. The new physics contribution, the Minimal Supersymmetric Standard Model (MSSM) and the minimal 331 model, are considered. We also discuss possible uncertainties from the form factors. The last section contains a short summary.

    The next-to-leading order (NLO) effective Hamiltonian for sdνˉν reads [13]:

    Heff=GF2α2πsin2θWl=e,μ,τ[VcsVcdXlNL+VtsVtdX(xt)](ˉsd)VA(ˉνlνl)VA+h.c.,

    (5)

    where X(xt) and XlNL are relevant for the top and the charm contribution, respectively. Their explicit expressions can be found in Ref. [13]. Here, xt=m2t/m2W. To leading order in αs, the function X(xt) relevant for the top contribution reads [14, 15]

    X(x)=X0(x)+αs4πX1(x),X0(x)=x8[2+x1x+3x6(1x)2lnx],X1(x)=23x+5x24x33(1x)2+x11x2+x3+x4(1x)3lnx+8x+4x2+x3x42(1x)3ln2x4xx3(1x)2L2(1x)+8xX0(x)xlnxμ,

    (6)

    where xμ=μ2/M2W with μ=O(mt) and

    L2(1x)=x1dtlnt1t.

    (7)

    The function XlNL corresponds to X(xt) in the charm sector. It results from the renormalization group (RG) calculation in next-to-leading-order logarithmic approximation (NLLA) and is given as follows:

    XlNL=CNL4B(1/2)NL,

    (8)

    where CNL and B(1/2)NL correspond to the Z0-penguin and the box-type contribution, respectively, given as [16]

    CNL=x(mc)32K2425c[(487K++2411K69677K33)(4παs(μ)+152121875(1K1c))+(1lnμ2m2c)(16K+8K)117624413125K+23026875K+352918448125K33+K(562484375K+814486875K+4563698144375K33)],B(1/2)NL=x(mc)4K2425c[3(1K2)(4παs(μ)+152121875(1K1c))lnμ2m2crlnr1r30512+15212625K2+155817500KK2],

    (9)

    where r=m2l/m2c(μ), μ=O(mc) and

    K=αs(MW)αs(μ),Kc=αs(μ)αs(mc),K+=K625,K=K1225,K33=K2=K125.

    (10)

    In the following, we consider the transitions between the baryon octet (Ξ, Σ, Σ and N) and the transitions from the baryon decuplet to the octet ΩΞ.

    The transition matrix elements of the vector and axial-vector currents between the baryon octets can be parametrized in terms of six form factors f1,2,3(q2) and g1,2,3(q2):

    B8(P,Sz)|ˉdγμ(1γ5)s|B8(P,Sz)=ˉu(P,Sz)[γμf1(q2)+iσμνqνMf2(q2)+qμMf3(q2)]u(P,Sz)ˉu(P,Sz)[γμg1(q2)+iσμνqνMg2(q2)+qμMg3(q2)]γ5u(P,Sz),

    (11)

    where q=PP, and M denotes the mass of the parent baryon octet B8. The form factors for the B8B8 transition, fi(q2) and gi(q2) , can be expressed by the following formulas [17]:

    fm=aFm(q2)+bDm(q2),gm=aFm+3(q2)+bDm+3(q2),(m=1,2,3),

    (12)

    where Fi(q2) and Di(q2) , with i=1,2,,6, are different functions of q2 for each of the six form factors. Some remarks are necessary [17]:

    ● The constants a and b in Eq. (12) are the SU(3) Clebsch-Gordan coefficients that appear when an octet operator is sandwiched between octet states.

    ● For q2=0, the form factor f1(0) is equal to the electric charge of the baryon, therefore F1(0)=1 and D1(0)=0.

    ● The weak f2(0) form factor can be computed using the anomalous magnetic moments of proton and neutron (κp and κn) in the exact SU(3) symmetry. Here, F2(0)=κp+12κn and D2(0)=32κn.

    g1(0) is a linear combination of two parameters, F and D.

    ● Since gnp2=F5(q2)+D5(q2)=0 and gΞΞ02=D5(q2)F5(q2)=0, we get F5(q2)=D5(q2)=0. Therefore, all pseudo-tensor form factors g2 vanish in all decays up to symmetry-breaking effects.

    ● In the sdˉνν decay, the f3 and g3 terms are proportional to the neutrino mass and thus can be neglected for the decays considered in this work.

    Since the invariant mass squared of lepton pairs in the hyperon decays is relatively small, it is expected that the q2 distribution in the form factors has small impact on the decay widths. We list the expressions for f1, f2 and g1 at q2=0 in Table 1.

    Table 1

    Table 1.  The form factors for the BB transition, f1(0), f2(0) and g1(0) [17], where the experimental anomalous magnetic moments are κp=1.793±0.087 and κn=1.913±0.069 [18], with the two coupling constants F=0.463±0.008 and D=0.804±0.008 [18]. Here, g1/f1 is positive for the neutron decay, and all other signs are fixed using this sign convention.
    BBΛnΣ+pΞ0ΛΞ0Σ0ΞΣ
    f1(0)32132121
    f2(0)32κp(κp+2κn)32(κp+κn)12(κpκn)κpκn
    g1(0)32(F+D/3)(FD)32(FD/3)12(F+D)F+D
    DownLoad: CSV
    Show Table

    Hence, Eq. (11) can be rewritten as:

    B8(P,Sz)|ˉdγμ(1γ5)s|B8(P,Sz)=ˉu(P,Sz)[γμf1(q2)+iσμνqνMf2(q2)γμg1(q2)γ5]u(P,Sz).

    (13)

    The helicity amplitudes of the hadronic contribution are defined as

    HVλ,λVB8(P,λ)|ˉdγμs|B8(P,λ)ϵVμ(λV),

    (14)

    HAλ,λVB8(P,λ)|ˉdγμγ5s|B8(P,λ)ϵVμ(λV).

    (15)

    Here, λ() denotes the helicity of the parent (daughter) baryon in the initial (final) state, and λV is the helicity of the virtual intermediate vector particle. It can be shown that the helicity amplitudes HV,Aλ,λVhave the following simple forms [19]:

    HV12,0=iQq2[(M+M)f1q2Mf2],HA12,0=iQ+q2(MM)g1,HV12,1=i2Q[f1+M+MMf2],HA12,1=i2Q+g1.

    (16)

    In the above, Q±=(M±M)2q2, and M (M) is the parent (daughter) baryon mass in the initial (final) state. The amplitudes for the negative helicity are obtained from the relations,

    HVλ,λV=HVλ,λV,HAλ,λV=HAλ,λV.

    (17)

    The complete helicity amplitudes are obtained by

    Hλ,λV=HVλ,λVHAλ,λV.

    (18)

    Due to the lack of experimental data for the M1 and E2 transitions from the baryon decuplet to the octet, the vector transition matrix element for ΩΞ can not be determined. In this work we follow Ref. [18] , and consider only the axial-vector current matrix element [18, 20, 21]:

    Ξ(P,Sz)|ˉdγμγ5s|Ω(P,Sz)=ˉuΞ(P,Sz){CA5(q2)gμν+CA6(q2)qμqν+[CA3(q2)γα+CA4(q2)p]×(qαgμνqνgαμ)}uνΩ(P,Sz).

    (19)

    Here, uνΩ(P,Sz) represents the Rarita-Schwinger spinor that describes the baryon decuplet Ω with spin 32. In Ref. [22] it is shown that CA3(q2) and CA4(q2) are proportional to the mass difference of the initial and final baryons, and thus are suppressed. In the chiral limit, CA5(q2) and CA6(q2) are related by CA6(q2)=M2NCA5(q2)/q2 [20]. In our calculations, we use CA5(0)=1.653±0.006 for ΩΞ , which is the same as ΩΞ0 in the SU(3) limit [18]. The helicity amplitude can then be expressed as:

    HAλ,λV=Ξ(P,λ)|ˉdγμγ5s|Ω(P,λ)ϵμV(λV)

    (20)

    =ˉuΞ(P,λ)[CA5(q2)gμν+CA6(q2)qμqν]uνΩ(P,λ)ϵμV(λV).

    (21)

    Here, λ() and λV have the same definition as in Eqs. (14)-(15). It can be shown that the helicity amplitudes HAλ,λVhave the following simple forms [19]:

    HA12,0=HA12,0=i2Q+3EVq2CA5(q2),HA12,1=HA12,1=iQ+3CA5(q2),HA12,1=HA12,1=iQ+CA5(q2).

    (22)

    The differential decay width for BBˉνν is given as:

    dΓdq2=dΓLdq2+dΓTdq2.

    (23)

    Here, dΓL/dq2 and dΓT/dq2 are the longitudinal and transverse parts of the decay width, and their explicit expressions are given by

    dΓLdq2=Nq2p12(2π)3M2(|H12,0|2+|H12,0|2),

    (24)

    dΓTdq2=Nq2p12(2π)3M2(|H12,1|2+|H12,1|2+|H12,1|2+|H12,1|2).

    (25)

    In Eqs. (24) and (25), p=Q+Q/2M is the magnitude of the momentum of B in the rest frame of B, and N=2N1(0)+N1(mτ) with

    N1(ml)=|GF2α2πsin2ΘW(VcdVcsXlNL(ml)+VtdVtsX(xt))|2.

    (26)

    Note that we have neglected the electron and muon masses.

    One can then obtain the decay width

    Γ=(MM)20dq2dΓdq2.

    (27)

    With the input parameters given in Table 2 and the formulae from the last section, the LO and NLO results for μc = 1 GeV, μt = 100 GeV , and μc=3GeV,μt=300GeV , are listed Table 3.

    Table 2

    Table 2.  The input parameters used in this work.
    The masses and lifetimes of baryons in the initial and final states [23]
    mp=938.2720813 MeVmΣ+=1189.37 MeVmΞ0=1314.86 MeV
    mn=939.5654133 MeVmΣ=1197.45 MeVmΞ=1321.71 MeV
    mΛ=1115.683 MeVmΣ0=1192.642 MeVmΩ=1672.45 MeV
    τΞ0=2.90×1010sτΞ=1.639×1010sτΩ=0.821×1010s
    τΛ=2.632×1010sτΣ+=0.8018×1010s
    Physical constants and CKM parameters [23, 24]
    GF=1.16637387×105GeV2sin2θW=0.23122αs(mZ)=0.1182αα(mZ)=1/128
    mτ=1776.86 MeVmc=1.275 GeVmt=173.0 GeVmW=80.379 GeVmZ=91.1876 GeV
    A=0.836λ=0.22453ˉρ=0.122ˉη=0.355
    DownLoad: CSV
    Show Table

    Table 3

    Table 3.  The LO, NLO, NLO+SUSY and NLO+M331 results for the branching ratio of rare hyperon decays for μc=1 GeV,μt=100 GeV and μc=3 GeV,μt=300 GeV.
    Branching ratioB(Λnνˉν)B(Σ+pνˉν)B(Ξ0Λνˉν)B(Ξ0Σ0νˉν)B(ΞΣνˉν)B(ΩΞνˉν)
    μc=1 GeVLO2.85×10126.88×10131.06×10121.77×10132.17×10131.78×1011
    NLO1.98×10125.01×10137.35×10131.24×10131.52×10131.93×1011
    μt=100 GeVNLO+SUSY (Set.I)8.14×10122.06×10123.02×10125.08×10136.23×10137.94×1011
    NLO+SUSY (Set.II)3.78×10129.55×10131.40×10122.36×10132.89×10133.69×1011
    NLO+M3311.24×10113.13×10124.59×10127.71×10139.45×10131.20×1010
    μc=3 GeVLO1.10×10122.65×10134.10×10136.83×10148.37×10141.07×1011
    NLO1.20×10123.04×10134.46×10137.50×10149.19×10141.17×1011
    μt=300 GeVNLO+SUSY (Set.I)5.85×10121.48×10122.17×10123.65×10134.47×10135.71×1011
    NLO+SUSY (Set.II)2.35×10125.94×10138.72×10131.47×10131.80×10132.29×1011
    NLO+M3311.02×10112.58×10123.80×10126.37×10137.81×10139.95×1011
    BESIII sensitivity [12]3×1074×1078×1079×1072.6×105
    DownLoad: CSV
    Show Table

    From the results in Table 3 one can see that:

    ● The branching ratios of the sdνˉν rare hyperon decays range from 1014 to 1011 .

    ● For μc=1GeV,μt=100GeV , the NLO results are smaller than the LO ones by about 30%, while for μc=3GeV,μt=300GeV , the NLO results are larger than the LO ones by about 10%.

    ● The LO results vary by about 50% from μc=1 GeV, μt=100 GeV to μc=3GeV,μt=300GeV, while the NLO ones vary by about 30%. As expected, the NLO results depend less on the mass scales.

    ● The branching ratio of ΩΞνˉν is the largest among the 6 channels. It is of the same order as for K+π+νˉν and KLπ0νˉν.

    At present, there is a small number of experimental studies, and thus most experimental constraints are less severe. The prospects for rare and forbidden hyperon decays at BESIII were analyzed in a recent publication Ref. [12]. We quote the experimental sensitivity for all decay modes in Table 3 . Unfortunately, one can see that the current BESIII experiment will not be able to probe these hyperon decays. We hope this may be improved at future experimental facilities like the Super Tau-Charm Factory.

    Note that due to the Ademollo-Gatto theorem [25], the form factor f1(0) does not receive any SU(3) symmetry breaking correction. However, f2(0) can be computed using the anomalous magnetic moments of proton and neutron (κp and κn) in the exact SU(3) symmetry. The experimental data for κp and κn already include the SU(3) symmetry breaking effects [18]:

    κp[O(m0s)]=1.363±0.069,κp[O(m0s)]=1.416±0.049,

    (28)

    κp[O(m0s)+O(m1s)]=1.793±0.087,κp[O(m0s)+O(m1s)]=1.913±0.069.

    (29)

    The uncertainties from κp and κn in the effect of SU(3) symmetry breaking is approximately 25%. We calculated the effect of κp and κn on the branching ratio of Σ+pνˉν in the case of NLO with the energy scale μc=1GeV and μt=100GeVsuch that:

    B(Σ+pνˉν)[O(m0s)]=(4.86±0.04)×1013,B(Σ+pνˉν)[O(m0s)+O(m1s)]=(5.01±0.08)×1013.

    (30)

    Next, we consider the uncertainty of the branching ratio of Σ+pνˉν and Λnνˉν in the case of NLO with the energy scale μc=1GeV and μt=100GeV. This uncertainty comes from the parameters F=0.463±0.008 and D=0.804±0.008 [18] in the form factor g1(0):

    B(Σ+pνˉν)=(5.01±0.12)×1013,B(Λnνˉν)=(2.03±0.05)×1012.

    (31)

    For the decay ΩΞνˉν, CA5(0)=1.653±0.006 in the SU(3) symmetry, while CA5(0)=1.612±0.007 in the SU(3) symmetry breaking [18]. In the case of NLO with the energy scale μc=1 GeV and μt=100 GeV the branching ratio B(ΩΞνˉν) is then calculated as:

    B(ΩΞνˉν)(sy)=(1.84±0.01)×1011,B(ΩΞνˉν)(br)=(1.93±0.01)×1011.

    (32)

    As an illustration of the effects of q2 distribution in the form factors, we attempt to use the following parametrization for all form factors:

    F(q2)=F(0)1q2m2,

    (33)

    with m representing the initial hyperon mass. For example, for the NLO case of μc=1GeV and μt= 100 GeV, we obtain:

    B(Λnνˉν)(F(0))=1.98×1012,B(Λnνˉν)(F(q2))=2.03×1012,B(Σ+pνˉν)(F(0))=5.05×1013,B(Σ+pνˉν)(F(q2))=5.16×1013.

    (34)

    We find that the differences between the two cases are small, about a few percent.

    When all the above errors in the form factors are included, we find that the final branching ratios for most decay modes have an uncertainty of about 5% to 10% .

    The effective Hamiltonian for sdνˉν in the generalized supersymmetry (SUSY) extension of SM is given in Eq. (5), with X(xt) replaced by [26]

    Xnew=X(xt)+XH(xtH)+Cχ+CN.

    (35)

    Here, xtH=m2t/m2H± , and XH(xtH) corresponds to the charged Higgs contribution. Cχ and CN denote the chargino and neutralino contributions

    Cχ=X0χ+XLLχRUsLdL+XLRχRUsLtR+XLRχRUtRdL,CN=XNRDsLdL,

    where Xiχ and XN depend on the SUSY masses, and respectively on the chargino and neutralino mixing angles. The explicit expressions for XH(x), Cχ and CN can be found in Ref. [26]. The R parameters are defined in terms of mass insertions, and their upper limits are listed in Table 4 [26]. It should be mentioned that the phase ϕ of RUsLtR and RUtRdL is a free parameter which ranges from 0 to 2π. We set ϕ=0 as a central result.

    Table 4

    Table 4.  Upper limits for the R parameters. Note that the phase of RUsLtR and RUtRdL is unconstrained.
    quantityupper limit
    RDsLdL(11255i)m˜dL500GeV
    RUsLdL(11254i)m˜uL500GeV
    RUsLtRMin{231(m˜uL500GeV)3,43}×eiϕ,0<ϕ<2π
    RUtRdL37(m˜uL500GeV)2×eiϕ,0<ϕ<2π
    DownLoad: CSV
    Show Table

    The parameters in Table 5 are adopted for detailed calculations [27]. The assumption M10.5M2 was made [28]. With the above parameters, the branching ratios of hyperon decays are listed in Table 3, and are significantly enhanced compared with the SM results. Taking as examples the decays Λnνˉν and \Omega^-\to\Xi^{-}\nu\bar{\nu} with the energy scale \mu_c = 1~{\rm GeV} and \mu_t = 100~{\rm GeV} , we obtain:

    Table 5

    Table 5.  Parameters and their ranges used in Ref. [27]. All mass parameters are in GeV.
    parameters [27]the meaning of parameters [27]the range of parameters [27]Set.I [27]Set.II [27]
    βThe angle of unitarity triangle-180^{\circ}\leqslant \beta \leqslant 180^{\circ}\tan \beta=2\tan\beta=20
    M_ACP-odd Higgs boson mass150\leqslant M_A \leqslant 400333260
    M_2SU(2) gaugino mass; we use M_1 GUT-related to M_250\leqslant M_2 \leqslant 800181750
    μSupersymmetric Higgs mixing parameter-400\leqslant \mu \leqslant 400-375-344
    M_{sl}Common flavour diagonal slepton mass parameter95\leqslant M_{sl} \leqslant 1000105884
    M_{sq}Common mass parameter for the first two generations of squarks240\leqslant M_{sq} \leqslant 1000308608
    M_{\tilde t_L}Squark mass parameter for the right stop50\leqslant M_{\tilde t_R} \leqslant1000279338
    DownLoad: CSV
    Show Table

    \begin{split} {\rm NLO}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 1.98\times10^{-12},\\& {\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 1.93\times10^{-11}, \end{split}

    (36)

    \begin{split}{\rm Set.I}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 8.14\times10^{-12},\\ &{\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 7.94\times10^{-11}, \end{split}

    (37)

    \begin{split} {\rm Set.II}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 3.78\times10^{-12},\\& {\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 3.69\times10^{-11}. \end{split}

    (38)

    Comparing the results of NLO+SUSY (Set. I) and (Set. II) with the ones of NLO, we see that all branching ratios are roughly enhanced by a factor of 4 and 2, respectively. However, none of these results can be probed at the ongoing experimental facilities, like the BESIII experiment [12].

    The so-called minimal 331 model is an extension of SM at the TeV scale, where the weak gauge group of SM SU(2)_L is extended to SU(3)_L . In this model, a new neutral Z^{\prime} gauge boson can give very important additional contributions, for it can transmit FCNC at the tree level. In Table 3, we denote this model as M331. More details of this model can be found in Ref. [29]. The minimal 331 model leads to a new term in the effective Hamiltonian [30]:

    {\cal H}^{Z^{\prime}}_{\rm eff} = \sum\limits_{l = e,\mu,\tau}\frac{G_{F}}{\sqrt{2}}\frac{\tilde V_{32}^{*}\tilde V_{31}}{3}\Big(\frac{M_{Z}}{M_{Z^{'}}}\Big)^{2}\cos^{2}\theta_{W}(\bar{s}d)_{V-A}(\bar{\nu}_{l}\nu_{l})_{V-A}+{\rm h.c.},

    (39)

    with M_{Z^{\prime}} = 1\; {\rm TeV} , {\rm Re}[(\tilde V_{32}^{*}\tilde V_{31})^2] = 9.2\times 10^{-6} and {\rm Im}[(\tilde V_{32}^{*}\tilde V_{31})^2] = 4.8\times 10^{-8} [30]. The other parameters are the same as the SM inputs [23, 24]. The function X(x_{t}) in Eq. (5) can be redefined as X(x_{t}) = X^{\rm SM}(x_t)+ \Delta X with

    \Delta X = \frac{\sin^2\theta_{W}\cos^2\theta_{W}}{\alpha}\frac{2\pi}{3}\frac{\tilde V_{32}^{*}\tilde V_{31}}{V_{ts}^{*}V_{td}}\Big(\frac{M_{Z}}{M_{Z^{\prime}}}\Big)^{2}.

    (40)

    With the modified function X(x_{t}) and considering the NLO contribution, the branching ratios of rare hyperon decays in the minimal 331 model can be calculated, as shown in Table 3. The NLO+M331 predictions are much larger than the NLO results in SM, and are two and four times larger than the results of NLO+SUSY (Set. I) and NLO+SUSY (Set. II), respectively.

    FCNC processes offer important tools to test SM and to search for possible new physics. The two decays K^{+}\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} have been widely studied, while the corresponding baryon sector has not been explored. In this work, we studied the s\to d\nu\bar{\nu} rare hyperon decays. We adopted the leading order approximations for the form factors for small q^{2} , and derived expressions for the decay width. We applied the decay width formula to both SM and new physics contributions. Different energy scales were considered. The branching ratios in SM range from 10^{-14} to 10^{-11} , and the largest is of the same order as for the decays K^+\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} . When all the errors in the form factors are included, we found that the final branching ratios for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from MSSM, the branching ratios are enhanced by a factor of 2 \sim 4 . The branching ratios of hyperon decays in the minimal 331 model are seven times larger than the SM results.

    The authors are grateful to Profs. Hai-Bo Li and Wei Wang for useful discussions.

    [1] A. J. Buras and J. Girrbach, Rept. Prog. Phys., 77: 086201 (2014), arXiv:1306.3775[hep-ph doi: 10.1088/0034-4885/77/8/086201
    [2] A. J. Buras, F. Schwab, and S. Uhlig, Rev. Mod. Phys., 80: 965 (2008), arXiv:hep-ph/0405132 doi: 10.1103/RevModPhys.80.965
    [3] T. K. Komatsubara, Prog. Part. Nucl. Phys., 67: 995 (2012), arXiv:1203.6437[hep-ex doi: 10.1016/j.ppnp.2012.04.001
    [4] M. Blanke, PoS KAON, 13: 010 (2013), arXiv:1305.5671[hep-ph doi: 10.22323/1.181.0010
    [5] C. Smith, arXiv: 1409.6162[hep-ph]
    [6] A. J. Buras, PoS EPS, HEP2015: 602 (2015), arXiv:1510.00128[hep-ph doi: 10.22323/1.234.0602
    [7] A. J. Buras, D. Buttazzo, J. Girrbach-Noe et al, JHEP, 1511: 033 (2015), arXiv:1503.02693[hep-ph doi: 10.1007/JHEP11(2015)033
    [8] E. Cortina Gil et al, Phys. Lett. B, 791: 156 (2019), arXiv:1811.08508[hep-ex doi: 10.1016/j.physletb.2019.01.067
    [9] J. K. Ahn et al, Phys. Rev. D, 81: 072004 (2010), arXiv:0911.4789[hep-ex doi: 10.1103/PhysRevD.81.072004
    [10] K. Shiomi (KOTO Collaboration), arXiv: 1411.4250[hep-ex]
    [11] N. H. Christ, X. Feng, A. Lawson et al, PoS LATTICE, 2016: 306 (2016) doi: 10.22323/1.256.0306
    [12] H. B. Li, Front. Phys. (Beijing) 12, no. 5, 121301 (2017)[Front. Phys. 12, 121301(2017)] Erratum: [Front. Phys. (Beijing) 14, no. 6, 64001(2019)] doi: 10.1007/s11467-019-0910-7, 10.1007/s11467-017-0691-9, arXiv:1612.01775[hep-ex]
    [13] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys., 68: 1125 (1996), arXiv:hep-ph/9512380 doi: 10.1103/RevModPhys.68.1125
    [14] T. Inami and C. S. Lim, Prog. Theor. Phys., 65: 297 (1981) doi: 10.1143/PTP.65.297
    [15] G. Buchalla and A. J. Buras, Nucl. Phys. B, 400: 225 (1993) doi: 10.1016/0550-3213(93)90405-E
    [16] G. Buchalla and A. J. Buras, Nucl. Phys. B, 412: 106 (1994), arXiv:hep-ph/9308272 doi: 10.1016/0550-3213(94)90496-0
    [17] J. M. Gaillard and G. Sauvage, Ann. Rev. Nucl. Part. Sci., 34: 351 (1984) doi: 10.1146/annurev.ns.34.120184.002031
    [18] G. S. Yang and H. C. Kim, Phys. Rev. C, 92: 035206 (2015), arXiv:1504.04453[hep-ph doi: 10.1103/PhysRevC.92.035206
    [19] H. W. Ke, X. Q. Li, and Z. T. Wei, Phys. Rev. D, 77: 014020 (2008), arXiv:0710.1927[hep-ph doi: 10.1103/PhysRevD.77.014020
    [20] C. Alexandrou, T. Leontiou, J. W. Negele et al, Phys. Rev. Lett., 98: 052003 (2007), arXiv:hep-lat/0607030 doi: 10.1103/PhysRevLett.98.052003
    [21] C. H. Llewellyn Smith, Phys. Rept., 3: 261 (1972) doi: 10.1016/0370-1573(72)90010-5
    [22] S. M. Berman and M. J. G. Veltman, Nuovo Cim., 38: 993 (1965) doi: 10.1007/BF02748611
    [23] M. Tanabashi et al (Particle Data Group), Phys. Rev. D, 98(3): 030001 (2018) doi: 10.1103/PhysRevD.98.030001
    [24] A. J. Buras, M. Gorbahn, U. Haisch et al, Phys. Rev. Lett., 95: 261805 (2005), arXiv:hep-ph/0508165 doi: 10.1103/PhysRevLett.95.261805
    [25] M. Ademollo and R. Gatto, Phys. Rev. Lett., 13: 264 (1964) doi: 10.1103/PhysRevLett.13.264
    [26] A. J. Buras, A. Romanino, and L. Silvestrini, Nucl. Phys. B, 520: 3 (1998), arXiv:hepph/9712398 doi: 10.1016/S0550-3213(98)00169-2
    [27] A. J. Buras, T. Ewerth, S. Jager et al, Nucl. Phys. B, 714: 103 (2005), arXiv:hepph/0408142 doi: 10.1016/j.nuclphysb.2005.02.014
    [28] S. P. Martin, Adv. Ser. Direct. High Energy Phys., 21: 1 (2010), arXiv:hep-ph/9709356 doi: 10.1142/97898128396570001,10.1142/97898143075050001
    [29] D. Ng, Phys. Rev. D, 49: 4805 (1994), arXiv:hep-ph/9212284 doi: 10.1103/PhysRevD.49.4805
    [30] C. Promberger, S. Schatt, and F. Schwab, Phys. Rev. D, 75: 115007 (2007), arXiv:hepph/0702169[HEP-PH doi: 10.1103/PhysRevD.75.115007
  • [1] A. J. Buras and J. Girrbach, Rept. Prog. Phys., 77: 086201 (2014), arXiv:1306.3775[hep-ph doi: 10.1088/0034-4885/77/8/086201
    [2] A. J. Buras, F. Schwab, and S. Uhlig, Rev. Mod. Phys., 80: 965 (2008), arXiv:hep-ph/0405132 doi: 10.1103/RevModPhys.80.965
    [3] T. K. Komatsubara, Prog. Part. Nucl. Phys., 67: 995 (2012), arXiv:1203.6437[hep-ex doi: 10.1016/j.ppnp.2012.04.001
    [4] M. Blanke, PoS KAON, 13: 010 (2013), arXiv:1305.5671[hep-ph doi: 10.22323/1.181.0010
    [5] C. Smith, arXiv: 1409.6162[hep-ph]
    [6] A. J. Buras, PoS EPS, HEP2015: 602 (2015), arXiv:1510.00128[hep-ph doi: 10.22323/1.234.0602
    [7] A. J. Buras, D. Buttazzo, J. Girrbach-Noe et al, JHEP, 1511: 033 (2015), arXiv:1503.02693[hep-ph doi: 10.1007/JHEP11(2015)033
    [8] E. Cortina Gil et al, Phys. Lett. B, 791: 156 (2019), arXiv:1811.08508[hep-ex doi: 10.1016/j.physletb.2019.01.067
    [9] J. K. Ahn et al, Phys. Rev. D, 81: 072004 (2010), arXiv:0911.4789[hep-ex doi: 10.1103/PhysRevD.81.072004
    [10] K. Shiomi (KOTO Collaboration), arXiv: 1411.4250[hep-ex]
    [11] N. H. Christ, X. Feng, A. Lawson et al, PoS LATTICE, 2016: 306 (2016) doi: 10.22323/1.256.0306
    [12] H. B. Li, Front. Phys. (Beijing) 12, no. 5, 121301 (2017)[Front. Phys. 12, 121301(2017)] Erratum: [Front. Phys. (Beijing) 14, no. 6, 64001(2019)] doi: 10.1007/s11467-019-0910-7, 10.1007/s11467-017-0691-9, arXiv:1612.01775[hep-ex]
    [13] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys., 68: 1125 (1996), arXiv:hep-ph/9512380 doi: 10.1103/RevModPhys.68.1125
    [14] T. Inami and C. S. Lim, Prog. Theor. Phys., 65: 297 (1981) doi: 10.1143/PTP.65.297
    [15] G. Buchalla and A. J. Buras, Nucl. Phys. B, 400: 225 (1993) doi: 10.1016/0550-3213(93)90405-E
    [16] G. Buchalla and A. J. Buras, Nucl. Phys. B, 412: 106 (1994), arXiv:hep-ph/9308272 doi: 10.1016/0550-3213(94)90496-0
    [17] J. M. Gaillard and G. Sauvage, Ann. Rev. Nucl. Part. Sci., 34: 351 (1984) doi: 10.1146/annurev.ns.34.120184.002031
    [18] G. S. Yang and H. C. Kim, Phys. Rev. C, 92: 035206 (2015), arXiv:1504.04453[hep-ph doi: 10.1103/PhysRevC.92.035206
    [19] H. W. Ke, X. Q. Li, and Z. T. Wei, Phys. Rev. D, 77: 014020 (2008), arXiv:0710.1927[hep-ph doi: 10.1103/PhysRevD.77.014020
    [20] C. Alexandrou, T. Leontiou, J. W. Negele et al, Phys. Rev. Lett., 98: 052003 (2007), arXiv:hep-lat/0607030 doi: 10.1103/PhysRevLett.98.052003
    [21] C. H. Llewellyn Smith, Phys. Rept., 3: 261 (1972) doi: 10.1016/0370-1573(72)90010-5
    [22] S. M. Berman and M. J. G. Veltman, Nuovo Cim., 38: 993 (1965) doi: 10.1007/BF02748611
    [23] M. Tanabashi et al (Particle Data Group), Phys. Rev. D, 98(3): 030001 (2018) doi: 10.1103/PhysRevD.98.030001
    [24] A. J. Buras, M. Gorbahn, U. Haisch et al, Phys. Rev. Lett., 95: 261805 (2005), arXiv:hep-ph/0508165 doi: 10.1103/PhysRevLett.95.261805
    [25] M. Ademollo and R. Gatto, Phys. Rev. Lett., 13: 264 (1964) doi: 10.1103/PhysRevLett.13.264
    [26] A. J. Buras, A. Romanino, and L. Silvestrini, Nucl. Phys. B, 520: 3 (1998), arXiv:hepph/9712398 doi: 10.1016/S0550-3213(98)00169-2
    [27] A. J. Buras, T. Ewerth, S. Jager et al, Nucl. Phys. B, 714: 103 (2005), arXiv:hepph/0408142 doi: 10.1016/j.nuclphysb.2005.02.014
    [28] S. P. Martin, Adv. Ser. Direct. High Energy Phys., 21: 1 (2010), arXiv:hep-ph/9709356 doi: 10.1142/97898128396570001,10.1142/97898143075050001
    [29] D. Ng, Phys. Rev. D, 49: 4805 (1994), arXiv:hep-ph/9212284 doi: 10.1103/PhysRevD.49.4805
    [30] C. Promberger, S. Schatt, and F. Schwab, Phys. Rev. D, 75: 115007 (2007), arXiv:hepph/0702169[HEP-PH doi: 10.1103/PhysRevD.75.115007
  • 加载中

Cited by

1. Mahmood, S., Atif, F., Ahmad, A. et al. New physics in four body decays of the mesons with missing energy[J]. International Journal of Modern Physics A, 2025. doi: 10.1142/S0217751X25500721
2. He, X.-G., Tandean, J., Valencia, G. Δs=2 nonleptonic hyperon decays as probes of new physics[J]. Physical Review D, 2023, 108(5): 055012. doi: 10.1103/PhysRevD.108.055012
3. Liu, H., Wang, W., Xing, Z.-P. Baryonic form factors induced by tensor currents in light-front approach[J]. Physical Review D, 2023, 108(3): 035008. doi: 10.1103/PhysRevD.108.035008
4. Geng, L.-S., Camalich, J.M., Shi, R.-X. New physics in s → d semileptonic transitions: rare hyperon vs. kaon decays[J]. Journal of High Energy Physics, 2022, 2022(2): 178. doi: 10.1007/JHEP02(2022)178
5. Ahmed, A., Mahmood, S., Tahir, F. et al. Nonstandard interactions in hyperons decay with di-neutrinos in the final state[J]. International Journal of Modern Physics A, 2022, 37(3): 2250014. doi: 10.1142/S0217751X22500142
6. Su, J.-Y., Tandean, J. Exploring leptoquark effects in hyperon and kaon decays with missing energy[J]. Physical Review D, 2020, 102(7): 075032. doi: 10.1103/PhysRevD.102.075032
7. Li, G., Su, J.-Y., Tandean, J. Flavor-changing hyperon decays with light invisible bosons[J]. Physical Review D, 2019, 100(7): 075003. doi: 10.1103/PhysRevD.100.075003

Tables(5)

Get Citation
Xiao-Hui Hu and Zhen-Xing Zhao. Study of the {{s\to d\nu\bar{\nu}}} rare hyperon decays in the Standard Model and new physics[J]. Chinese Physics C, 2019, 43(9): 093104. doi: 10.1088/1674-1137/43/9/093104
Xiao-Hui Hu and Zhen-Xing Zhao. Study of the {{s\to d\nu\bar{\nu}}} rare hyperon decays in the Standard Model and new physics[J]. Chinese Physics C, 2019, 43(9): 093104.  doi: 10.1088/1674-1137/43/9/093104 shu
Milestone
Received: 2019-01-18
Revised: 2019-05-04
Article Metric

Article Views(2656)
PDF Downloads(21)
Cited by(7)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Study of the {{s\to d\nu\bar{\nu}}} rare hyperon decays in the Standard Model and new physics

    Corresponding author: Xiao-Hui Hu, huxiaohui@sjtu.edu.cn
    Corresponding author: Zhen-Xing Zhao, star_0027@sjtu.edu.cn
  • INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China

Abstract: FCNC processes offer important tools to test the Standard Model (SM) and to search for possible new physics. In this work, we investigate the s\to d\nu\bar{\nu} rare hyperon decays in SM and beyond. We find that in SM the branching ratios for these rare hyperon decays range from 10^{-14} to 10^{-11} . When all the errors in the form factors are included, we find that the final branching ratios for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from new physics, the generalized SUSY extension of SM and the minimal 331 model, the decay widths for these channels can be enhanced by a factor of 2 \sim 7.

    HTML

    1.   Introduction
    • The flavor changing neutral current (FCNC) transitions provide a critical test of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism in the Standard Model (SM), and allow to search for possible new physics. In SM, the FCNC transition s\to d\nu\bar{\nu} proceeds through the Z-penguin and electroweak box diagrams, and thus the decay probabilities are strongly suppressed. In this case, a precise study allows to perform very stringent tests of SM and ensures large sensitivity to potential new degrees of freedom.

      A large number of studies have been performed of the K^{+}\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} processes, and reviews of these two decay modes can be found in [16]. On the theoretical side, using the most recent input parameters, the SM predictions for the two branching ratios are [7]

      {\cal B}(K^{+}\to\pi^{+}\nu\bar{\nu})_{{\rm SM}} = (8.4\pm1.0)\times10^{-11},

      (1)

      {\cal B}(K_{L}\to\pi^{0}\nu\bar{\nu})_{{\rm SM}} = (3.4\pm0.6)\times10^{-11}.

      (2)

      The dominant uncertainty comes from the CKM matrix elements and the charm contribution. On the experimental side, the NA62 experiment at the CERN SPS has reported the first search for K^{+}\to\pi^{+}\nu\bar{\nu} using the decay-in-flight technique, and the corresponding observed upper limit is [8] :

      {\cal B}(K^{+}\to\pi^{+}\nu\bar{\nu})_{{\rm exp}}<14\times 10^{-10},\quad \rm{at~ 95\%~CL}.

      (3)

      Similarly, the E391a collaboration reported the 90% C.L. upper bound [9]

      {\cal B}(K_{L}\to\pi^{0}\nu\bar{\nu})_{{\rm exp}}\leqslant 2.6\times10^{-8}.

      (4)

      The KOTO experiment, an upgrade of the E391a experiment, aims at a first observation of the K_{L}\to\pi^{0}\nu\bar{\nu} decay at J-PARC around 2020 [3, 10]. Given the goal of a 10% precision by NA62, the authors of Ref. [11] intend to carry out lattice QCD calculations to determine the long-distance contributions to the K^{+}\to\pi^{+}\nu\bar{\nu} amplitude.

      Analogous to K^{+}\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} , the rare hyperon decays B_{i}\to B_{f}\nu\bar{\nu} also proceed via s\to d\nu\bar{\nu} at the quark level, and thus offer important tools to test SM and to search for possible new physics. Compared to the widely considered K^{+}\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} , there are few studies devoted to rare hyperon decays B_{i}\to B_{f}\nu\bar{\nu} . This work aims to perform a preliminary theoretical research of the rare hyperon decays both in and beyond SM.

      A study of the hyperon decays at the BESIII experiment is proposed using the hyperon parents of the J/\psi decay. The electron-positron collider BEPCII provides a clean experimental environment. About 10^{6} - 10^{8} hyperons, Λ, Σ, Ξ and Ω, are produced in the J/\psi and \psi(2S) decays with the proposed data samples at the BESIII experiment. Based on these samples, the sensitivity of the measurement of the branching ratios of hyperon decays is in the range of 10^{-5} - 10^{-8} . The author of Ref. [12] proposed that rare decays and decays with invisible final states may be probed.

      The paper is organized as follows. In Sec. 2, our computing framework is presented. Sec. 3 is devoted to performing the numerical calculations. The branching ratios of several rare hyperon decays are calculated in SM. The new physics contribution, the Minimal Supersymmetric Standard Model (MSSM) and the minimal 331 model, are considered. We also discuss possible uncertainties from the form factors. The last section contains a short summary.

    2.   Theoretical framework
    • The next-to-leading order (NLO) effective Hamiltonian for s\to d\nu\bar{\nu} reads [13]:

      \begin{split} {\cal H}_{{\rm eff}} =& \frac{G_{F}}{\sqrt{2}}\frac{\alpha}{2\pi\sin^{2}\theta_{W}}\sum\limits_{l = e,\mu,\tau}[V_{cs}^{*}V_{cd}X_{N{L}}^{l}\\&+V_{ts}^{*}V_{td}X(x_{t})](\bar{s}d)_{V-A}(\bar{\nu}_{l}\nu_{l})_{V-A}+{\rm h.c.}, \end{split}

      (5)

      where X(x_{t}) and X_{N{L}}^{l} are relevant for the top and the charm contribution, respectively. Their explicit expressions can be found in Ref. [13]. Here, x_t = m_t^2/m^2_W . To leading order in \alpha_s , the function X(x_t) relevant for the top contribution reads [14, 15]

      \begin{split} X(x) =& X_0(x)+{\alpha_s\over4\pi} X_1(x), \\ X_0(x) =& {x\over 8}\left[ -{2+x\over 1-x}+{3x-6\over (1-x)^2}\ln x\right], \\ X_1(x) =& -{23x+5x^2-4x^3\over 3(1-x)^2}+{x-11x^2+x^3+x^4\over (1-x)^3}\ln x \\&+{8x+4x^2+x^3-x^4\over 2(1-x)^3}\ln^2 x \\ &-{4x-x^3\over (1-x)^2}L_2(1-x)+8x{\partial X_0(x)\over\partial x}\ln x_\mu, \end{split}

      (6)

      where x_\mu = \mu^2/M^2_W with \mu = {\cal O}(m_t) and

      L_2(1-x) = \int^x_1 {\rm d}t {\ln t\over 1-t}.

      (7)

      The function X^l_{NL} corresponds to X(x_t) in the charm sector. It results from the renormalization group (RG) calculation in next-to-leading-order logarithmic approximation (NLLA) and is given as follows:

      X^l_{NL} = C_{NL}-4 B^{(1/2)}_{NL},

      (8)

      where C_{NL} and B^{(1/2)}_{NL} correspond to the Z^0 -penguin and the box-type contribution, respectively, given as [16]

      \begin{split} C_{NL} =& {x(m_c)\over 32}K^{{24\over 25}}_c\left[\left({48\over 7}K_++ {24\over 11}K_-- {696\over 77}K_{33}\right)\right.\left({4\pi\over\alpha_s(\mu)}\right.\\&\left.+ {15212\over 1875} (1-K^{-1}_c)\right)+\left(1-\ln{\mu^2\over m_c^2}\right)(16K_+-8K_-)\\ &-{1176244\over 13125}K_+- {2302\over 6875}K_-+{3529184\over 48125}K_{33} \\ &+\left. K\left({56248\over 4375}K_+-{81448\over 6875}K_-+{4563698\over 144375}K_{33} \right)\right],\\ B^{(1/2)}_{NL} =& {x(m_c)\over 4}K^{24\over 25}_c\left[ 3(1-K_2)\left( {4\pi\over\alpha_s(\mu)}+{15212\over 1875}(1-K^{-1}_c)\right)\right.\\ &-\left.\ln{\mu^2\over m_c^2}- {r\ln r\over 1-r}-{305\over 12}+{15212\over 625}K_2+{15581\over 7500}K K_2 \right], \end{split}

      (9)

      where r = m^2_l/m^2_c(\mu) , \mu = {\cal O}(m_c) and

      \begin{split} K = {\alpha_s(M_W)\over\alpha_s(\mu)},\quad K_c = {\alpha_s(\mu)\over\alpha_s(m_c)} ,\\ K_+ = K^{{6\over 25}},\quad K_- = K^{-{12\over 25}},\quad K_{33} = K_2 = K^{-{1\over 25}}. \end{split}

      (10)

      In the following, we consider the transitions between the baryon octet (Ξ, Σ, Σ and N) and the transitions from the baryon decuplet to the octet \Omega^-\to\Xi^- .

      The transition matrix elements of the vector and axial-vector currents between the baryon octets can be parametrized in terms of six form factors f_{1,2,3}(q^2) and g_{1,2,3}(q^2) :

      \begin{split}& \langle B^{\prime}_8(P^{\prime},S_{z}^{\prime})|\bar{d}\gamma_{\mu}(1-\gamma_{5})s|B_8(P,S_{z})\rangle = \\&\quad \bar{u}(P^{\prime},S_{z}^{\prime})\left[\gamma_{\mu}f_{1}(q^{2}) +i\sigma_{\mu\nu}\frac{q^{\nu}}{M}f_{2}(q^{2})+\frac{q_{\mu}}{M}f_{3}(q^{2})\right]u(P,S_{z})\\ &\quad -\bar{u}(P^{\prime},S_{z}^{\prime}) \left[\gamma_{\mu}g_{1}(q^{2})+i\sigma_{\mu\nu}\frac{q^{\nu}}{M}g_{2}(q^{2})+\frac{q_{\mu}}{M}g_{3}(q^{2})\right]\gamma_{5}u(P,S_{z}), \end{split}

      (11)

      where q = P-P^{\prime} , and M denotes the mass of the parent baryon octet B_8 . The form factors for the B_8\to B_8^{\prime} transition, f_i(q^2) and g_i(q^2) , can be expressed by the following formulas [17]:

      \begin{split} f_{m} =& aF_m(q^2)+bD_m(q^2), \\ g_{m} = & aF_{m+3}(q^2)+bD_{m+3}(q^2), \quad (m = 1,2,3), \end{split}

      (12)

      where F_i(q^2) and D_i(q^2) , with i = 1,2,\cdots,6 , are different functions of q^2 for each of the six form factors. Some remarks are necessary [17]:

      ● The constants a and b in Eq. (12) are the SU(3) Clebsch-Gordan coefficients that appear when an octet operator is sandwiched between octet states.

      ● For q^2 = 0 , the form factor f_1(0) is equal to the electric charge of the baryon, therefore F_1(0) = 1 and D_1(0) = 0 .

      ● The weak f_2(0) form factor can be computed using the anomalous magnetic moments of proton and neutron ( \kappa_p and \kappa_n ) in the exact SU(3) symmetry. Here, F_2(0) = \kappa_p + \displaystyle\frac{1}{2}\kappa_n and D_2(0) = -\displaystyle\frac{3}{2}\kappa_n .

      g_1(0) is a linear combination of two parameters, F and D.

      ● Since g_2^{n\to p} = F_5(q^2)+D_5(q^2) = 0 and g_2^{\Xi^{-}\to\Xi^{0}} = D_5(q^2)-F_5(q^2) = 0 , we get F_5(q^2) = D_5(q^2) = 0 . Therefore, all pseudo-tensor form factors g_2 vanish in all decays up to symmetry-breaking effects.

      ● In the s\to d\bar\nu\nu decay, the f_3 and g_3 terms are proportional to the neutrino mass and thus can be neglected for the decays considered in this work.

      Since the invariant mass squared of lepton pairs in the hyperon decays is relatively small, it is expected that the q^2 distribution in the form factors has small impact on the decay widths. We list the expressions for f_1 , f_2 and g_1 at q^2 = 0 in Table 1.

      B\to B'\Lambda\to n\Sigma^{+}\to p\Xi^0\to\Lambda\Xi^0\to\Sigma^0\Xi^-\to\Sigma^-
      f_1(0)-\sqrt{\displaystyle\frac{3}{2}}-1\sqrt{\displaystyle\frac{3}{2}}\displaystyle\frac{1}{\sqrt{2}}1
      f_2(0) -\sqrt{\displaystyle\frac{3}{2}}\kappa_{p}-(\kappa_p+2\kappa_n) \sqrt{\displaystyle\frac{3}{2}}(\kappa_p+\kappa_n) -\displaystyle\frac{1}{\sqrt{2}}(\kappa_p-\kappa_n)\kappa_p-\kappa_n
      g_1(0) -\sqrt{\displaystyle\frac{3}{2}}(F+D/3)-(F-D) \sqrt{\displaystyle\frac{3}{2}}(F-D/3) -\displaystyle\frac{1}{\sqrt{2}}(F+D) F+D

      Table 1.  The form factors for the B\to B' transition, f_1(0), f_2(0) and g_1(0) [17], where the experimental anomalous magnetic moments are \kappa_p=1.793\pm0.087 and \kappa_n=-1.913\pm0.069 [18], with the two coupling constants F=0.463\pm0.008 and D=0.804\pm0.008 [18]. Here, g_1/f_1 is positive for the neutron decay, and all other signs are fixed using this sign convention.

      Hence, Eq. (11) can be rewritten as:

      \begin{split}&\langle B^{\prime}_8(P^{\prime},S_{z}^{\prime})|\bar{d}\gamma_{\mu}(1-\gamma_{5})s|B_8(P,S_{z})\rangle = \\&\quad \bar{u}(P^{\prime},S_{z}^{\prime})\left[\gamma_{\mu}f_{1}(q^{2}) +i\sigma_{\mu\nu}\frac{q^{\nu}}{M}f_{2}(q^{2})-\gamma_{\mu}g_{1}(q^{2})\gamma_{5}\right]u(P,S_{z}). \end{split}

      (13)

      The helicity amplitudes of the hadronic contribution are defined as

      H_{\lambda^{\prime},\lambda_{V}}^{V}\equiv\langle B^{\prime}_8(P^{\prime},\lambda^{\prime})|\bar{d}\gamma^{\mu}s|B_8(P,\lambda)\rangle\epsilon_{V\mu}^{*}(\lambda_{V}),

      (14)

      H_{\lambda^{\prime},\lambda_{V}}^{A}\equiv\langle B^{\prime}_8(P^{\prime},\lambda^{\prime})|\bar{d}\gamma^{\mu}\gamma_{5}s|B_8(P,\lambda)\rangle\epsilon_{V\mu}^{*}(\lambda_{V}).

      (15)

      Here, \lambda^{(\prime)} denotes the helicity of the parent (daughter) baryon in the initial (final) state, and \lambda_{V} is the helicity of the virtual intermediate vector particle. It can be shown that the helicity amplitudes H_{\lambda^{\prime},\lambda_{V}}^{V,A} have the following simple forms [19]:

      \begin{split}H_{\frac{1}{2},0}^{V} =& -i\frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}}\left[(M+M^{\prime})f_1-\frac{q^2}{M}f_2\right], \\H_{\frac{1}{2},0}^{A} = &-i\frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}}(M-M^{\prime})g_1, \\ H_{\frac{1}{2},1}^{V} =& i\sqrt{2Q_{-}}\left[-f_1+\frac{M+M^{\prime}}{M}f_2\right],\\ H_{\frac{1}{2},1}^{A} =& -i\sqrt{2Q_{+}}g_1. \end{split}

      (16)

      In the above, Q_{\pm} = (M\pm M^{\prime})^{2}-q^{2} , and M ( M^{\prime} ) is the parent (daughter) baryon mass in the initial (final) state. The amplitudes for the negative helicity are obtained from the relations,

      H_{-\lambda^{\prime},-\lambda_{V}}^{V} = H_{\lambda^{\prime},\lambda_{V}}^{V},\qquad H_{-\lambda^{\prime},-\lambda_{V}}^{A} = -H_{\lambda^{\prime},\lambda_{V}}^{A}.

      (17)

      The complete helicity amplitudes are obtained by

      H_{\lambda^{\prime},\lambda_{V}} = H_{\lambda^{\prime},\lambda_{V}}^{V}-H_{\lambda^{\prime},\lambda_{V}}^{A}.

      (18)

      Due to the lack of experimental data for the M_1 and E_2 transitions from the baryon decuplet to the octet, the vector transition matrix element for \Omega^-\to \Xi^- can not be determined. In this work we follow Ref. [18] , and consider only the axial-vector current matrix element [18, 20, 21]:

      \begin{split}&\!\!\! \langle \Xi^-(P',S'_z)|\bar{d}\gamma_{\mu}\gamma_5s|\Omega^-(P,S_z)\rangle = \bar{u}_{\Xi^-}(P',S'_z)\left\{C_5^A(q^2)g_{\mu\nu}\right.\\ &\;\; +C_6^{A}(q^2)q_{\mu}q_{\nu}+\left[C_{3}^{A}(q^2)\gamma^{\alpha}+ C_4^{A}(q^2)p'\right] \\ &\;\; \times\left.(q_{\alpha}g_{\mu\nu}-q_{\nu}g_{\alpha\mu})\right\} u^{\nu}_{\Omega^-}(P,S_z).\end{split}

      (19)

      Here, u^{\nu}_{\Omega^-}(P,S_z) represents the Rarita-Schwinger spinor that describes the baryon decuplet \Omega^- with spin \displaystyle\frac{3}{2} . In Ref. [22] it is shown that C_3^A(q^2) and C_4^A(q^2) are proportional to the mass difference of the initial and final baryons, and thus are suppressed. In the chiral limit, C_5^A(q^2) and C_6^A(q^2) are related by C_6^A(q^2) = M_{N}^2C_5^A(q^2)/q^2 [20]. In our calculations, we use C_5^A(0) = 1.653\pm0.006 for \Omega^-\to\Xi^- , which is the same as \Omega^-\to\Xi^0 in the SU(3) limit [18]. The helicity amplitude can then be expressed as:

      H^A_{\lambda',\lambda_{V}} = \langle \Xi^-(P',\lambda')|\bar{d}\gamma_{\mu}\gamma_5s|\Omega^-(P,\lambda)\rangle\epsilon^{\star\mu}_{V}(\lambda_{V})

      (20)

      \! =\! \bar{u}_{\Xi^{-}}(P',\lambda') \left[C_{5}^A(q^2)g_{\mu\nu}\!+\! C_6^A(q^2)q_{\mu}q_{\nu}\right] u_{\Omega^-}^\nu(P,\lambda)\epsilon^{\star\mu}_{V}(\lambda_{V}).

      (21)

      Here, \lambda^{(\prime)} and \lambda_{V} have the same definition as in Eqs. (14)-(15). It can be shown that the helicity amplitudes H_{\lambda^{\prime},\lambda_{V}}^{A} have the following simple forms [19]:

      \begin{split} H^A_{\frac{1}{2},0} =& H^A_{-\frac{1}{2},0} = i\sqrt{\frac{2Q_{+}}{3}}\frac{E_{V}}{\sqrt{q^2}}C_{5}^A(q^2),\\ H^A_{\frac{1}{2},1} =& H^A_{-\frac{1}{2},-1} = i\sqrt{\frac{Q_{+}}{3}}C_{5}^A(q^2),\\ H^A_{\frac{1}{2},-1} =& H^A_{-\frac{1}{2},1} = i\sqrt{Q_{+}}C_{5}^A(q^2). \end{split}

      (22)

      The differential decay width for B\to B^{\prime}\bar\nu\nu is given as:

      \frac{{\rm d}\Gamma}{{\rm d}q^{2}} = \frac{{\rm d}\Gamma_{L}}{{\rm d}q^{2}}+\frac{{\rm d}\Gamma_{T}}{{\rm d}q^{2}}.

      (23)

      Here, {\rm d}\Gamma_{L}/{\rm d}q^{2} and {\rm d}\Gamma_{T}/{\rm d}q^{2} are the longitudinal and transverse parts of the decay width, and their explicit expressions are given by

      \frac{{\rm d}\Gamma_{L}}{{\rm d}q^{2}} = N\frac{q^{2}p^{\prime}}{12(2\pi)^{3}M^{2}}(|H_{\frac{1}{2},0}|^{2}+|H_{-\frac{1}{2},0}|^{2}),

      (24)

      \frac{{\rm d}\Gamma_{T}}{{\rm d}q^{2}} = N\frac{q^{2}p^{\prime}}{12(2\pi)^{3}M^{2}}(|H_{\frac{1}{2},1}|^{2}+|H_{-\frac{1}{2},-1}|^{2}+|H_{\frac{1}{2},-1}|^{2}+|H_{-\frac{1}{2},1}|^{2}).

      (25)

      In Eqs. (24) and (25), p^{\prime} = \sqrt{Q_{+}Q_{-}}/2M is the magnitude of the momentum of B^{\prime} in the rest frame of B , and N = 2N_{1}(0)+N_{1}(m_{\tau}) with

      N_{1}(m_{l}) = \left|\frac{G_{F}}{\sqrt{2}}\frac{\alpha}{2\pi\sin^{2}\Theta_{W}}\left(V_{cd}^{*}V_{cs}X_{NL}^{l}(m_{l})+V_{td}^{*}V_{ts}X(x_{t})\right)\right|^{2}.

      (26)

      Note that we have neglected the electron and muon masses.

      One can then obtain the decay width

      \Gamma = \int_{0}^{(M-M^{\prime})^{2}}{\rm d}q^{2}\frac{{\rm d}\Gamma}{{\rm d}q^{2}}.

      (27)
    3.   Numerical results and discussion

      3.1.   Calculations in SM

    • With the input parameters given in Table 2 and the formulae from the last section, the LO and NLO results for \mu_{c} = 1 GeV, \mu_{t} = 100 GeV , and \mu_{c} = 3\; \;{\rm GeV},\; \mu_{t} = 300\; \;{\rm GeV} , are listed Table 3.

      The masses and lifetimes of baryons in the initial and final states [23]
      m_{p}=938.2720813 MeVm_{\Sigma^{+}}=1189.37 MeVm_{\Xi^{0}}=1314.86 MeV
      m_{n}=939.5654133 MeVm_{\Sigma^{-}}=1197.45 MeVm_{\Xi^{-}}=1321.71 MeV
      m_{\Lambda}=1115.683 MeVm_{\Sigma^{0}}=1192.642 MeVm_{\Omega^{-}}=1672.45 MeV
      \tau_{\Xi^{0}}=2.90\times10^{-10}\;{\rm{s}}\tau_{\Xi^{-}}=1.639\times10^{-10}\;{\rm{s}}\tau_{\Omega^{-}}=0.821\times10^{-10}\;{\rm{s}}
      \tau_{\Lambda}=2.632\times10^{-10}\;{\rm{s}}\tau_{\Sigma^{+}}=0.8018\times10^{-10}\;{\rm{s}}
      Physical constants and CKM parameters [23, 24]
      G_F=1.16637387\times10^{-5}\;{\rm GeV}^{-2}\sin^2\theta_{W}=0.23122\alpha_{s}(m_{Z})=0.1182\alpha\equiv\alpha(m_{Z})=1/128
      m_{\tau}=1776.86 MeVm_{c}=1.275 GeVm_{t}=173.0 GeVm_{W}=80.379 GeVm_{Z}=91.1876 GeV
      A=0.836\lambda=0.22453\bar{\rho}=0.122\bar{\eta}=0.355

      Table 2.  The input parameters used in this work.

      Branching ratio{\cal{B}}(\Lambda\rightarrow n\nu\bar{\nu}){\cal{B}}(\Sigma^{+}\rightarrow p\nu\bar{\nu}){\cal{B}}(\Xi^{0}\rightarrow\Lambda\nu\bar{\nu}){\cal{B}}(\Xi^{0}\rightarrow\Sigma^{0}\nu\bar{\nu}){\cal{B}}(\Xi^{-}\rightarrow\Sigma^{-}\nu\bar{\nu}){\cal{B}}(\Omega^{-}\rightarrow\Xi^{-}\nu\bar{\nu})
      \mu_{c}=1 GeVLO2.85\times10^{-12}6.88\times10^{-13}1.06\times10^{-12}1.77\times10^{-13}2.17\times10^{-13}1.78\times10^{-11}
      NLO1.98\times10^{-12}5.01\times10^{-13}7.35\times10^{-13}1.24\times10^{-13}1.52\times10^{-13}1.93\times10^{-11}
      \mu_{t}=100 GeVNLO+SUSY (Set.I)8.14\times10^{-12}2.06\times10^{-12}3.02\times10^{-12}5.08\times10^{-13}6.23\times10^{-13}7.94\times10^{-11}
      NLO+SUSY (Set.II)3.78\times10^{-12}9.55\times10^{-13}1.40\times10^{-12}2.36\times10^{-13}2.89\times10^{-13}3.69\times10^{-11}
      NLO+\rm M 3311.24\times10^{-11}3.13\times10^{-12}4.59\times10^{-12}7.71\times10^{-13}9.45\times10^{-13}1.20\times10^{-10}
      \mu_{c}=3 GeVLO1.10\times10^{-12}2.65\times10^{-13}4.10\times10^{-13}6.83\times10^{-14}8.37\times10^{-14}1.07\times10^{-11}
      NLO1.20\times10^{-12}3.04\times10^{-13}4.46\times10^{-13}7.50\times10^{-14}9.19\times10^{-14}1.17\times10^{-11}
      \mu_{t}=300 GeVNLO+SUSY (Set.I)5.85\times10^{-12}1.48\times10^{-12}2.17\times10^{-12}3.65\times10^{-13}4.47\times10^{-13}5.71\times10^{-11}
      NLO+SUSY (Set.II)2.35\times10^{-12}5.94\times10^{-13}8.72\times10^{-13}1.47\times10^{-13}1.80\times10^{-13}2.29\times10^{-11}
      NLO+\rm M 3311.02\times10^{-11}2.58\times10^{-12}3.80\times10^{-12}6.37\times10^{-13}7.81\times10^{-13}9.95\times10^{-11}
      BESIII sensitivity [12]3\times10^{-7}4\times10^{-7}8\times10^{-7}9\times10^{-7}-2.6\times10^{-5}

      Table 3.  The LO, NLO, NLO+SUSY and NLO+\rm M331 results for the branching ratio of rare hyperon decays for \mu_{c}=1~\;{\rm GeV},\mu_{t}=100~\;{\rm GeV} and \mu_{c}=3~\;{\rm GeV},\mu_{t}=300~\;{\rm GeV}.

      From the results in Table 3 one can see that:

      ● The branching ratios of the s\to d\nu\bar{\nu} rare hyperon decays range from 10^{-14} to 10^{-11} .

      ● For \mu_{c} = 1\;{\rm GeV},\mu_{t} = 100\;{\rm GeV} , the NLO results are smaller than the LO ones by about 30%, while for \mu_{c} = 3\;{\rm GeV},\mu_{t} = 300\;{\rm GeV} , the NLO results are larger than the LO ones by about 10%.

      ● The LO results vary by about 50% from \mu_{c} = 1~{\rm GeV}, \mu_{t} = 100~{\rm GeV} to \mu_{c} = 3\;{\rm GeV},\mu_{t} = 300\;{\rm GeV} , while the NLO ones vary by about 30%. As expected, the NLO results depend less on the mass scales.

      ● The branching ratio of \Omega^{-}\to\Xi^{-}\nu\bar{\nu} is the largest among the 6 channels. It is of the same order as for K^+\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} .

      At present, there is a small number of experimental studies, and thus most experimental constraints are less severe. The prospects for rare and forbidden hyperon decays at BESIII were analyzed in a recent publication Ref. [12]. We quote the experimental sensitivity for all decay modes in Table 3 . Unfortunately, one can see that the current BESIII experiment will not be able to probe these hyperon decays. We hope this may be improved at future experimental facilities like the Super Tau-Charm Factory.

    • 3.2.   Uncertainties of the form factors

    • Note that due to the Ademollo-Gatto theorem [25], the form factor f_1(0) does not receive any SU(3) symmetry breaking correction. However, f_2(0) can be computed using the anomalous magnetic moments of proton and neutron ( \kappa_p and \kappa_n ) in the exact SU(3) symmetry. The experimental data for \kappa_p and \kappa_n already include the SU(3) symmetry breaking effects [18]:

      \kappa_p\left[{\cal O}(m^0_s)\right] = 1.363\pm0.069,\,\,\kappa_p \left[{\cal O}(m^0_s)\right] = -1.416 \pm 0.049,

      (28)

      \begin{split}& \kappa_p\left[{\cal O}(m^0_s) + {\cal O}(m^1_s)\right] = 1.793\pm0.087,\\ &\kappa_p \left[{\cal O}(m^0_s) + {\cal O}(m^1_s)\right] = -1.913\pm0.069. \end{split}

      (29)

      The uncertainties from \kappa_p and \kappa_n in the effect of SU(3) symmetry breaking is approximately 25%. We calculated the effect of \kappa_p and \kappa_n on the branching ratio of \Sigma^+\to p\nu\bar{\nu} in the case of NLO with the energy scale \mu_c = 1\;\rm{GeV} and \mu_t = 100\;\rm{GeV} such that:

      \begin{split} &{\cal{B}}(\Sigma^+\to p\nu\bar{\nu})\left[{\cal O}(m^0_s) \right]= (4.86\pm0.04)\times10^{-13}, \\&{\cal{B}}(\Sigma^+\to p\nu\bar{\nu})\left[{\cal O}(m^0_s) + {\cal O}(m^1_s)\right] = (5.01\pm0.08)\times10^{-13}. \end{split}

      (30)

      Next, we consider the uncertainty of the branching ratio of \Sigma^+\to p\nu\bar{\nu} and \Lambda\to n\nu\bar{\nu} in the case of NLO with the energy scale \mu_c = 1\;\rm{GeV} and \mu_t = 100\;\rm{GeV} . This uncertainty comes from the parameters F = 0.463\pm 0.008 and D = 0.804\pm0.008 [18] in the form factor g_1(0) :

      \begin{split}{\cal{B}}(\Sigma^+\to p\nu\bar{\nu}) =& (5.01 \pm 0.12)\times10^{-13},\\ {\cal{B}}(\Lambda\to n\nu\bar{\nu}) =& (2.03 \pm 0.05)\times10^{-12}. \end{split}

      (31)

      For the decay \Omega^-\to \Xi^-\nu\bar{\nu} , C_5^A(0) = 1.653\pm0.006 in the SU(3) symmetry, while C_5^A(0) = 1.612\pm0.007 in the SU(3) symmetry breaking [18]. In the case of NLO with the energy scale \mu_c = 1~{\rm GeV} and \mu_t = 100~{\rm GeV} the branching ratio {\cal{B}}(\Omega^-\to \Xi^-\nu\bar{\nu}) is then calculated as:

      \begin{split} &{\cal{B}}(\Omega^-\to \Xi^-\nu\bar{\nu})(sy) = (1.84 \pm 0.01)\times10^{-11},\\&{\cal{B}}(\Omega^-\to \Xi^-\nu\bar{\nu})(br) = (1.93 \pm 0.01)\times10^{-11}. \end{split}

      (32)

      As an illustration of the effects of q^2 distribution in the form factors, we attempt to use the following parametrization for all form factors:

      \begin{aligned}F(q^2) = \frac{F(0)}{1-\dfrac{q^2}{m^2}}, \end{aligned}

      (33)

      with m representing the initial hyperon mass. For example, for the NLO case of \mu_c = 1\; \;{\rm GeV} and \mu_t = 100 GeV, we obtain:

      \begin{split} &{\cal{B}}(\Lambda\rightarrow n\nu\bar{\nu})(F(0)) = 1.98\times10^{-12},\\&{\cal{B}}(\Lambda\rightarrow n\nu\bar{\nu})(F(q^2)) = 2.03 \times10^{-12},\\ &{\cal{B}}(\Sigma^{+}\rightarrow p\nu\bar{\nu})(F(0)) = 5.05\times10^{-13},\\&{\cal{B}}(\Sigma^{+}\rightarrow p\nu\bar{\nu})(F(q^2)) = 5.16 \times10^{-13}. \end{split}

      (34)

      We find that the differences between the two cases are small, about a few percent.

      When all the above errors in the form factors are included, we find that the final branching ratios for most decay modes have an uncertainty of about 5% to 10% .

    • 3.3.   Contribution from MSSM

    • The effective Hamiltonian for s\to d\nu\bar{\nu} in the generalized supersymmetry (SUSY) extension of SM is given in Eq. (5), with X(x_{t}) replaced by [26]

      X_{{\rm new}} = X(x_{t})+X_{H}(x_{tH})+C_{\chi}+C_{N}.

      (35)

      Here, x_{tH} = m_{t}^{2}/m_{H^{\pm}}^{2} , and X_{H}(x_{tH}) corresponds to the charged Higgs contribution. C_{\chi} and C_{N} denote the chargino and neutralino contributions

      \begin{split} C_{\chi} =& X_{\chi}^{0}+X_{\chi}^{LL}R_{s_{L}d_{L}}^{U}+X_{\chi}^{LR}R_{s_{L}t_{R}}^{U}+X_{\chi}^{LR*}R_{t_{R}d_{L}}^{U},\\ C_{N} =& X_{N}R_{s_{L}d_{L}}^{D}, \end{split}

      where X_{\chi}^{i} and X_{N} depend on the SUSY masses, and respectively on the chargino and neutralino mixing angles. The explicit expressions for X_{H}(x) , C_{\chi} and C_{N} can be found in Ref. [26]. The R parameters are defined in terms of mass insertions, and their upper limits are listed in Table 4 [26]. It should be mentioned that the phase \phi of R_{s_{L}t_{R}}^{U} and R_{t_{R}d_{L}}^{U} is a free parameter which ranges from 0 to 2\pi . We set \phi = 0 as a central result.

      quantityupper limit
      R_{s_{L}d_{L}}^{D}(-112-55i)\displaystyle\frac{m_{\tilde{d}_{L}}}{500\;{\rm GeV}}
      R_{s_{L}d_{L}}^{U}(-112-54i)\displaystyle\frac{m_{\tilde{u}_{L}}}{500\;{\rm GeV}}
      R_{s_{L}t_{R}}^{U}{\rm Min}\{231\left(\displaystyle\frac{m_{\tilde{u}_{L}}}{500\;{\rm GeV}}\right)^{3},43\}\times {\rm e}^{{\rm i}\phi},0 < \phi < 2\pi
      R_{t_{R}d_{L}}^{U}37\left(\displaystyle\frac{m_{\tilde{u}_{L}}}{500\;{\rm GeV}}\right)^{2}\times {\rm e}^{{\rm i}\phi},0 < \phi < 2\pi

      Table 4.  Upper limits for the R parameters. Note that the phase of R_{s_{L}t_{R}}^{U} and R_{t_{R}d_{L}}^{U} is unconstrained.

      The parameters in Table 5 are adopted for detailed calculations [27]. The assumption M_{1}\approx0.5M_{2} was made [28]. With the above parameters, the branching ratios of hyperon decays are listed in Table 3, and are significantly enhanced compared with the SM results. Taking as examples the decays \Lambda\to n\nu\bar{\nu} and \Omega^-\to\Xi^{-}\nu\bar{\nu} with the energy scale \mu_c = 1~{\rm GeV} and \mu_t = 100~{\rm GeV} , we obtain:

      parameters [27]the meaning of parameters [27]the range of parameters [27]Set.I [27]Set.II [27]
      βThe angle of unitarity triangle-180^{\circ}\leqslant \beta \leqslant 180^{\circ}\tan \beta=2\tan\beta=20
      M_ACP-odd Higgs boson mass150\leqslant M_A \leqslant 400333260
      M_2SU(2) gaugino mass; we use M_1 GUT-related to M_250\leqslant M_2 \leqslant 800181750
      μSupersymmetric Higgs mixing parameter-400\leqslant \mu \leqslant 400-375-344
      M_{sl}Common flavour diagonal slepton mass parameter95\leqslant M_{sl} \leqslant 1000105884
      M_{sq}Common mass parameter for the first two generations of squarks240\leqslant M_{sq} \leqslant 1000308608
      M_{\tilde t_L}Squark mass parameter for the right stop50\leqslant M_{\tilde t_R} \leqslant1000279338

      Table 5.  Parameters and their ranges used in Ref. [27]. All mass parameters are in GeV.

      \begin{split} {\rm NLO}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 1.98\times10^{-12},\\& {\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 1.93\times10^{-11}, \end{split}

      (36)

      \begin{split}{\rm Set.I}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 8.14\times10^{-12},\\ &{\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 7.94\times10^{-11}, \end{split}

      (37)

      \begin{split} {\rm Set.II}:~&{\cal B}(\Lambda\to n\nu\bar{\nu}) = 3.78\times10^{-12},\\& {\cal B}(\Omega^-\to\Xi^{-}\nu\bar{\nu}) = 3.69\times10^{-11}. \end{split}

      (38)

      Comparing the results of NLO+SUSY (Set. I) and (Set. II) with the ones of NLO, we see that all branching ratios are roughly enhanced by a factor of 4 and 2, respectively. However, none of these results can be probed at the ongoing experimental facilities, like the BESIII experiment [12].

    • 3.4.   Contribution from the minimal 331 model

    • The so-called minimal 331 model is an extension of SM at the TeV scale, where the weak gauge group of SM SU(2)_L is extended to SU(3)_L . In this model, a new neutral Z^{\prime} gauge boson can give very important additional contributions, for it can transmit FCNC at the tree level. In Table 3, we denote this model as M331. More details of this model can be found in Ref. [29]. The minimal 331 model leads to a new term in the effective Hamiltonian [30]:

      {\cal H}^{Z^{\prime}}_{\rm eff} = \sum\limits_{l = e,\mu,\tau}\frac{G_{F}}{\sqrt{2}}\frac{\tilde V_{32}^{*}\tilde V_{31}}{3}\Big(\frac{M_{Z}}{M_{Z^{'}}}\Big)^{2}\cos^{2}\theta_{W}(\bar{s}d)_{V-A}(\bar{\nu}_{l}\nu_{l})_{V-A}+{\rm h.c.},

      (39)

      with M_{Z^{\prime}} = 1\; {\rm TeV} , {\rm Re}[(\tilde V_{32}^{*}\tilde V_{31})^2] = 9.2\times 10^{-6} and {\rm Im}[(\tilde V_{32}^{*}\tilde V_{31})^2] = 4.8\times 10^{-8} [30]. The other parameters are the same as the SM inputs [23, 24]. The function X(x_{t}) in Eq. (5) can be redefined as X(x_{t}) = X^{\rm SM}(x_t)+ \Delta X with

      \Delta X = \frac{\sin^2\theta_{W}\cos^2\theta_{W}}{\alpha}\frac{2\pi}{3}\frac{\tilde V_{32}^{*}\tilde V_{31}}{V_{ts}^{*}V_{td}}\Big(\frac{M_{Z}}{M_{Z^{\prime}}}\Big)^{2}.

      (40)

      With the modified function X(x_{t}) and considering the NLO contribution, the branching ratios of rare hyperon decays in the minimal 331 model can be calculated, as shown in Table 3. The NLO+M331 predictions are much larger than the NLO results in SM, and are two and four times larger than the results of NLO+SUSY (Set. I) and NLO+SUSY (Set. II), respectively.

    4.   Conclusions
    • FCNC processes offer important tools to test SM and to search for possible new physics. The two decays K^{+}\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} have been widely studied, while the corresponding baryon sector has not been explored. In this work, we studied the s\to d\nu\bar{\nu} rare hyperon decays. We adopted the leading order approximations for the form factors for small q^{2} , and derived expressions for the decay width. We applied the decay width formula to both SM and new physics contributions. Different energy scales were considered. The branching ratios in SM range from 10^{-14} to 10^{-11} , and the largest is of the same order as for the decays K^+\to\pi^{+}\nu\bar{\nu} and K_{L}\to\pi^{0}\nu\bar{\nu} . When all the errors in the form factors are included, we found that the final branching ratios for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from MSSM, the branching ratios are enhanced by a factor of 2 \sim 4 . The branching ratios of hyperon decays in the minimal 331 model are seven times larger than the SM results.

      The authors are grateful to Profs. Hai-Bo Li and Wei Wang for useful discussions.

Reference (30)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return