Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model

  • In light of the developments of the chiral constituent quark model (χCQM) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties. The magnetic moments of transitions from the JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.
      PCAS:
  • 加载中
  • [1] J. Ashman et al (EMC Collaboration), Phys. Lett. B, 206:364 (1988); J. Ashman et al (EMC Collaboration), Nucl. Phys. B, 328:1 (1989)
    [2] B. Adeva et al (SMC Collaboration), Phys. Rev. D, 58:112001 (1998)
    [3] P.L. Anthony et al (E142 Collaboration), Phys. Rev. Lett., 71:959 (1993); K. Abe et al (E143 Collaboration), Phys. Rev. Lett., 76:587 (1996); K. Abe et al (E154 Collaboration), Phys. Rev. Lett., 79:26 (1997); P. Adams et al, Phys. Rev. D, 56:5330 (1997)
    [4] E.A. Hawker et al (E866/NuSea Collaboration), Phys. Rev. Lett., 80:3715 (1998); J.C. Peng et al, Phys. Rev. D, 58:092004 (1998); R.S. Towell et al, Phys. Rev. D, 64:052002 (2001)
    [5] A. Airapetian et al (HERMES Collaboration), Phys. Rev. D, 71:012003 (2005)
    [6] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [7] D. B. Lichtenberg, Phys. Rev. D, 15:345 (1977); A. L. Choudry and V. Joshi, Phys. Rev. D, 13:3115 (1976)
    [8] M. Gupta, S. K. Sood, and A. N. Mitra, Phys. Rev. D, 16:216 (1977); M. Gupta and A. N. Mitra, Phys. Rev. D, 18:1585 (1978); M. Gupta, S. K. Sood, and A. N. Mitra, Phys. Rev. D, 19:104 (1979); M. Gupta and N. Kaur, Phys. Rev. D, 28:534 (1983); P. N. Pandit, M. P. Khanna, and M. Gupta, J. Phys. G, 11:683 (1985)
    [9] A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, and V. E. Lyubovitskij, Phys. Rev. D, 73:094013 (2006)
    [10] F. Schlumpf, Phys. Rev. D, 48:4478 (1993); B. Julia-Diaz, and D. O. Riska, Nucl. Phys. A, 739:69 (2004); G. Ramalho, K. Tsushima, and F. Gross, Phys. Rev. D, 80:033004 (2009)
    [11] P. Ha, Phys. Rev. D, 58:113003 (1998); C. S. An, Q. B. Li, D. O. Riska, and B. S. Zou, Phys. Rev. C, 74:055205 (2006)
    [12] M.D. Slaughter, Phys. Rev. C, 82:015208 (2010); M. D. Slaughter, Phys. Rev. D, 84:071303 (2011)
    [13] A. Bernotas, and V. Simonis, Phys. Rev. D, 87:074016 (2013)
    [14] B. O. Kerbikov and Y. A. Simonov, Phys. Rev. D, 62:093016 (2000)
    [15] T. M. Aliev, A. Ozpineci, and M. Savci, Phys. Rev. D, 62:053012 (2000); T. M. Aliev, A. Ozpineci, M. Savc, Phys. Rev. D, 65:056008 (2002); T. M. Aliev, K. Azizi, A. Ozpineci, Phys. Rev. D, 77:114006 (2008); T. M. Aliev, K. Azizi, M. Savc, Nucl. Phys. B, 895:59 (2012); T. M. Aliev, K. Azizi, M. Savc, JHEP, 1304:042 (2013); T. M. Aliev, K. Azizi, M. Savc, J. Phys. G, 40:065003 (2013); T. M. Aliev, A. Ozpineci, V.S. Zamiralov, Phys. Atom. Nucl., 73:1754 (2010)
    [16] F. X. Lee, Phys. Rev. D, 57:1801 (1998); S. L. Zhu, W. Y. P. Hwang, and Z. S. P. Yang, Phys. Rev. D, 57:1527 (1998); A. Iqubal, M. Dey, and J. Dey, Phys. Lett. B, 477:125 (2000)
    [17] B. Patel, A. K. Rai, and P. C. Vinodkumar, J. Phys. G, 35:065001 (2008)
    [18] B. Schwesinger and H. Weigel, Nucl. Phys. A, 540:461 (1992); Y. Oh, Phys. Rev. D, 75:074002 (2007)
    [19] T. Ledwig, A. Silva, and M. Vanderhaeghen, Phys. Rev D, 79:094025 (2009)
    [20] H-C. Kim, M. Praszalowicz, and K. Goeke, Phys. Rev. D, 57:2859 (1998); G. S. Yang, H-C. Kim, M. Praszalowicz, and K. Goeke, Phys. Rev. D, 70:114002 (2004); S. Scholl, and H. Weigel, Nucl. Phys. B, 735:163 (2004)
    [21] E. E. Jenkins and A.V. Manohar, Phys. Lett. B, 335:452 (1994); M. A. Luty, J. March-Russell, and M. J. White, Phys. Rev. D, 51:2332 (1995); A. J. Buchmann, J. A. Hester, and R. F. Lebed, Phys. Rev. D, 66:056002 (2002); A. J. Buchmann and R. F. Lebed, Phys. Rev. D, 67:016002 (2003); R. Flores-Mendieta, Phys. Rev. D, 80:094014 (2009); L. S. Geng, J. M. Camalich, and M. J. V. Vacas, Phys. Rev D, 80:034027 (2009)
    [22] S. Boinepalli, D. B. Leinweber, P. J. Moran, A. G. Williams, J. M. Zanotti, and J. B. Zhang, Phys. Rev. D, 80:054505 (2009); C. Aubin, K. Orginos, V. Pascalutsa, and M. Vanderhaeghen, Phys. Rev. D, 79:051502 (2009); P. E. Shanahan et al (CSSM and QCDSF/UKQCD Collaborations), Phys. Rev. D, 89:074511 (2014)
    [23] F. X. Lee, R. Kelly, L. Zhou, and W. Wilcox, Phys. Lett. B, 627:71 (2005)
    [24] A. J. Buchmann, E. Hernandez, and A. Faessler, Nucl. Phys. A, 569:661 (1994); G. Wagner, A. J. Buchmann, and A. Faessler, Phys. Lett. B, 359:288 (1995); A. J. Buchmann, E. Hernandez, and A. Faessler, Phys. Rev. C, 55:448 (1997); G. Wagner, A. J. Buchmann, and A. Faessler, Phys. Rev. C, 58:3666 (1998); G. Wagner, A. J. Buchmann, and A. Faessler, J. Phys. G, 26:267 (2000); A. J. Buchmann and E. M. Henley, Phys. Rev. C, 63:015202 (2000); A. J. Buchmann, Phys. Rev. Lett., 93:212301 (2004)
    [25] M. N. Butler, M. J. Savage and R. P. Springer, Phys. Lett. B, 304:353 (1993); H-S. Li, Z-W. Liu, X-L. Chen, W-Z. Deng, and S-L. Zhu, arXiv:1706.06458
    [26] T. M. Aliev, A. Ozpineci, and M. Savc, Phys. Rev. D, 65:096004 (2002)
    [27] E. E. Jenkins, Phys. Rev. D, 85:065007 (2012)
    [28] R. F. Lebed and D. R. Martin, Phys. Rev. D, 70:016008 (2004)
    [29] G. Ramalho and K. Tsushima, Phys. Rev. D, 87:093011 (2013)
    [30] G. Kaelbermann and J. M. Eisenberg, Phys. Rev. D, 28:71 (1983); K. Bermuth, D. Drechsel, L. Tiator, and J. B. Seaborn, Phys. Rev. D, 37:89 (1988); D. H. Lu, A. W. Thomas and A. G. Williams, Phys. Rev. C, 55:3108 (1997)
    [31] A. Wirzba and W. Weise, Phys. Lett. B, 188:6 (1987); A. Abada, H. Weigel, and H. Reinhardt, Phys. Lett. B, 366:26 (1996); H. Walliser and G. Holzwarth, Z. Phys. A, 357:317 (1997)
    [32] S. T. Hong, Phys. Rev. D, 76:094029 (2007)
    [33] L. Wang and F. X. Lee, AIP Conf. Proc., 1182:532 (2009)
    [34] D. B. Leinweber, T. Draper and R.M. Woloshyn, Phys. Rev. D, 48:2230 (1993); C. Alexandrou et al, Phys. Rev. D, 69:114506 (2004); C. Alexandrou, P. de Forcrand, H. Neff, J. W. Negele, W. Schroers, and A. Tsapalis, Phys. Rev. Lett., 94:021601 (2005); G. Ramalho and M. T. Pena, Phys. Rev. D, 80:013008 (2009)
    [35] H. C. Kim, M. Polyakov, M. Praszalowicz, G. S. Yang, and K. Goeke, Phys. Rev. D, 71:094023 (2005)
    [36] R. Dhir and R. C. Verma, Eur. Phys. J. A, 42:243 (2009)
    [37] G. Ramalho and K. Tsushima, Phys. Rev. D, 88:053002 (2013)
    [38] D. Keller and K. Hicks, Eur. Phys. J. A, 49:53 (2013)
    [39] S. Weinberg, Physica A, 96:327 (1979); A. Manohar and H. Georgi, Nucl. Phys. B, 234:189 (1984)
    [40] E. J. Eichten, I. Hinchliffe, and C. Quigg, Phys. Rev. D, 45:2269 (1992)
    [41] T. P. Cheng and L. F. Li, Phys. Rev. Lett., 74:2872 (1995); T. P. Cheng and L. F. Li, Phys. Rev. D, 57:344 (1998); T. P. Cheng and L. F. Li, Phys. Rev. Lett., 80:2789 (1998)
    [42] J. Linde, T. Ohlsson, and H. Snellman, Phys. Rev. D, 57:452 (1998); J. Linde, T. Ohlsson, and H. Snellman, Phys. Rev. D, 57:5916 (1998)
    [43] X. Song, J. S. McCarthy, and H. J. Weber, Phys. Rev. D, 55:2624 (1997); X. Song, Phys. Rev. D, 57:4114 (1998)
    [44] H. Dahiya and M. Gupta, Phys. Rev. D, 64:014013 (2001); H. Dahiya and M. Gupta, Int. Jol. of Mod. Phys. A, 19(29):5027 (2004); H. Dahiya, M. Gupta and J. M. S. Rana, Int. Jol. of Mod. Phys. A, 21(21):4255 (2006); H. Dahiya and M. Randhawa, Phys. Rev. D, 90:074001 (2014)
    [45] H. Dahiya and M. Gupta, Eur. Phys. J. C, 52:571 (2007); H. Dahiya and M. Gupta, Phys. Rev. D, 78:014001 (2008)
    [46] N. Sharma, H. Dahiya, P.K. Chatley, and M. Gupta, Phys. Rev. D, 79:077503 (2009); N. Sharma, H. Dahiya and P. K. Chatley, Eur. Phys. J. A, 44:125 (2010); N. Sharma and H. Dahiya, Phys. Rev. D, 81:114003 (2010)
    [47] H. Dahiya and M. Randhawa, Phys. Rev. D, 93:114030 (2016)
    [48] H. Dahiya and M. Randhawa, Int. Jol. of Mod. Phys. A, 32(31):1750185 (2017)
    [49] N. Sharma and H. Dahiya, Pramana,, 81:449 (2013); N. Sharma and H. Dahiya, Pramana, 80:237 (2013)
    [50] H. Dahiya and M. Gupta, Phys. Rev. D, 66:051501(R) (2002)
    [51] A. Girdhar, H. Dahiya and M. Randhawa, Phys. Rev. D, 92:033012 (2015)
    [52] N. Sharma, A. M. Torres, K. P. Khemchandani, and H. Dahiya, Eur. Jol. Phys. A, 49:11 (2013)
    [53] A. M. Torres, K. P. Khemchandani, N. Sharma, and H. Dahiya, Eur. Jol. Phys. A, 48:185 (2012)
    [54] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys. Rev. D, 12:2137 (1975); A. Le Yaouanc, L. Oliver, O. Pene, and J.C. Raynal, Phys. Rev. D, 15:844 (1977)
  • 加载中

Get Citation
Harleen Dahiya. Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model[J]. Chinese Physics C, 2018, 42(9): 093102. doi: 10.1088/1674-1137/42/9/093102
Harleen Dahiya. Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model[J]. Chinese Physics C, 2018, 42(9): 093102.  doi: 10.1088/1674-1137/42/9/093102 shu
Milestone
Received: 2018-05-10
Article Metric

Article Views(1392)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model

  • 1. Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144011, India

Abstract: In light of the developments of the chiral constituent quark model (χCQM) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties. The magnetic moments of transitions from the JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return