Poisson baseline of net-charge fluctuations in relativisticheavy ion collisions

  • Taking doubly charged particles, positive-negative charge pair production and the effects of volume fluctuations into account, the Poisson baseline of the fluctuations of net-charge is studied. Within the Poisson baseline, the cumulants of net-charge are derived. Comparing to the Skellam baseline of net-charge, we infer that doubly charged particles broaden the distributions of net-charge, while positive-negative charge pairs narrow the distributions. Using the ratios of doubly charged particles and positive-negative charge pairs from neutral resonance decays to the total positive charges from THERMINATOR 2, the first four orders of moments and the corresponding moment products are calculated in the Poisson baseline for Au + Au collisions at √sNN=200 GeV at RHIC/STAR. We find that the standard deviation is mainly influenced by the resonance decay, while the third and fourth order moments and corresponding moment products are mainly modified and fit the data of RHIC/STAR much better after including the effects of volume fluctuations.
      PCAS:
  • 加载中
  • [1] M. A. Stephanov, Phys. Rev. Lett., 102: 032301 (2009)
    [2] V. Koch, arXiv:0810.2520 [nucl-th]
    [3] M. Cheng et al, Phys. Rev. D, 79: 074505 (2009)
    [4] W.J. Fu, Y.X. Liu, and Y.L. Wu, Phys. Rev. D, 81: 014028 (2010)
    [5] S. Chatterjee and K.A. Mohan, Phys. Rev. D, 86: 114021 (2012)
    [6] M. A. Stephanov, Phys. Rev. Lett., 107: 052301 (2011)
    [7] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett., 103:262301 (2009)
    [8] S. Collaboration, L. Adamczyk, J. K. Adkins et al, Phys. Rev. Lett., 112: 032302 (2014)
    [9] S. Collaboration, L. Adamczyk, J. K. Adkins et al, Phys. Rev. Lett., 113: 092301 (2014)
    [10] E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep., 270: 1-141 (1996)
    [11] T. J. Tarnowsky, and G. D. Westfall, Phys. Lett. B, 724: 51-55 (2013)
    [12] X. Pan, F. Zhang, Z. Li et al, Phys. Rev. C, 89: 014904 (2014)
    [13] P. K. Netrakanti, X. F. Luo, D. K. Mishra et al, Nucl. Phys. A, 947: 248-259 (2016)
    [14] A. Bzdak, V. Koch, and V. Skokov, Phys. Rev. C, 87: 014901 (2013)
    [15] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C, 88:034911 (2013)
    [16] M. I. Gorenstein and K. Grebieszkow, Phys. Rev. C, 89: 034903 (2014)
    [17] Hao-jie Xu, Phys. Lett. B, 765: 188 (2017)
    [18] A. Bzdak and V. Koch, Phys. Rev. C, 86: 044904 (2012)
    [19] P. Alba, W. Alberico, R. Bellwied et al, Phys. Lett. B, 738: 305-310 (2014)
    [20] S. Collaboration, B. I. Abelev, M. M. Aggarwal et al, Phys. Rev. C, 79: 024906 (2009)
    [21] Lizhu Chen, Xue Pan, Fengbo Xiong, Lin Li, Na Li, Zhiming Li, Gang Wang, and Yuanfang Wu, J. Phys. G: Nucl. Part. Phys., 38: 115004 (2011)
    [22] M. Nahrgang, M. Bluhm, P. Alba et al, Eur. Phys. J. C, 75:573 (2015)
    [23] P. Braun-Munzinger, B. Friman, F. Karsch et al, Nucl. Phys. A, 880: 48 (2012)
    [24] B. Alver, M. Baker, C. Loizides, P. Steinberg, arXiv:0805.4411
    [25] H.-j. Xu, Phys. Rev. C, 94: 054903 (2016)
    [26] J. G. Skellam, J. R. Stat. Soc., 109: 296 (1946)
    [27] V. Skokov, B. Friman and K. Redlich, Phys. Rev. C, 88: 034911 (2013)
    [28] D. K. Mishra, P. Garg, P. K. Netrakanti et al, Phys. Rev. C, 94: 014905 (2016)
    [29] F. Becattini et al, Phys. Rev. C, 64: 024901 (2001)
    [30] P. Braun-Munzinger et al, Phys. Lett. B, 518: 41 (2001)
    [31] W. Florkowski, W. Broniowski, and M. Michalec, Acta Phys. Polon. B, 33: 761 (2002)
    [32] M. Chojnacki, A. Kisiel, W. Florkowski et al, Comput. Phys. Commun., 183: 746-773 (2012)
  • 加载中

Get Citation
Xue Pan, Yu-Fu Lin, Li-Zhu Chen, Ming-Mei Xu and Yuan-Fang Wu. Poisson baseline of net-charge fluctuations in relativisticheavy ion collisions[J]. Chinese Physics C, 2018, 42(7): 074104. doi: 10.1088/1674-1137/42/7/074104
Xue Pan, Yu-Fu Lin, Li-Zhu Chen, Ming-Mei Xu and Yuan-Fang Wu. Poisson baseline of net-charge fluctuations in relativisticheavy ion collisions[J]. Chinese Physics C, 2018, 42(7): 074104.  doi: 10.1088/1674-1137/42/7/074104 shu
Milestone
Received: 2018-01-07
Revised: 2018-04-28
Fund

    Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Chengdu Technological University (2016RC004), the Major State Basic Research Development Program of China (2014CB845402) and the Ministry of Science and Technology (MoST)(2016YFE0104800)

Article Metric

Article Views(1324)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Poisson baseline of net-charge fluctuations in relativisticheavy ion collisions

  • 1.  School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
  • 2.  Key Laboratory of Quark and Lepton Physics(MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
  • 3.  School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Fund Project:  Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Chengdu Technological University (2016RC004), the Major State Basic Research Development Program of China (2014CB845402) and the Ministry of Science and Technology (MoST)(2016YFE0104800)

Abstract: Taking doubly charged particles, positive-negative charge pair production and the effects of volume fluctuations into account, the Poisson baseline of the fluctuations of net-charge is studied. Within the Poisson baseline, the cumulants of net-charge are derived. Comparing to the Skellam baseline of net-charge, we infer that doubly charged particles broaden the distributions of net-charge, while positive-negative charge pairs narrow the distributions. Using the ratios of doubly charged particles and positive-negative charge pairs from neutral resonance decays to the total positive charges from THERMINATOR 2, the first four orders of moments and the corresponding moment products are calculated in the Poisson baseline for Au + Au collisions at √sNN=200 GeV at RHIC/STAR. We find that the standard deviation is mainly influenced by the resonance decay, while the third and fourth order moments and corresponding moment products are mainly modified and fit the data of RHIC/STAR much better after including the effects of volume fluctuations.

    HTML

Reference (32)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return