Processing math: 100%

Anatomy of the ρ resonance from lattice QCD at the physical poin

  • We propose a strategy to access the qq component of the ρ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the qq component is derived at difierent valence quark masses, and shows a linear dependence on mπ2. The slope is determined to be c1=0.505(3)GeV-1, from which the valence πρ sigma term is extracted to be σπρ(val)=9.82(6) MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the qq component is interpolated to be mρ=775.9±6.0±1.8 MeV, which is close to the ρ resonance mass. We also obtain the leptonic decay constant of the qq component to be fρ-=208.5±5.5±0.9 MeV, which can be compared with the experimental value fρexp≈221 MeV through the relation fρexp=√Zρfρ±, with Zρ≈1.13 being the on-shell wavefunction renormalization of ρ owing to the ρ-π interaction. We emphasize that mρ and fρ of the qq component, which are obtained for the flrst time from QCD, can be taken as the input parameters of ρ in efiective fleld theory studies where ρ acts as a fundamental degree of freedom.
  • [1] R. L. Jafie, AIP Conf. Proc., 964: 1 (2007); Prog. Theor. Phys. Suppl., 168: 127 (2007) [arXiv:hep-ph/0701038]
    [2] J. R. Pelaez, Phys. Rev. Lett., 92: 102001 (2004) [arXiv:hepph/0309292]
    [3] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D, 83:094505 (2011) [arXiv:1011.5288(hep-lat)]
    [4] C. Pelissier and A. Alexandru, Phys. Rev. D, 87: 014503 (2013) [arXiv:1211.0092 (hep-lat)]
    [5] S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D, 84:094505 (2011) [arXiv:1106.5365 (hep-lat)]
    [6] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron Spectrum Collaboration), Phys. Rev. D, 87: 034505 (2013); Phys. Rev. D, 90: 099902(E) (2014) [arXiv:1212.0830 (hep-ph)]
    [7] G. Bali et al (RQCD Collaboration), Phys. Rev. D, 93: 054509 (2016) [arXiv:1512.08678 (hep-lat)]
    [8] D. Guo, A. Alexandru, and R. Molina, Phys. Rev. D, 94:034501 (2016) [arXiv:1605:03993 (hep-lat)]
    [9] Z. Fu and L. Wang, Phys. Rev. D, 94: 034505 (2016) [arXiv:1608.07478 (hep-lat)]
    [10] J. Bulava, B. Fahy, B. Hrz, K. J. Juge, C. Morningstar, and C.H. Wong, Nucl. Phys. B, 910: 842 (2016) [arXiv:1604.05593 (hep-lat)]
    [11] M. Luscher, Commun. Math. Phys., 105: 153 (1986)
    [12] T. Blum et al (RBC and UKQCD Collaborations), Phys. Rev. D, 93: 074505 (2016) [arXiv:1411.7017 (hep-lat)]
    [13] M. Lujan, A. Alexandru, Y. Chen, T. Draper, W. Freeman, M. Gong, F. X. Lee, A. Li, K.-F. Liu, and N. Mathur, Phys. Rev. D, 86: 014501 (2012) [arXiv:1204.6256 (hep-lat)]
    [14] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari and F. X. Lee, arXiv:1106.4964 (hep-lat)
    [15] C. McNeile and C. Michael (UKQCD Collaboration), Phys. Lett. B, 556: 177(2003) [arXiv:hep-lat/0212020]
    [16] P. C. Bruns and U.-G. Meissner, Eur. Phys. J. C, 40: 97 (2005)
    [17] C. W. Bernard et al, Phys. Rev. D, 64: 054506 (2001) [arXiv: hep-lat/0104002]
    [18] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright, Phys. Rev. D, 64: 094502 (2001) [arXiv: heplat/0104013]
    [19] C. R. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Lett. B, 628: 125 (2005) [arXiv: heplat/0504022]
    [20] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas, and R. D. Young, J. Phys. G, 32: 971 (2006) [arXiv: heplat/0510078]
    [21] R. Lewis and R. M. Woloshyn, Phys. Rev. D, 56: 1571 (1997) [arXiv: hep-lat/9610027]
    [22] A. Ali Khan et al (CP-PACS Collaboration), Phys. Rev. D, 65: 054505 (2002) [arXiv: hep-lat/0105015]
    [23] M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, W. Schroers, H. Stben, and J.M. Zanotti, Proc. Sci. LAT, 2005: 063 (2006) [arXiv: hep-lat/0509196]
    [24] K. Hashimoto and T. Izubuchi, Prog. Theor. Phys., 119: 599 (2008) [arXiv:0803.0186 (hep-lat)]
    [25] K. Jansen, C. McNeile, C. Michael, and C. Urbach (ETM Collaboration), Phys. Rev. D, 80: 054510 (2009) [arXiv:0906.4720 (hep-lat)]
    [26] K. F. Liu, J. Liang, and Y. B. Yang, Phys. Rev. D, 97: 034507 (2018) [arXiv:1705.06358 (hep-lat)]
    [27] Z. Liu, Y. Chen, S.-J. Dong, M. Glatzmaier, M. Gong, A. Li, K.-F. Liu, Y.-B. Yang, and J.-B. Zhang (QCD Collaboration), Phys. Rev. D, 90: 034505 (2014) [arXiv:1312.7628 (hep-lat)]
    [28] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [29] F. Jegerlehner and R. Szafron, Eur. Phys. J. C, 71: 1632 (2011) [arXiv:1101.2872 (hep-ph)]
  • [1] R. L. Jafie, AIP Conf. Proc., 964: 1 (2007); Prog. Theor. Phys. Suppl., 168: 127 (2007) [arXiv:hep-ph/0701038]
    [2] J. R. Pelaez, Phys. Rev. Lett., 92: 102001 (2004) [arXiv:hepph/0309292]
    [3] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D, 83:094505 (2011) [arXiv:1011.5288(hep-lat)]
    [4] C. Pelissier and A. Alexandru, Phys. Rev. D, 87: 014503 (2013) [arXiv:1211.0092 (hep-lat)]
    [5] S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D, 84:094505 (2011) [arXiv:1106.5365 (hep-lat)]
    [6] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron Spectrum Collaboration), Phys. Rev. D, 87: 034505 (2013); Phys. Rev. D, 90: 099902(E) (2014) [arXiv:1212.0830 (hep-ph)]
    [7] G. Bali et al (RQCD Collaboration), Phys. Rev. D, 93: 054509 (2016) [arXiv:1512.08678 (hep-lat)]
    [8] D. Guo, A. Alexandru, and R. Molina, Phys. Rev. D, 94:034501 (2016) [arXiv:1605:03993 (hep-lat)]
    [9] Z. Fu and L. Wang, Phys. Rev. D, 94: 034505 (2016) [arXiv:1608.07478 (hep-lat)]
    [10] J. Bulava, B. Fahy, B. Hrz, K. J. Juge, C. Morningstar, and C.H. Wong, Nucl. Phys. B, 910: 842 (2016) [arXiv:1604.05593 (hep-lat)]
    [11] M. Luscher, Commun. Math. Phys., 105: 153 (1986)
    [12] T. Blum et al (RBC and UKQCD Collaborations), Phys. Rev. D, 93: 074505 (2016) [arXiv:1411.7017 (hep-lat)]
    [13] M. Lujan, A. Alexandru, Y. Chen, T. Draper, W. Freeman, M. Gong, F. X. Lee, A. Li, K.-F. Liu, and N. Mathur, Phys. Rev. D, 86: 014501 (2012) [arXiv:1204.6256 (hep-lat)]
    [14] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari and F. X. Lee, arXiv:1106.4964 (hep-lat)
    [15] C. McNeile and C. Michael (UKQCD Collaboration), Phys. Lett. B, 556: 177(2003) [arXiv:hep-lat/0212020]
    [16] P. C. Bruns and U.-G. Meissner, Eur. Phys. J. C, 40: 97 (2005)
    [17] C. W. Bernard et al, Phys. Rev. D, 64: 054506 (2001) [arXiv: hep-lat/0104002]
    [18] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright, Phys. Rev. D, 64: 094502 (2001) [arXiv: heplat/0104013]
    [19] C. R. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Lett. B, 628: 125 (2005) [arXiv: heplat/0504022]
    [20] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas, and R. D. Young, J. Phys. G, 32: 971 (2006) [arXiv: heplat/0510078]
    [21] R. Lewis and R. M. Woloshyn, Phys. Rev. D, 56: 1571 (1997) [arXiv: hep-lat/9610027]
    [22] A. Ali Khan et al (CP-PACS Collaboration), Phys. Rev. D, 65: 054505 (2002) [arXiv: hep-lat/0105015]
    [23] M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, W. Schroers, H. Stben, and J.M. Zanotti, Proc. Sci. LAT, 2005: 063 (2006) [arXiv: hep-lat/0509196]
    [24] K. Hashimoto and T. Izubuchi, Prog. Theor. Phys., 119: 599 (2008) [arXiv:0803.0186 (hep-lat)]
    [25] K. Jansen, C. McNeile, C. Michael, and C. Urbach (ETM Collaboration), Phys. Rev. D, 80: 054510 (2009) [arXiv:0906.4720 (hep-lat)]
    [26] K. F. Liu, J. Liang, and Y. B. Yang, Phys. Rev. D, 97: 034507 (2018) [arXiv:1705.06358 (hep-lat)]
    [27] Z. Liu, Y. Chen, S.-J. Dong, M. Glatzmaier, M. Gong, A. Li, K.-F. Liu, Y.-B. Yang, and J.-B. Zhang (QCD Collaboration), Phys. Rev. D, 90: 034505 (2014) [arXiv:1312.7628 (hep-lat)]
    [28] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [29] F. Jegerlehner and R. Szafron, Eur. Phys. J. C, 71: 1632 (2011) [arXiv:1101.2872 (hep-ph)]
  • 加载中

Cited by

1. Zhang, H., Bai, D., Ren, Z. Quantum computing for extracting nuclear resonances[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2025. doi: 10.1016/j.physletb.2024.139187
2. Yan, H., Mai, M., Garofalo, M. et al. ω Meson from Lattice QCD[J]. Physical Review Letters, 2024, 133(21): 211906. doi: 10.1103/PhysRevLett.133.211906
3. Ortega-Gama, F.G., Dudek, J.J., Edwards, R.G. Timelike meson form factors beyond the elastic region from lattice QCD[J]. Physical Review D, 2024, 110(9): 094505. doi: 10.1103/PhysRevD.110.094505
4. Voronin, V.. Leptonic and semileptonic decays of mesons in the domain model of the QCD vacuum[J]. Physical Review D, 2024, 110(1): 014040. doi: 10.1103/PhysRevD.110.014040
5. Rodas, A., Dudek, J.J., Edwards, R.G. Determination of crossing-symmetric ππ scattering amplitudes and the quark mass evolution of the σ constrained by lattice QCD[J]. Physical Review D, 2024, 109(3): 034513. doi: 10.1103/PhysRevD.109.034513
6. Mai, M., Meißner, U.-G., Urbach, C. Towards a theory of hadron resonances[J]. Physics Reports, 2023. doi: 10.1016/j.physrep.2022.11.005
7. Altenkort, L., Eller, A.M., Kaczmarek, O. et al. Lattice QCD noise reduction for bosonic correlators through blocking[J]. Physical Review D, 2022, 105(9): 094505. doi: 10.1103/PhysRevD.105.094505
8. Yang, Y., Li, Z., Li, K. et al. Purely leptonic decays of the ground charged vector mesons[J]. European Physical Journal C, 2021, 81(12): 1110. doi: 10.1140/epjc/s10052-021-09908-w
9. Chen, Y., Chiu, W.-F., Gong, M. et al. Charmed and φ meson decay constants from 2+1-flavor lattice QCD[J]. Chinese Physics C, 2021, 45(2): 023109. doi: 10.1088/1674-1137/abcd8f
10. Yamaguchi, Y., Yamanaka, N. Quark level and hadronic contributions to the electric dipole moment of charged leptons in the standard model[J]. Physical Review D, 2021, 103(1): 013001. doi: 10.1103/PhysRevD.103.013001
11. Li, H.-N., Umeeda, H. QCD sum rules with spectral densities solved in inverse problems[J]. Physical Review D, 2020, 102(11): 114014. doi: 10.1103/PhysRevD.102.114014
12. Ivanov, M.A., Körner, J.G., Pandya, J.N. et al. Exclusive semileptonic decays of D and Ds mesons in the covariant confining quark model[J]. Frontiers of Physics, 2019, 14(6): 64401. doi: 10.1007/s11467-019-0908-1
Get Citation
Wei Sun, Andrei Alexandru, Ying Chen, Terrence Draper, Zhaofeng Liu and Yi-Bo Yang. Anatomy of the ρ resonance from lattice QCD at the physical poin[J]. Chinese Physics C, 2018, 42(6): 063102. doi: 10.1088/1674-1137/42/6/063102
Wei Sun, Andrei Alexandru, Ying Chen, Terrence Draper, Zhaofeng Liu and Yi-Bo Yang. Anatomy of the ρ resonance from lattice QCD at the physical poin[J]. Chinese Physics C, 2018, 42(6): 063102.  doi: 10.1088/1674-1137/42/6/063102 shu
Milestone
Received: 2018-03-08
Fund

    Supported in part by the U.S. DOE Grant No. DE-SC0013065, the National Nature Science Foundation of China (NSFC) (11335001, 11575196, 11575197, 11621131001) (CRC110 by DFG and NSFC), A. A. is supported in part by the National Science Foundation CAREER (PHY-1151648) and by U.S. DOE (DE-FG02-95ER40907), Y. C. thanks the CAS Center for Excellence in Particle Physics (CCEPP) for their support, this research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the O-ce of Science of the U.S. Department of Energy (DE-AC05-00OR22725)

Article Metric

Article Views(2663)
PDF Downloads(22)
Cited by(12)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Anatomy of the ρ resonance from lattice QCD at the physical poin

  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Department of Physics, George Washington University, Washington, DC 20052, USA
  • 4.  Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
Fund Project:  Supported in part by the U.S. DOE Grant No. DE-SC0013065, the National Nature Science Foundation of China (NSFC) (11335001, 11575196, 11575197, 11621131001) (CRC110 by DFG and NSFC), A. A. is supported in part by the National Science Foundation CAREER (PHY-1151648) and by U.S. DOE (DE-FG02-95ER40907), Y. C. thanks the CAS Center for Excellence in Particle Physics (CCEPP) for their support, this research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the O-ce of Science of the U.S. Department of Energy (DE-AC05-00OR22725)

Abstract: We propose a strategy to access the qq component of the ρ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the qq component is derived at difierent valence quark masses, and shows a linear dependence on mπ2. The slope is determined to be c1=0.505(3)GeV-1, from which the valence πρ sigma term is extracted to be σπρ(val)=9.82(6) MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the qq component is interpolated to be mρ=775.9±6.0±1.8 MeV, which is close to the ρ resonance mass. We also obtain the leptonic decay constant of the qq component to be fρ-=208.5±5.5±0.9 MeV, which can be compared with the experimental value fρexp≈221 MeV through the relation fρexp=√Zρfρ±, with Zρ≈1.13 being the on-shell wavefunction renormalization of ρ owing to the ρ-π interaction. We emphasize that mρ and fρ of the qq component, which are obtained for the flrst time from QCD, can be taken as the input parameters of ρ in efiective fleld theory studies where ρ acts as a fundamental degree of freedom.

    HTML

Reference (29)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return