×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Tsallis' quantum q-fields

  • We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001, and low energies (MeV scale) for q=1.000001[Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
      PCAS:
  • 加载中
  • [1] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev. Lett., 106:140601(2011)
    [2] A. Plastino and M. C. Rocca, EPL, 116:41001(2016)
    [3] A. Plastino and M. C. Rocca, EPL, 118:61004(2017)
    [4] A. Plastino and M. C. Rocca, PLA, 370:2690(2015)
    [5] F. D. Nobre and A. R. Plastino, EPJ C, 76:343(2016)
    [6] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, EPL, 97:41001(2012)
    [7] A. Plastino and M. Rocca, Nuc. Phys. A, 948:19(2016)
    [8] A. Plastino, M. C. Rocca, G. L. Ferri, and D. J. Zamora, Nuc. Phys. A, 955:16(2016)
    [9] F. Barile et al (ALICE Collaboration), EPJ Web Conferences, 60:13012(2013); B. Abelev et al (ALICE Collaboration), Phys. Rev. Lett., 111:222301(2013); Yu. V. Kharlov (ALICE Collaboration), Physics of Atomic Nuclei, 76:1497(2013); ALICE Collaboration, Phys. Rev. C, 91:024609(2015); ATLAS Collaboration, New J. Physics, 13:053033(2011); CMS Collaboration, J. High Energy Phys., 05:064(2011); CMS Collaboration, Eur. Phys. J. C, 74:2847(2014)
    [10] C. H. Bennett, D. Leung, G. Smith, and J. A. Smolin, Phys. Rev. Lett., 103:170502(2009)
    [11] A. R. Plastino and C. Zander, in A Century o f Relativity Physics:XXVⅢ Spanish Relativity Meeting, edited by L. Mornas and J. D. Alonso, AIP Conf. Proc. No. 841(AIP, Melville, NY, 2006), pp. 570-573
    [12] L. P. Pitaevskii and S. Stringari, Bose Einstein Condensation (Clarendon Press, Oxford, 2003)
  • 加载中

Get Citation
A. Plastino and M. C. Rocca. Tsallis' quantum q-fields[J]. Chinese Physics C, 2018, 42(5): 053102. doi: 10.1088/1674-1137/42/5/053102
A. Plastino and M. C. Rocca. Tsallis' quantum q-fields[J]. Chinese Physics C, 2018, 42(5): 053102.  doi: 10.1088/1674-1137/42/5/053102 shu
Milestone
Received: 2017-12-16
Revised: 2018-02-21
Article Metric

Article Views(1577)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Tsallis' quantum q-fields

  • 1. Departamento de Fí
  • 2. Consejo Nacional de Investigaciones Cientí
  • 3. SThAR-EPFL, Lausanne, Switzerland
  • 4. Departamento de Matemá
  • 5. Consejo Nacional de Investigaciones Cientí

Abstract: We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001, and low energies (MeV scale) for q=1.000001[Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.

    HTML

Reference (12)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return