Processing math: 100%

Discovery potentials of doubly charmed baryons

  • The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, Ξcc++ and Ξcc+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, Ξcc++→ Λc+K-π+π+ and Ξc+π+ are the most favorable decay modes for experiments to search for doubly heavy baryons.
  • [1] E. Klempt and J. M. Richard, Rev. Mod. Phys., 82:1095(2010) doi:10.1103/RevModPhys.82.1095[arXiv:0901.2055[hep-ph]]
    [2] V. Crede and W. Roberts, Rept. Prog. Phys., 76:076301(2013) doi:10.1088/0034-4885/76/7/076301[arXiv:1302.7299[nucl-ex]]
    [3] H. Y. Cheng, Front. Phys. (Beijing), 10(6):101406(2015) doi:10.1007/s11467-015-0483-z
    [4] H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, Rept. Prog. Phys., 80(7):076201(2017) doi:10.1088/1361-6633/aa6420[arXiv:1609.08928[hep-ph]]
    [5] M. Mattson et al (SELEX Collaboration), Phys. Rev. Lett., 89:112001(2002) doi:10.1103/PhysRevLett.89.112001[hep-ex/0208014]
    [6] A. Ocherashvili et al (SELEX Collaboration), Phys. Lett. B, 628:18(2005) doi:10.1016/j.physletb.2005.09.043[hep-ex/0406033]
    [7] S. P. Ratti, Nucl. Phys. Proc. Suppl., 115:33(2003). doi:10.1016/S0920-5632(02)01948-5
    [8] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 74:011103(2006) doi:10.1103/PhysRevD.74.011103[hep-ex/0605075]
    [9] R. Chistov et al (Belle Collaboration), Phys. Rev. Lett., 97:162001(2006) doi:10.1103/PhysRevLett.97.162001[hep-ex/0606051]
    [10] Y. Kato et al (Belle Collaboration), Phys. Rev. D, 89(5):052003(2014) doi:10.1103/PhysRevD.89.052003[arXiv:1312.1026[hep-ex]]
    [11] R. Aaij et al (LHCb Collaboration), JHEP, 1312:090(2013) doi:10.1007/JHEP12(2013)090[arXiv:1310.2538[hep-ex]]
    [12] R. Lewis, N. Mathur, and R. M. Woloshyn, Phys. Rev. D, 64:094509(2001) doi:10.1103/PhysRevD.64.094509[hep-ph/0107037]
    [13] J. M. Flynn et al (UKQCD Collaboration), JHEP, 0307:066(2003) doi:10.1088/1126-6708/2003/07/066[hep-lat/0307025]
    [14] L. Liu, H. W. Lin, K. Orginos, and A. Walker-Loud, Phys. Rev. D, 81:094505(2010) doi:10.1103/PhysRevD.81.094505[arXiv:0909.3294[hep-lat]]
    [15] C. Alexandrou, J. Carbonell, D. Christaras, V. Drach, M. Gravina, and M. Papinutto, Phys. Rev. D, 86:114501(2012) doi:10.1103/PhysRevD.86.114501[arXiv:1205.6856[hep-lat]]
    [16] R. A. Briceno, H. W. Lin, and D. R. Bolton, Phys. Rev. D, 86:094504(2012) doi:10.1103/PhysRevD.86.094504[arXiv:1207.3536[hep-lat]]
    [17] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, Phys. Rev. D, 90(7):074501(2014) doi:10.1103/PhysRevD.90.074501[arXiv:1406.4310[hep-lat]]
    [18] J. W. Zhang, X. G. Wu, T. Zhong, Y. Yu, and Z. Y. Fang, Phys. Rev. D, 83:034026(2011) doi:10.1103/PhysRevD.83.034026[arXiv:1101.1130[hep-ph]]
    [19] C. H. Chang, C. F. Qiao, J. X. Wang, and X. G. Wu, Phys. Rev. D, 71:074012(2005) doi:10.1103/PhysRevD.71.074012[hep-ph/0502155]
    [20] M. Karliner and J. L. Rosner, Phys. Rev. D, 90(9):094007(2014) doi:10.1103/PhysRevD.90.094007[arXiv:1408.5877[hep-ph]]
    [21] V. V. Kiselev and A. K. Likhoded, Phys. Usp., 45:455(2002)[Usp. Fiz. Nauk 172:497(2002)] doi:10.1070/PU2002v045n05ABEH000958[hep-ph/0103169]
    [22] C. H. Chang, T. Li, X. Q. Li, and Y. M. Wang, Commun. Theor. Phys., 49:993(2008) doi:10.1088/0253-6102/49/4/38[arXiv:0704.0016[hep-ph]]
    [23] A. I. Onishchenko, hep-ph/0006295
    [24] B. Guberina, B. Melic, and H. Stefancic, Eur. Phys. J. C, 9:213(1999)[Eur. Phys. J. C, 13:551(2000)] doi:10.1007/s100529900039, 10.1007/s100520050525[hep-ph/9901323]
    [25] H. W. Ke, X. Q. Li, and Z. T. Wei, Phys. Rev. D, 77:014020(2008) doi:10.1103/PhysRevD.77.014020[arXiv:0710.1927[hep-ph]]
    [26] H. W. Ke, X. H. Yuan, X. Q. Li, Z. T. Wei, and Y. X. Zhang, Phys. Rev. D, 86:114005(2012) doi:10.1103/PhysRevD.86.114005[arXiv:1207.3477[hep-ph]]
    [27] H. Y. Cheng, C. Y. Cheung, and C. W. Hwang, Phys. Rev. D, 55:1559(1997) doi:10.1103/PhysRevD.55.1559[hep-ph/9607332]
    [28] R. H. Li, C. D. L, W. Wang, F. S. Yu and Z. T. Zou, Phys. Lett. B, 767:232(2017) doi:10.1016/j.physletb.2017.02.003[arXiv:1701.03284[hep-ph]]
    [29] W. Wang, F. S. Yu, and Z. X. Zhao, Eur. Phys. J. C, 77(11):781(2017) doi:10.1140/epjc/s10052-017-5360-1[arXiv:1707.02834[hep-ph]]
    [30] W. Wang, Z. P. Xing, and J. Xu, Eur. Phys. J. C, 77(11):800(2017) doi:10.1140/epjc/s10052-017-5363-y[arXiv:1707.06570[hep-ph]]
    [31] Y. J. Shi, W. Wang, Y. Xing, and J. Xu, Eur. Phys. J. C, 78(1):56(2018) doi:10.1140/epjc/s10052-018-5532-7[arXiv:1712.03830[hep-ph]]
    [32] H. n. Li, C. D. Lu, and F. S. Yu, Phys. Rev. D, 86:036012(2012) doi:10.1103/PhysRevD.86.036012[arXiv:1203.3120[hep-ph]]
    [33] J. M. Link et al (FOCUS Collaboration), Phys. Lett. B, 512:277(2001) doi:10.1016/S0370-2693(01)00590-1[hep-ex/0102040]
    [34] J. M. Link et al (FOCUS Collaboration), Phys. Lett. B, 540:25(2002) doi:10.1016/S0370-2693(02)02103-2[hep-ex/0206013]
    [35] M. Ablikim, D. S. Du, and M. Z. Yang, Phys. Lett. B, 536:34(2002) doi:10.1016/S0370-2693(02)01812-9[hep-ph/0201168]
    [36] J. W. Li, M. Z. Yang, and D. S. Du, HEPNP, 27:665(2003)[hep-ph/0206154]
    [37] S. Fajfer, A. Prapotnik, P. Singer, and J. Zupan, Phys. Rev. D, 68:094012(2003) doi:10.1103/PhysRevD.68.094012[hep-ph/0308100]
    [38] X. Q. Li and B. S. Zou, Phys. Rev. D, 57:1518(1998) doi:10.1103/PhysRevD.57.1518[hep-ph/9709508]
    [39] S. L. Chen, X. H. Guo, X. Q. Li, and G. L. Wang, Commun. Theor. Phys., 40:563(2003) doi:10.1088/0253-6102/40/5/563[hep-ph/0208006]
    [40] M. Ablikim et al (BESⅢ Collaboration), Phys. Rev. D, 95(11):111102(2017) doi:10.1103/PhysRevD.95.111102[arXiv:1702.05279[hep-ex]]
    [41] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 71:014030(2005) doi:10.1103/PhysRevD.71.014030[hep-ph/0409317]
    [42] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, and H. L. Yu, Phys. Rev. D, 46:1148(1992); Phys. Rev. D, 55:5851(1997) doi:10.1103/PhysRevD.46.1148, 10.1103/PhysRevD.55.5851
    [43] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phys. Rept., 281:145(1997) doi:10.1016/S0370-1573(96)00027-0[hep-ph/9605342]
    [44] U. G. Meissner, Phys. Rept., 161:213(1988) doi:10.1016/0370-1573(88)90090-7
    [45] N. Li and S. L. Zhu, Phys. Rev. D, 86:014020(2012) doi:10.1103/PhysRevD.86.014020[arXiv:1204.3364[hep-ph]]
    [46] T. M. Aliev, K. Azizi, and M. Savci, Phys. Lett. B, 696:220(2011) doi:10.1016/j.physletb.2010.12.027[arXiv:1009.3658[hep-ph]]
    [47] T. M. Aliev, K. Azizi, and M. Savci, Nucl. Phys. A, 852:141(2011) doi:10.1016/j.nuclphysa.2011.01.011[arXiv:1011.0086[hep-ph]]
    [48] A. Khodjamirian, C. Klein, T. Mannel, and Y.-M. Wang, JHEP, 1109:106(2011) doi:10.1007/JHEP09(2011)106[arXiv:1108.2971[hep-ph]]
    [49] K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D, 90(11):114011(2014) doi:10.1103/PhysRevD.90.114011[arXiv:1410.7548[hep-ph]]
    [50] G. L. Yu, Z. G. Wang, and Z. Y. Li, Chin. Phys. C, 41(8):083104(2017) doi:10.1088/1674-1137/41/8/083104[arXiv:1608.03460[hep-ph]]
    [51] K. Azizi, Y. Sarac, and H. Sundu, Nucl. Phys. A, 943:159(2015) doi:10.1016/j.nuclphysa.2015.09.005[arXiv:1501.05084[hep-ph]]
    [52] A. Ballon-Bayona, G. Krein, and C. Miller, Phys. Rev. D, 96(1):014017(2017) doi:10.1103/PhysRevD.96.014017[arXiv:1702.08417[hep-ph]]
    [53] H. Y. Cheng and C. W. Chiang, Phys. Rev. D, 81:074021(2010) doi:10.1103/PhysRevD.81.074021[arXiv:1001.0987[hep-ph]]
    [54] H. Y. Cheng and C. W. Chiang, Phys. Rev. D, 81:114020(2010) doi:10.1103/PhysRevD.81.114020[arXiv:1005.1106[hep-ph]]
    [55] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 119(11):112001(2017) doi:10.1103/PhysRevLett.119.112001[arXiv:1707.01621[hep-ex]]
  • [1] E. Klempt and J. M. Richard, Rev. Mod. Phys., 82:1095(2010) doi:10.1103/RevModPhys.82.1095[arXiv:0901.2055[hep-ph]]
    [2] V. Crede and W. Roberts, Rept. Prog. Phys., 76:076301(2013) doi:10.1088/0034-4885/76/7/076301[arXiv:1302.7299[nucl-ex]]
    [3] H. Y. Cheng, Front. Phys. (Beijing), 10(6):101406(2015) doi:10.1007/s11467-015-0483-z
    [4] H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, Rept. Prog. Phys., 80(7):076201(2017) doi:10.1088/1361-6633/aa6420[arXiv:1609.08928[hep-ph]]
    [5] M. Mattson et al (SELEX Collaboration), Phys. Rev. Lett., 89:112001(2002) doi:10.1103/PhysRevLett.89.112001[hep-ex/0208014]
    [6] A. Ocherashvili et al (SELEX Collaboration), Phys. Lett. B, 628:18(2005) doi:10.1016/j.physletb.2005.09.043[hep-ex/0406033]
    [7] S. P. Ratti, Nucl. Phys. Proc. Suppl., 115:33(2003). doi:10.1016/S0920-5632(02)01948-5
    [8] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 74:011103(2006) doi:10.1103/PhysRevD.74.011103[hep-ex/0605075]
    [9] R. Chistov et al (Belle Collaboration), Phys. Rev. Lett., 97:162001(2006) doi:10.1103/PhysRevLett.97.162001[hep-ex/0606051]
    [10] Y. Kato et al (Belle Collaboration), Phys. Rev. D, 89(5):052003(2014) doi:10.1103/PhysRevD.89.052003[arXiv:1312.1026[hep-ex]]
    [11] R. Aaij et al (LHCb Collaboration), JHEP, 1312:090(2013) doi:10.1007/JHEP12(2013)090[arXiv:1310.2538[hep-ex]]
    [12] R. Lewis, N. Mathur, and R. M. Woloshyn, Phys. Rev. D, 64:094509(2001) doi:10.1103/PhysRevD.64.094509[hep-ph/0107037]
    [13] J. M. Flynn et al (UKQCD Collaboration), JHEP, 0307:066(2003) doi:10.1088/1126-6708/2003/07/066[hep-lat/0307025]
    [14] L. Liu, H. W. Lin, K. Orginos, and A. Walker-Loud, Phys. Rev. D, 81:094505(2010) doi:10.1103/PhysRevD.81.094505[arXiv:0909.3294[hep-lat]]
    [15] C. Alexandrou, J. Carbonell, D. Christaras, V. Drach, M. Gravina, and M. Papinutto, Phys. Rev. D, 86:114501(2012) doi:10.1103/PhysRevD.86.114501[arXiv:1205.6856[hep-lat]]
    [16] R. A. Briceno, H. W. Lin, and D. R. Bolton, Phys. Rev. D, 86:094504(2012) doi:10.1103/PhysRevD.86.094504[arXiv:1207.3536[hep-lat]]
    [17] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, Phys. Rev. D, 90(7):074501(2014) doi:10.1103/PhysRevD.90.074501[arXiv:1406.4310[hep-lat]]
    [18] J. W. Zhang, X. G. Wu, T. Zhong, Y. Yu, and Z. Y. Fang, Phys. Rev. D, 83:034026(2011) doi:10.1103/PhysRevD.83.034026[arXiv:1101.1130[hep-ph]]
    [19] C. H. Chang, C. F. Qiao, J. X. Wang, and X. G. Wu, Phys. Rev. D, 71:074012(2005) doi:10.1103/PhysRevD.71.074012[hep-ph/0502155]
    [20] M. Karliner and J. L. Rosner, Phys. Rev. D, 90(9):094007(2014) doi:10.1103/PhysRevD.90.094007[arXiv:1408.5877[hep-ph]]
    [21] V. V. Kiselev and A. K. Likhoded, Phys. Usp., 45:455(2002)[Usp. Fiz. Nauk 172:497(2002)] doi:10.1070/PU2002v045n05ABEH000958[hep-ph/0103169]
    [22] C. H. Chang, T. Li, X. Q. Li, and Y. M. Wang, Commun. Theor. Phys., 49:993(2008) doi:10.1088/0253-6102/49/4/38[arXiv:0704.0016[hep-ph]]
    [23] A. I. Onishchenko, hep-ph/0006295
    [24] B. Guberina, B. Melic, and H. Stefancic, Eur. Phys. J. C, 9:213(1999)[Eur. Phys. J. C, 13:551(2000)] doi:10.1007/s100529900039, 10.1007/s100520050525[hep-ph/9901323]
    [25] H. W. Ke, X. Q. Li, and Z. T. Wei, Phys. Rev. D, 77:014020(2008) doi:10.1103/PhysRevD.77.014020[arXiv:0710.1927[hep-ph]]
    [26] H. W. Ke, X. H. Yuan, X. Q. Li, Z. T. Wei, and Y. X. Zhang, Phys. Rev. D, 86:114005(2012) doi:10.1103/PhysRevD.86.114005[arXiv:1207.3477[hep-ph]]
    [27] H. Y. Cheng, C. Y. Cheung, and C. W. Hwang, Phys. Rev. D, 55:1559(1997) doi:10.1103/PhysRevD.55.1559[hep-ph/9607332]
    [28] R. H. Li, C. D. L, W. Wang, F. S. Yu and Z. T. Zou, Phys. Lett. B, 767:232(2017) doi:10.1016/j.physletb.2017.02.003[arXiv:1701.03284[hep-ph]]
    [29] W. Wang, F. S. Yu, and Z. X. Zhao, Eur. Phys. J. C, 77(11):781(2017) doi:10.1140/epjc/s10052-017-5360-1[arXiv:1707.02834[hep-ph]]
    [30] W. Wang, Z. P. Xing, and J. Xu, Eur. Phys. J. C, 77(11):800(2017) doi:10.1140/epjc/s10052-017-5363-y[arXiv:1707.06570[hep-ph]]
    [31] Y. J. Shi, W. Wang, Y. Xing, and J. Xu, Eur. Phys. J. C, 78(1):56(2018) doi:10.1140/epjc/s10052-018-5532-7[arXiv:1712.03830[hep-ph]]
    [32] H. n. Li, C. D. Lu, and F. S. Yu, Phys. Rev. D, 86:036012(2012) doi:10.1103/PhysRevD.86.036012[arXiv:1203.3120[hep-ph]]
    [33] J. M. Link et al (FOCUS Collaboration), Phys. Lett. B, 512:277(2001) doi:10.1016/S0370-2693(01)00590-1[hep-ex/0102040]
    [34] J. M. Link et al (FOCUS Collaboration), Phys. Lett. B, 540:25(2002) doi:10.1016/S0370-2693(02)02103-2[hep-ex/0206013]
    [35] M. Ablikim, D. S. Du, and M. Z. Yang, Phys. Lett. B, 536:34(2002) doi:10.1016/S0370-2693(02)01812-9[hep-ph/0201168]
    [36] J. W. Li, M. Z. Yang, and D. S. Du, HEPNP, 27:665(2003)[hep-ph/0206154]
    [37] S. Fajfer, A. Prapotnik, P. Singer, and J. Zupan, Phys. Rev. D, 68:094012(2003) doi:10.1103/PhysRevD.68.094012[hep-ph/0308100]
    [38] X. Q. Li and B. S. Zou, Phys. Rev. D, 57:1518(1998) doi:10.1103/PhysRevD.57.1518[hep-ph/9709508]
    [39] S. L. Chen, X. H. Guo, X. Q. Li, and G. L. Wang, Commun. Theor. Phys., 40:563(2003) doi:10.1088/0253-6102/40/5/563[hep-ph/0208006]
    [40] M. Ablikim et al (BESⅢ Collaboration), Phys. Rev. D, 95(11):111102(2017) doi:10.1103/PhysRevD.95.111102[arXiv:1702.05279[hep-ex]]
    [41] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 71:014030(2005) doi:10.1103/PhysRevD.71.014030[hep-ph/0409317]
    [42] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, and H. L. Yu, Phys. Rev. D, 46:1148(1992); Phys. Rev. D, 55:5851(1997) doi:10.1103/PhysRevD.46.1148, 10.1103/PhysRevD.55.5851
    [43] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phys. Rept., 281:145(1997) doi:10.1016/S0370-1573(96)00027-0[hep-ph/9605342]
    [44] U. G. Meissner, Phys. Rept., 161:213(1988) doi:10.1016/0370-1573(88)90090-7
    [45] N. Li and S. L. Zhu, Phys. Rev. D, 86:014020(2012) doi:10.1103/PhysRevD.86.014020[arXiv:1204.3364[hep-ph]]
    [46] T. M. Aliev, K. Azizi, and M. Savci, Phys. Lett. B, 696:220(2011) doi:10.1016/j.physletb.2010.12.027[arXiv:1009.3658[hep-ph]]
    [47] T. M. Aliev, K. Azizi, and M. Savci, Nucl. Phys. A, 852:141(2011) doi:10.1016/j.nuclphysa.2011.01.011[arXiv:1011.0086[hep-ph]]
    [48] A. Khodjamirian, C. Klein, T. Mannel, and Y.-M. Wang, JHEP, 1109:106(2011) doi:10.1007/JHEP09(2011)106[arXiv:1108.2971[hep-ph]]
    [49] K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D, 90(11):114011(2014) doi:10.1103/PhysRevD.90.114011[arXiv:1410.7548[hep-ph]]
    [50] G. L. Yu, Z. G. Wang, and Z. Y. Li, Chin. Phys. C, 41(8):083104(2017) doi:10.1088/1674-1137/41/8/083104[arXiv:1608.03460[hep-ph]]
    [51] K. Azizi, Y. Sarac, and H. Sundu, Nucl. Phys. A, 943:159(2015) doi:10.1016/j.nuclphysa.2015.09.005[arXiv:1501.05084[hep-ph]]
    [52] A. Ballon-Bayona, G. Krein, and C. Miller, Phys. Rev. D, 96(1):014017(2017) doi:10.1103/PhysRevD.96.014017[arXiv:1702.08417[hep-ph]]
    [53] H. Y. Cheng and C. W. Chiang, Phys. Rev. D, 81:074021(2010) doi:10.1103/PhysRevD.81.074021[arXiv:1001.0987[hep-ph]]
    [54] H. Y. Cheng and C. W. Chiang, Phys. Rev. D, 81:114020(2010) doi:10.1103/PhysRevD.81.114020[arXiv:1005.1106[hep-ph]]
    [55] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 119(11):112001(2017) doi:10.1103/PhysRevLett.119.112001[arXiv:1707.01621[hep-ex]]
  • 加载中

Cited by

1. Patel, K., Thakkar, K. Transition Properties of Doubly Heavy Baryons[J]. International Journal of Theoretical Physics, 2025, 64(5): 129. doi: 10.1007/s10773-025-05997-5
2. Zhao, X.-Y., Guo, L., Zheng, X.-C. et al. Production of doubly heavy baryon at the Muon-Ion collider[J]. Chinese Physics C, 2025, 49(5): 053103. doi: 10.1088/1674-1137/adbc81
3. Hu, X.-H., Jia, C.-P., Xing, Y. et al. Final-state rescattering mechanism of double-charm baryon decays: Bcc → BcP[J]. Physical Review D, 2025, 111(7): 076002. doi: 10.1103/PhysRevD.111.076002
4. Liu, M.-Z., Pan, Y.-W., Liu, Z.-W. et al. Three ways to decipher the nature of exotic hadrons: Multiplets, three-body hadronic molecules, and correlation functions[J]. Physics Reports, 2025. doi: 10.1016/j.physrep.2024.12.001
5. Liu, M.-Z., Wu, Q. Exploring the nature of Y(4230) and Y(4360) in B decays[J]. European Physical Journal C, 2025, 85(2): 188. doi: 10.1140/epjc/s10052-025-13838-2
6. Ghalenovi, Z., Sorkhi, M.M., Sovizi, A.H. Quark model study of doubly heavy Ξ and Ω baryons via deep neural network and hybrid optimization[J]. Modern Physics Letters A, 2025. doi: 10.1142/S0217732325500610
7. Chen, K., Wang, B. From PψN and Pψs Λ to T ¯ ccf: Symmetry analysis of the interactions in the (c ¯ q) (c ¯ q), (ccq) (c ¯ q), and (ccq) (ccq) dihadron systems[J]. Physical Review D, 2024, 110(11): 116017. doi: 10.1103/PhysRevD.110.116017
8. He, J., Yin, H. Experimental study on the doubly heavy baryons at LHCb: A review | [LHCb上双重味重子的实验研究进展][J]. Kexue Tongbao/Chinese Science Bulletin, 2024, 69(31): 4550-4557. doi: 10.1360/TB-2024-0123
9. Jia, C.-P., Jiang, H.-Y., Wang, J.-P. et al. Final-state rescattering mechanism of charmed baryon decays[J]. Journal of High Energy Physics, 2024, 2024(11): 72. doi: 10.1007/JHEP11(2024)072
10. Atangana Likéné, A.A., Nga Ongodo, D., Ahmadou, K. et al. Hypercentral quark model for mass spectra, semileptonic decays and Regge trajectories of doubly heavy Ξ baryons[J]. European Physical Journal Plus, 2024, 139(10): 942. doi: 10.1140/epjp/s13360-024-05697-9
11. Yang, H., Jiang, J., Long, B. Doubly heavy hadron production in ultraperipheral collision[J]. Physical Review D, 2024, 109(11): 114034. doi: 10.1103/PhysRevD.109.114034
12. Lu, F., Ke, H.-W., Liu, X.-H. Weak decays of the triply heavy baryons in the three-quark picture with the light-front quark model[J]. European Physical Journal C, 2024, 84(5): 452. doi: 10.1140/epjc/s10052-024-12732-7
13. Ke, H.-W., Fang, G.-Y., Shi, Y.-L. Study on the mixing of Ξc and Ξc′ by the transition Ξb → Ξc (′)[J]. Physical Review D, 2024, 109(7): 073006. doi: 10.1103/PhysRevD.109.073006
14. Chen, C., Meng, C., Xiao, Z. et al. Some remarks on compositeness of T+cc[J]. Chinese Physics C, 2024, 48(4): 043102. doi: 10.1088/1674-1137/ad1a0b
15. Liu, M.-Z., Ling, X.-Z., Geng, L.-S. Productions of Ds0∗ (2317) and Ds1 (2460) in B (s) and Λb (Ξb) decays[J]. Physical Review D, 2024, 109(5): 056014. doi: 10.1103/PhysRevD.109.056014
16. Tousi, M.S., Azizi, K. Properties of doubly heavy spin- 12 baryons: The ground and excited states[J]. Physical Review D, 2024, 109(5): 054005. doi: 10.1103/PhysRevD.109.054005
17. Ablikim, M., Achasov, M.N., Adlarson, P. et al. First Measurement of the Decay Asymmetry in the Pure W -Boson-Exchange Decay Λc+ → Ξ0K+[J]. Physical Review Letters, 2024, 132(3): 031801. doi: 10.1103/PhysRevLett.132.031801
18. Song, Q.-F., Lü, Q.-F., Hosaka, A. Bottom-charmed baryons in a nonrelativistic quark model[J]. European Physical Journal C, 2024, 84(1): 89. doi: 10.1140/epjc/s10052-024-12426-0
19. Zhan, X.-J., Wu, X.-G., Zheng, X.-C. Photoproduction of doubly heavy baryons at future e+e- colliders[J]. Physical Review D, 2023, 108(7): 074030. doi: 10.1103/PhysRevD.108.074030
20. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Measurement of branching fractions of Λc+ decays to Σ+K+K −, Σ+ ϕ and Σ+K+ π −(π 0)[J]. Journal of High Energy Physics, 2023, 2023(9): 125. doi: 10.1007/JHEP09(2023)125
21. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Measurement of the absolute branching fraction of the inclusive decay Λ ¯ c- → n ¯ +X[J]. Physical Review D, 2023, 108(3): L031101. doi: 10.1103/PhysRevD.108.L031101
22. Chen, S., Li, Y., Qian, W. et al. Heavy flavour physics and CP violation at LHCb: A ten-year review[J]. Frontiers of Physics, 2023, 18(4): 44601. doi: 10.1007/s11467-022-1247-1
23. Farhadi, M., Nejad, S.M.M., Armat, A. Radiative and semileptonic decay widths of heavy ground state baryons in diquark model[J]. European Physical Journal A, 2023, 59(7): 171. doi: 10.1140/epja/s10050-023-01058-9
24. Liang, Z.-R., Qiu, P.-C., Yao, D.-L. One-loop analysis of the interactions between doubly charmed baryons and Nambu-Goldstone bosons[J]. Journal of High Energy Physics, 2023, 2023(7): 124. doi: 10.1007/JHEP07(2023)124
25. Lu, F., Ke, H.-W., Liu, X.-H. et al. Study on the weak decay between two heavy baryons Bi(12+)→Bf(32+) in the light-front quark model[J]. European Physical Journal C, 2023, 83(5): 412. doi: 10.1140/epjc/s10052-023-11572-1
26. Luo, X., Fu, H.-B., Tian, H.-J. Investigation of Z-boson decay into and baryons within the NRQCD factorization approach[J]. Chinese Physics C, 2023, 47(5): 053102. doi: 10.1088/1674-1137/acbc0e
27. Wang, D.. Evidence of ACP(D→ π+π-) implies observable CP asymmetry in the D→ ππ decay[J]. European Physical Journal C, 2023, 83(4): 279. doi: 10.1140/epjc/s10052-023-11439-5
28. Huang, K.-S., Liu, W., Shen, Y.-L. et al. Λ b→ p, N∗(1535) form factors from QCD light-cone sum rules[J]. European Physical Journal C, 2023, 83(4): 272. doi: 10.1140/epjc/s10052-023-11349-6
29. Rui, Z., Li, J.-M., Zhang, C.-Q. Estimates of exchange topological contributions and CP -violating observables in Λb → Λφ decay[J]. Physical Review D, 2023, 107(5): 053009. doi: 10.1103/PhysRevD.107.053009
30. Geng, C.-Q., Liu, C.-W., Yu, X. et al. Semileptonic decays of doubly charmed baryons in the bag model[J]. Physical Review D, 2023, 107(5): 053008. doi: 10.1103/PhysRevD.107.053008
31. Hu, X.-H., Shi, Y.-J. Light-cone sum rules analysis of ΞQQ′q → ςQ′∗ weak decays[J]. Physical Review D, 2023, 107(3): 036007. doi: 10.1103/PhysRevD.107.036007
32. Liu, H., Xing, Z.-P., Yang, C. Light quark decays of doubly heavy baryons in light front approach[J]. European Physical Journal C, 2023, 83(2): 123. doi: 10.1140/epjc/s10052-023-11263-x
33. Chen, H.-X., Chen, W., Liu, X. et al. An updated review of the new hadron states[J]. Reports on Progress in Physics, 2023, 86(2): 026201. doi: 10.1088/1361-6633/aca3b6
34. Geng, C., Zhou, X. Recent Progress in Λc+ Decays[J]. Symmetry, 2023, 15(1): 20. doi: 10.3390/sym15010020
35. Wang, D.. Generation of SU(3) sum rule for charmed baryon decay[J]. Journal of High Energy Physics, 2022, 2022(12): 3. doi: 10.1007/JHEP12(2022)003
36. Wang, W., Xing, Z.-P. Weak decays of triply heavy baryons in light front approach[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022. doi: 10.1016/j.physletb.2022.137402
37. Yang, G.-H., Liang, E.-P., Qin, Q. et al. Inclusive weak-annihilation decays and lifetimes of beauty-charmed baryons[J]. Physical Review D, 2022, 106(9): 093013. doi: 10.1103/PhysRevD.106.093013
38. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Measurement of the absolute branching fraction of the singly Cabibbo suppressed decay Λc+ →pη′[J]. Physical Review D, 2022, 106(7): 072002. doi: 10.1103/PhysRevD.106.072002
39. Chen, H.-X.. Hidden-charm pentaquark states through current algebra: from their production to decay[J]. Chinese Physics C, 2022, 46(9): 093105. doi: 10.1088/1674-1137/ac6ed2
40. Shi, Y.-J., Zhao, Z.-X., Xing, Y. et al. W -exchange contribution to the decays Ξcc++ → Ξc+ (′) π+ using light-cone sum rules[J]. Physical Review D, 2022, 106(3): 034004. doi: 10.1103/PhysRevD.106.034004
41. Han, J.-J., Li, Y., Li, H.-N. et al. Λ b→ p transition form factors in perturbative QCD[J]. European Physical Journal C, 2022, 82(8): 686. doi: 10.1140/epjc/s10052-022-10642-0
42. Cheng, H.-Y.. Charmed baryon physics circa 2021[J]. Chinese Journal of Physics, 2022. doi: 10.1016/j.cjph.2022.06.021
43. Yu, F.-S.. Weak-decay searches for Qsu¯ d¯ tetraquarks[J]. European Physical Journal C, 2022, 82(7): 641. doi: 10.1140/epjc/s10052-022-10567-8
44. Ke, H.-W., Li, X.-Q. Revisiting the transition Ξcc++ → Ξc (′)+ to understand the data from LHCb[J]. Physical Review D, 2022, 105(9): 096011. doi: 10.1103/PhysRevD.105.096011
45. Aaij, R., Abdelmotteleb, A.S.W., Abellán Beteta, C. et al. Observation of the doubly charmed baryon decay Ξcc++→Ξc′+π+[J]. Journal of High Energy Physics, 2022, 38(2022) doi: 10.1007/JHEP05(2022)038
46. Alrebdi, H.I., Alnahdi, R.F., Barakat, T. Excited states of spin-(3/2) doubly-heavy baryons within the QCD sum rules method[J]. European Physical Journal C, 2022, 82(5): 450. doi: 10.1140/epjc/s10052-022-10419-5
47. Chen, H.-X.. Hadronic molecules in B decays[J]. Physical Review D, 2022, 105(9): 094003. doi: 10.1103/PhysRevD.105.094003
48. Wang, D.. From topological amplitude to rescattering dynamics in doubly charmed baryon decays[J]. Physical Review D, 2022, 105(7): 073002. doi: 10.1103/PhysRevD.105.073002
49. Wang, D.. From topological amplitude to rescattering dynamics[J]. Journal of High Energy Physics, 2022, 2022(3): 155. doi: 10.1007/JHEP03(2022)155
50. Chen, H.-X.. Decay properties of the X(3872) through the Fierz rearrangement[J]. Communications in Theoretical Physics, 2022, 74(2): 025201. doi: 10.1088/1572-9494/ac449e
51. Aliev, T., Bilmiş, S. Properties of doubly heavy baryons in QCD[J]. Turkish Journal of Physics, 2022, 46(1) doi: 10.55730/1300-0101.2688
52. He, H.-Z., Liang, W., Lü, Q.-F. Strong decays of the low-lying doubly bottom baryons[J]. Physical Review D, 2022, 105(1): A71. doi: 10.1103/PhysRevD.105.014010
53. Aaij, R., Abdelmotteleb, A.S.W., Abellán Beteta, C. et al. Search for the doubly charmed baryon Ξcc+ in the Ξc+π−π+ final state[J]. Journal of High Energy Physics, 2021, 2021(12): 107. doi: 10.1007/JHEP12(2021)107
54. Xing, Z.-P., Zhao, Z.-X. QCD sum rules analysis of weak decays of doubly heavy baryons: the b→ c processes[J]. European Physical Journal C, 2021, 81(12): 1111. doi: 10.1140/epjc/s10052-021-09902-2
55. Li, H.-B., Lyu, X.-R. Study of the standard model with weak decays of charmed hadrons at BESIII[J]. National Science Review, 2021, 8(11): nwab181. doi: 10.1093/nsr/nwab181
56. Ke, H.-W., Kang, Q.-Q., Liu, X.-H. et al. Weak decays of Ξ(')c→ Ξ in the light-front quark model[J]. Chinese Physics C, 2021, 45(11): 113103. doi: 10.1088/1674-1137/ac1c66
57. Xing, Y., Niu, Y. The study of doubly charmed pentaquark ccq¯ qq with the SU(3) symmetry[J]. European Physical Journal C, 2021, 81(11): 978. doi: 10.1140/epjc/s10052-021-09730-4
58. Qin, Q., Shen, Y.-F., Yu, F.-S. Discovery potentials of double-charm tetraquarks[J]. Chinese Physics C, 2021, 45(10): 103106. doi: 10.1088/1674-1137/ac1b97
59. Tyulemissov, Z., Issadykov, A., Nurlan, K. Weak decays of heavy Baryons[J]. AIP Conference Proceedings, 2021. doi: 10.1063/5.0064217
60. Wang, D., Jia, C.-P., Yu, F.-S. A self-consistent framework of topological amplitude and its SU(N) decomposition[J]. Journal of High Energy Physics, 2021, 2021(9): 126. doi: 10.1007/JHEP09(2021)126
61. Li, Y.-S., Liu, X., Yu, F.-S. Revisiting semileptonic decays of supported by baryon spectroscopy[J]. Physical Review D, 2021, 104(1): 013005. doi: 10.1103/PhysRevD.104.013005
62. Li, D.-M., Zhang, X.-R., Xing, Y. et al. Weak decays of doubly heavy baryons: four-body nonleptonic decay channels[J]. European Physical Journal Plus, 2021, 136(7): 772. doi: 10.1140/epjp/s13360-021-01757-6
63. Han, J.-J., Zhang, R.-X., Jiang, H.-Y. et al. Weak decays of bottom-charm baryons: Bbc→ BbP[J]. European Physical Journal C, 2021, 81(6): 539. doi: 10.1140/epjc/s10052-021-09239-w
64. Abu-Shady, M., Ahmed, M.M.A., Gerish, N.H. Magnetic Moments and Decay Rates for Double Heavy Baryons in the Non-Relativistic Quark Model[J]. Physics of Particles and Nuclei Letters, 2021, 18(3): 294-301. doi: 10.1134/S154747712103002X
65. Han, J.-J., Jiang, H.-Y., Liu, W. et al. Rescattering mechanism of weak decays of double-charm baryons[J]. Chinese Physics C, 2021, 45(5): 053105. doi: 10.1088/1674-1137/abec68
66. Li, R.-H., Hou, J.-J., He, B. et al. Weak decays of doubly heavy baryons: Bcc → BD(∗)[J]. Chinese Physics C, 2021, 45(4): 043108. doi: 10.1088/1674-1137/abe0bc
67. Qiu, P.-C., Yao, D.-L. Chiral effective Lagrangian for doubly charmed baryons up to O (q4)[J]. Physical Review D, 2021, 103(3): 034006. doi: 10.1103/PhysRevD.103.034006
68. Chen, Y.-K., Han, J.-J., Lü, Q.-F. et al. Branching fractions of B-→ D-X0 , 1(2900) and their implications[J]. European Physical Journal C, 2021, 81(1): 71. doi: 10.1140/epjc/s10052-021-08857-8
69. Zhu, J.-T., Liu, Y., Chen, D.-Y. et al. X(2239) and as hidden-strange molecular states from interaction[J]. Chinese Physics C, 2020, 44(12): 123103. doi: 10.1088/1674-1137/abb4cc
70. Chen, H.-X.. Decay properties of the Z c(3900) through the Fierz rearrangement[J]. Chinese Physics C, 2020, 44(11): 114003. doi: 10.1088/1674-1137/abae4b
71. Chen, H.-X.. Decay properties of Pc states through the Fierz rearrangement[J]. European Physical Journal C, 2020, 80(10): 945. doi: 10.1140/epjc/s10052-020-08519-1
72. Chen, S.-F., Liu, B.-C. The γp→φη′p reaction in an effective Lagrangian model[J]. Physical Review C, 2020, 102(2): 025202. doi: 10.1103/PhysRevC.102.025202
73. Zheng, X.-C., Chang, C.-H., Feng, T.-F. A proposal on complementary determination of the effective electro-weak mixing angles via doubly heavy-flavored hadron production at a super Z-factory[J]. Science China: Physics, Mechanics and Astronomy, 2020, 63(8): 281011. doi: 10.1007/s11433-019-1497-9
74. Ivanov, M.A., Körner, J.G., Lyubovitskij, V.E. Nonleptonic Decays of Doubly Charmed Baryons[J]. Physics of Particles and Nuclei, 2020, 51(4): 678-685. doi: 10.1134/S1063779620040358
75. Sun, Z., Wu, X.-G. The production of the doubly charmed baryon in deeply inelastic ep scattering at the Large Hadron Electron Collider[J]. Journal of High Energy Physics, 2020, 2020(7): 34. doi: 10.1007/JHEP07(2020)034
76. Shi, Y.-J., Wang, W., Zhao, Z.-X. QCD Sum Rules Analysis of Weak Decays of Doubly-Heavy Baryons[J]. European Physical Journal C, 2020, 80(6): 568. doi: 10.1140/epjc/s10052-020-8096-2
77. Shi, Y.-J., Wang, W., Zhao, Z.-X. et al. Towards a heavy diquark effective theory for weak decays of doubly heavy baryons[J]. European Physical Journal C, 2020, 80(5): 398. doi: 10.1140/epjc/s10052-020-7949-z
78. Hu, X.-H., Li, R.-H., Xing, Z.-P. A comprehensive analysis of weak transition form factors for doubly heavy baryons in the light front approach[J]. European Physical Journal C, 2020, 80(4): 320. doi: 10.1140/epjc/s10052-020-7851-8
79. Rahmani, S., Hassanabadi, H., Sobhani, H. Mass and decay properties of double heavy baryons with a phenomenological potential model[J]. European Physical Journal C, 2020, 80(4): 312. doi: 10.1140/epjc/s10052-020-7867-0
80. Ivanov, M.A.. Nonleptonic Decays of Doubly Charmed Baryons[J]. Particles, 2020, 3(1): 123-144. doi: 10.3390/particles3010011
81. Cheng, H.-Y., Meng, G., Xu, F. et al. Two-body weak decays of doubly charmed baryons[J]. Physical Review D, 2020, 101(3): 034034. doi: 10.1103/PhysRevD.101.034034
82. Ke, H.-W., Lu, F., Liu, X.-H. et al. Study on Ξ cc→ Ξ c and Ξcc→Ξc′ weak decays in the light-front quark model[J]. European Physical Journal C, 2020, 80(2): 140. doi: 10.1140/epjc/s10052-020-7699-y
83. Özdem, U.. Magnetic dipole moments of the spin- 32 doubly heavy baryons[J]. European Physical Journal A, 2020, 56(2): 34. doi: 10.1140/epja/s10050-020-00049-4
84. Yu, F.-S.. Role of decay in the search for double-charm baryons[J]. Science China: Physics, Mechanics and Astronomy, 2020, 63(2): 221065. doi: 10.1007/s11433-019-1483-0
85. Wu, X.-G.. A new search for the doubly charmed baryon Ξcc+ at the LHC[J]. Science China: Physics, Mechanics and Astronomy, 2020, 63(2): 221063. doi: 10.1007/s11433-019-1478-x
86. Hu, X.-H., Shi, Y.-J. Light-cone sum rules analysis of ΞQQ′→ΣQ′ weak decays[J]. European Physical Journal C, 2020, 80(1): 56. doi: 10.1140/epjc/s10052-020-7635-1
87. Gutsche, T., Ivanov, M.A., Körner, J.G. et al. Analysis of the semileptonic and nonleptonic two-body decays of the double heavy charm baryon states Ξcc++, Ξcc+ and ωcc+[J]. Physical Review D, 2019, 100(11): 114037. doi: 10.1103/PhysRevD.100.114037
88. Yu, Q.-X., Dias, J.M., Liang, W.-H. et al. Molecular Ξ bc states from meson–baryon interaction[J]. European Physical Journal C, 2019, 79(12): 1025. doi: 10.1140/epjc/s10052-019-7543-4
89. Berezhnoy, A.V., Likhoded, A.K., Luchinsky, A.V. Doubly heavy baryons from the theoretical point of view[J]. Journal of Physics: Conference Series, 2019, 1390(1): 012031. doi: 10.1088/1742-6596/1390/1/012031
90. Ablikim, M., Achasov, M.N., Adlarson, P. et al. Measurements of weak decay asymmetries of Λ+c → pK0s, Λπ+, Σ+ π0, and Σ0π+[J]. Physical Review D, 2019, 100(7): 072004. doi: 10.1103/PhysRevD.100.072004
91. Azizi, K., Er, N. Effects of a dense medium on parameters of doubly heavy baryons[J]. Physical Review D, 2019, 100(7): 074004. doi: 10.1103/PhysRevD.100.074004
92. Aaij, R., Abellán Beteta, C., Adeva, B. et al. A search for Ξcc++ → D+pK− π + decays[J]. Journal of High Energy Physics, 2019, 2019(10): 124. doi: 10.1007/JHEP10(2019)124
93. Li, Y.B., Shen, C.P., Adachi, I. et al. First measurements of absolute branching fractions of the Ξc+ baryon at Belle[J]. Physical Review D, 2019, 100(3): 031101. doi: 10.1103/PhysRevD.100.031101
94. Gutsche, T., Ivanov, M.A., Körner, J.G. et al. Novel Ideas in Nonleptonic Decays of Double Heavy Baryons[J]. Particles, 2019, 2(2): 339-356. doi: 10.3390/particles2020021
95. Ke, H.-W., Hao, N., Li, X.-Q. Revisiting Λ b→ Λ c and Σ b→ Σ c weak decays in the light-front quark model[J]. European Physical Journal C, 2019, 79(6): 540. doi: 10.1140/epjc/s10052-019-7048-1
96. Shi, Y.-J., Xing, Y., Zhao, Z.-X. Light-cone sum rules analysis of ΞQQ′q→ΛQ′ weak decays[J]. European Physical Journal C, 2019, 79(6): 501. doi: 10.1140/epjc/s10052-019-7014-y
97. Wang, D.. Sum rules for CP asymmetries of charmed baryon decays in the SU(3) F limit[J]. European Physical Journal C, 2019, 79(5): 429. doi: 10.1140/epjc/s10052-019-6925-y
98. Xing, Y., Yu, F.-S., Zhu, R. Weak decays of stable open-bottom tetraquark by SU(3) symmetry analysis[J]. European Physical Journal C, 2019, 79(5): 373. doi: 10.1140/epjc/s10052-019-6882-5
99. Gutsche, T., Ivanov, M.A., Körner, J.G. et al. Ab initio three-loop calculation of the W -exchange contribution to nonleptonic decays of double charm baryons AB INITIO THREE-LOOP CALCULATION of the W - ... THOMAS GUTSCHE et al.[J]. Physical Review D, 2019, 99(5): 056013. doi: 10.1103/PhysRevD.99.056013
100. Ozdem, U.. Magnetic moments of doubly heavy baryons in light-cone QCD[J]. Journal of Physics G: Nuclear and Particle Physics, 2019, 46(3): 035003. doi: 10.1088/1361-6471/aafffc
101. Ali, A., Maiani, L., Polosa, A.D. Multiquark hadrons[J]. Multiquark Hadrons, 2019. doi: 10.1017/9781316761465
102. He, J.. Recent LHCb results in charm spectroscopy[J]. Proceedings of Science, 2019.
103. Xu, H., Wang, B., Liu, Z.-W. et al. DD∗ potentials in chiral effective field theory and possible molecular states[J]. Physical Review D, 2019, 99(1): 014027. doi: 10.1103/PhysRevD.99.014027
104. Berezhnoy, A.V., Likhoded, A.K., Luchinsky, A.V. Doubly heavy baryons at the LHC[J]. Physical Review D, 2018, 98(11): 113004. doi: 10.1103/PhysRevD.98.113004
105. Zhang, Q.-A.. Weak decays of doubly heavy baryons: W-exchange[J]. European Physical Journal C, 2018, 78(12): 1024. doi: 10.1140/epjc/s10052-018-6481-x
106. Dias, J.M., Debastiani, V.R., Xie, J.-J. et al. Doubly charmed Ξcc molecular states from meson-baryon interaction[J]. Physical Review D, 2018, 98(9): 094017. doi: 10.1103/PhysRevD.98.094017
107. Jiang, L.-J., He, B., Li, R.-H. Weak decays of doubly heavy baryons: Bcc→ BcV[J]. European Physical Journal C, 2018, 78(11): 961. doi: 10.1140/epjc/s10052-018-6445-1
108. Aaij, R., Adeva, B., Adinolfi, M. et al. First Observation of the Doubly Charmed Baryon Decay Ξcc + + → Ξc+ π+[J]. Physical Review Letters, 2018, 121(16): 162002. doi: 10.1103/PhysRevLett.121.162002
109. Xing, Y., Zhu, R. Weak decays of stable doubly heavy tetraquark states[J]. Physical Review D, 2018, 98(5): 053005. doi: 10.1103/PhysRevD.98.053005
110. Xing, Z.-P., Zhao, Z.-X. Weak decays of doubly heavy baryons: The FCNC processes[J]. Physical Review D, 2018, 98(5): 056002. doi: 10.1103/PhysRevD.98.056002
111. Zhao, Z.-X.. Weak decays of doubly heavy baryons: the 1 / 2 → 3 / 2 case[J]. European Physical Journal C, 2018, 78(9): 756. doi: 10.1140/epjc/s10052-018-6213-2
112. Dhir, R., Sharma, N. Weak decays of doubly heavy charm Ωcc+ baryon[J]. European Physical Journal C, 2018, 78(9): 743. doi: 10.1140/epjc/s10052-018-6220-3
113. Meng, L., Li, N., Zhu, S.-L. Possible hadronic molecules composed of the doubly charmed baryon and nucleon[J]. European Physical Journal A, 2018, 54(9): 143. doi: 10.1140/epja/i2018-12578-2
114. Ablikim, M., Achasov, M.N., Ahmed, S. et al. Measurement of the Absolute Branching Fraction of the Inclusive Decay Λc+ → Λ+X[J]. Physical Review Letters, 2018, 121(6): 062003. doi: 10.1103/PhysRevLett.121.062003
115. Liu, M.-Z., Xiao, Y., Geng, L.-S. Magnetic moments of the spin- 1/2 doubly charmed baryons in covariant baryon chiral perturbation theory[J]. Physical Review D, 2018, 98(1): 014040. doi: 10.1103/PhysRevD.98.014040
116. Li, R.-H., Lu, C.-D. Search for doubly heavy baryon via weak decays[J]. 2018.
117. Bhardwaj, V., Dorigo, M., Yu, F.-S. Summary of WG7 at CKM 2018: “Mixing and CP violation in the D system: XD, yD, |q/p|D, φD, and direct CP violation in D decays”[J]. 2018.
118. Fontana, M.. Charm physics at lhcb[J]. Proceedings of Science, 2018. doi: 10.22323/1.321.0189
Get Citation
Fu-Sheng Yu, Hua-Yu Jiang, Run-Hui Li, Cai-Dian Lü, Wei Wang and Zhen-Xing Zhao. Discovery potentials of doubly charmed baryons[J]. Chinese Physics C, 2018, 42(5): 051001. doi: 10.1088/1674-1137/42/5/051001
Fu-Sheng Yu, Hua-Yu Jiang, Run-Hui Li, Cai-Dian Lü, Wei Wang and Zhen-Xing Zhao. Discovery potentials of doubly charmed baryons[J]. Chinese Physics C, 2018, 42(5): 051001.  doi: 10.1088/1674-1137/42/5/051001 shu
Milestone
Received: 2017-12-05
Fund

    Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)

Article Metric

Article Views(3091)
PDF Downloads(63)
Cited by(118)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Discovery potentials of doubly charmed baryons

    Corresponding author: Fu-Sheng Yu,
    Corresponding author: Wei Wang,
  • School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
    2. Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics ofChinese Academy of Sciences, Lanzhou 730000, China;
    3. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
    4. Institute of High Energy Physics, Chinese Academy of Sciences, YuQuanLu 19 B, Beijing 100049, China;
    5. School of Physics, University of Chinese Academy of Sciences, YuQuanLu 19 A, Beijing 100049, China;
    6. INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China
Fund Project:  Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)

Abstract: The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, Ξcc++ and Ξcc+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, Ξcc++→ Λc+K-π+π+ and Ξc+π+ are the most favorable decay modes for experiments to search for doubly heavy baryons.

    HTML

Reference (55)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return