×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Band head spin determination of triaxial superdeformed bands in 163,164,165Lu through two-parameter formulae

  • The two-parameter formulae, i.e. the nuclear softness formula and the power index formula, have been used to obtain the band head spin (I0) of the triaxial superdeformed (SD) bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3), in the A~160 mass region. The least squares fitting approach is used. The values of the root mean square (RMS) deviation among the computed and the measured experimental transition energies are obtained by calculating the model parameters. Whenever accurate spins are available, superb agreement is shown between the determined and the measured experimental transition energies. In comparison to the power index formula, the values of band head spin (I0) of the triaxial SD bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3) obtained by the nuclear softness formula are closer to the experimental data. The lowest RMS deviation is also achieved by the nuclear softness formula. Hence, the nuclear softness formula works well for obtaining the band head spin (I0) for the triaxial SD bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3) in the A~160 mass region. The dynamic moment of inertia against is also studied.
      PCAS:
  • 加载中
  • [1] Y. S. Chen, S. Frauendorf, and G. A. Leander, Phys. Rev. C, 28:2437(1983)
    [2] S. Frauendorf and J. Meng, Nucl. Phys. A, 617:131-147(1997)
    [3] B. Crowell, P. Chowdhury, S. J. Freeman et al, Phys. Rev. Lett., 72:1164-1167(1994)
    [4] H. S. Petersen, R. Bengtsson, R. A. Bark et al, Nucl. Phys. A, 594:175-202(1995)
    [5] T. Bengtsson, www.matfys.lth.se/ragnar/TSD.html
    [6] T. Bengtsson, Nucl. Phys. A, 496:56(1989)
    [7] T. Bengtsson, Nucl. Phys. A, 512:124(1990)
    [8] W. Schmitz, H. Hubel, C. X. Yang et al, Phys. Lett. B, 303:230(1993)
    [9] G. Schonwaber, H. Hubel, G. B. Hagemann et al, Eur. Phys. J. A, 13:291(2002)
    [10] G. Schonwaber, H. Hubel, G. B. Hagemann et al, Eur. Phys. J. A, 15:435-437(2002)
    [11] H. Amro, P. G. Varmette, W. C. Ma et al, Phys. Lett. B, 506:39-44(2001)
    [12] C.X. Yang, X. G. Wu, H. Zheng et al, Eur. Phys. J. A, 1:237(1998)
    [13] H. Amro, W. C. Ma, G. B. Hagemann et al, Phys. Lett. B, 553:197(2003)
    [14] A. Neuber, H. Hubel, G. B. Hagemann et al, Eur. Phys. J. A, 15:439(2002)
    [15] A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2:(New York:Benjamin, 1975)
    [16] S. W. Odegard, G. B. Hagemann, D. R. Jensen et al, Phys. Rev. Lett., 86:5866(2001)
    [17] D. R. Jensen, G. B. Hagemann, I. Hamamoto et al, Nucl. Phys. A, 703:3(2002)
    [18] D.R. Jensen, G. B. Hagemann, I. Hamamoto et al, Phys. Rev. Lett., 89:142503(2002)
    [19] G. Schonwaber, H. Hubel, G. B. Hagemann et al, Phys. Lett. B, 552:9(2003)
    [20] I. Hamamoto, Phys. Rev. C, 65:044305(2002)
    [21] M. Matsuzaki, Y. Shimizu, and K. Matsuyanagi, Phys. Rev. C, 65:041303(R) (2002)
    [22] J. A. Becker, E. A. Henry, A. Kuhnert et al, Phys. Rev. C, 46:889(1992)
    [23] J. Meng, C. S. Wu and J. Y. Zeng, Phys. Rev. C, 44:2545(1991)
    [24] C. S. Wu, J. Y. Zeng, Z. Xing et al, Phys. Rev. C, 45:261(1992)
    [25] S. X. Liu and J. Y. Zeng, Phys. Rev. C, 58:3266(1998)
    [26] D. Bonatsos, S. B. Drenska, P. P. Raychev et al, J. Phys. G:Nucl. Part. Phys., 17:L67(1991)
    [27] Y. Liu, J. G. Song, H. Z. Sun et al, J. Phys. G:Nucl. Part. Phys., 24:117(1998)
    [28] P. Jain, V. S. Uma and A. Geol, Proceeding of DAE-BRNS Symp. on Nucl. Phys., 61:298-299(2016)
    [29] H. Sharma and H. M. Mittal, Int. J. Mod. Phys E, 26:1750074(2017)
    [30] A. Dadwal, H. M. Mittal, Eur. Phys. J. A, 53:2(2017)
    [31] H. Sharma and H. M. Mittal, Chinese Physics C, 41:124105(2017)
    [32] H. Sharma and H. M. Mittal, Mod. Phys. Lett. A, 33:1850048(2018)
    [33] H. Sharma and H. M. Mittal, Chinese Physics C, 42:054104(2018)
    [34] R. K. Gupta, Phys. Lett. B, 36:173(1971)
    [35] J. B. Gupta, A. K. Kavathekar, and R. Sharma, Phys. Scr., 51:316(1995)
    [36] X. L Han and C. L. Wu, At. Data and Nucl. Data Tables, 73:43(1999)
    [37] B. Singh, R. Zywina, and R. B. Firestone, Nuclear Data Sheets, 97:241-592(2002)
  • 加载中

Get Citation
Honey Sharma and H. M. Mittal. Band head spin determination of triaxial superdeformed bands in 163,164,165Lu through two-parameter formulae[J]. Chinese Physics C, 2018, 42(11): 114102. doi: 10.1088/1674-1137/42/11/114102
Honey Sharma and H. M. Mittal. Band head spin determination of triaxial superdeformed bands in 163,164,165Lu through two-parameter formulae[J]. Chinese Physics C, 2018, 42(11): 114102.  doi: 10.1088/1674-1137/42/11/114102 shu
Milestone
Received: 2018-05-24
Revised: 2018-08-02
Article Metric

Article Views(1561)
PDF Downloads(10)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Band head spin determination of triaxial superdeformed bands in 163,164,165Lu through two-parameter formulae

  • 1. Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144011, India

Abstract: The two-parameter formulae, i.e. the nuclear softness formula and the power index formula, have been used to obtain the band head spin (I0) of the triaxial superdeformed (SD) bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3), in the A~160 mass region. The least squares fitting approach is used. The values of the root mean square (RMS) deviation among the computed and the measured experimental transition energies are obtained by calculating the model parameters. Whenever accurate spins are available, superb agreement is shown between the determined and the measured experimental transition energies. In comparison to the power index formula, the values of band head spin (I0) of the triaxial SD bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3) obtained by the nuclear softness formula are closer to the experimental data. The lowest RMS deviation is also achieved by the nuclear softness formula. Hence, the nuclear softness formula works well for obtaining the band head spin (I0) for the triaxial SD bands in 163Lu(1, 2, 3, 4), 164Lu(1, 2, 3) and 165Lu(1, 2, 3) in the A~160 mass region. The dynamic moment of inertia against is also studied.

    HTML

Reference (37)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return