Predictions of decay modes for the superheavy nuclei most suitable for synthesis

  • The competition between α-decay and spontaneous fission of superheavy nuclei (SHN) is investigated by the generalized liquid drop model (GLDM) and the modified Swiatecki's formula respectively. The theoretical decay modes are in good agreement with the experimental results. Predictions are made for as-yet unobserved superheavy nuclei. The theoretical calculations show that the nuclei 298120, 295119, 290118, 291117, 287117, 294116, 289116, 286116, 285116, 284115, 283115, 283114, 282114, 280113, 276112, 275112, 274112, 273111, 272110, 265109 may be synthesized experimentally in the near future since they not only have relatively large predicted cross sections but can also be identified via α-decay chains.
      PCAS:
  • [1] S. Hofmann and G. Munzenberg, Rev. Mod. Phys., 72: 733 (2000)
    [2] S. Hofmann, Radiochim. Acta., 99: 405 (2011)
    [3] K. Morita et al, J. Phys. Soc. Jpn., 76: 045001 (2007)
    [4] Yu. Ts. Oganessian et al, Phys. Rev. C, 70: 064609 (2004)
    [5] Yu. Ts. Oganessian et al, Phys. Rev. C, 74: 044602 (2006)
    [6] Yu. Ts. Oganessian et al, Phys. Rev. Lett., 104: 142502 (2010)
    [7] A. Baran, Z. Lojewski, K. Sieja and M. Kowal, Phys. Rev. C, 72: 044310 (2005)
    [8] D. N. Poenaru, R. A. Gherghescu and W. Greiner, J. Phys. G, 40: 105105 (2013)
    [9] Y. Qian and Z. Ren, Phys. Rev. C, 90: 064308 (2014)
    [10] A. Staszczak, A. Baran and W. Nazarewicz, Phys. Rev. C, 87: 024320 (2013)
    [11] K.P. Santhosh and B. Priyanka, Phys. Rev. C, 87: 064611 (2013)
    [12] K. P. Santhosh and B. Priyanka, Phys. Rev. C, 89: 064604 (2014)
    [13] P. Mller and J. R. Nix, Nucl. Phys. A, 549: 84 (1992)
    [14] P. R. Chowdhury, D. N. Basu and C. Samanta, Phys. Rev. C, 75: 047306 (2007)
    [15] D. S. Delion, R. J. Liotta and R. Wyss, Phys. Rev. C, 76: 044301 (2007)
    [16] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C, 81: 034613 (2010)
    [17] A. I. Budaca and I. Silisteanu, Phys. Rev. C, 88: 044618 (2013)
    [18] Y. Qian, Z. Ren and D. Ni, Phys. Rev. C, 89: 024318 (2014)
    [19] P. Jachimowicz, M. Kowal and J. Skalski, Phys. Rev. C, 89: 024304 (2014)
    [20] K. Varga, R. G. Lovas and R. J. Liotta, Phys. Rev. Lett., 69: 37 (1992)
    [21] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C, 51: 559 (1995)
    [22] G. Royer, Nucl. Phys. A, 848: 279 (2010)
    [23] P. Mohr, Phys. Rev. C, 73: 031301 (2006)
    [24] C. Xu and Z. Ren, Phys. Rev. C, 74: 014304 (2006)
    [25] D. N. Poenaru, I. H. Plonski and W. Greiner, Phys. Rev. C, 74: 014312 (2006)
    [26] C. Qi, F. R. Xu, R. J. Liotta and R. Wyss, Phys. Rev. Lett., 103: 072501 (2009)
    [27] H. F. Zhang and G. Royer, Phys. Rev. C, 77: 054318 (2008)
    [28] D. Ni and Z. Ren, Nucl. Phys. A, 825: 145 (2009)
    [29] X. Bao, H. Zhang, H. Zhang, G. Royer and J. Li, Nucl. Phys. A, 921: 85 (2014)
    [30] M. Bender, W. Nazarewicz and P. G. Reinhard, Phys. Lett. B, 515: 42 (2001)
    [31] A. Sobiczewski and I. Muntian, Nucl. Phys. A, 734: 176 (2004)
    [32] A. Dobrowolski, K. Pomorski and J. Bartel, Phys. Rev. C, 75: 024613 (2007)
    [33] R. Smolanczuk, J. Skalski and A. Sobiczewski, Phys. Rev. C, 52: 1871 (1995)
    [34] R. Smolanczuk, Phys. Rev. C, 56: 812 (1997)
    [35] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys, 58: 292 (2007)
    [36] Glenn T. Seaborg, Phys. Rev., 85: 157 (1952)
    [37] W. WhiteHouse and W. Galbraith, Nature, 169: 494 (1952)
    [38] J. R. Huizenga, Phys. Rev., 94: 158 (1954)
    [39] W. Swiatecki, Phys. Rev., 100: 937 (1955)
    [40] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong and J. Q. Li, J. Phys. G, 42: 085101 (2015)
    [41] X. J. Bao, Y. Gao, J. Q. Li and H. F. Zhang, Phys. Rev. C, 92: 034612 (2015)
    [42] X. J. Bao, Y. Gao, J. Q. Li and H. F. Zhang, Phys. Rev. C, 93: 044615 (2016)
    [43] G. Royer and R. A. Gherghescu, Nucl. Phys. A, 699: 479 (2002)
    [44] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo and J. Q. Li, Phys. Rev. C, 80: 057301 (2009)
    [45] A. Sobiczewski, Z. Patyk, and S. Cwiok, Phys. Lett. B, 224: 1 (1989)
    [46] V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem., 28: 741 (1966)
    [47] G. Royer, J. Phys. G: Nucl. Part. Phys., 26: 1149(2000)
    [48] H.F. Zhang, Y. Gao, N. Wang, J.Q. Li, E.G. Zhao and G.Royer, Phys. Rev. C, 85: 014325 (2012).
    [49] N. Wang, M. Liu, X. Z. Wu, J Meng, Phys. Lett. B, 734: 215(2014)
    [50] Y. Z. Wang at al, Phys. Rev. C, 92: 064301 (2015)
    [51] Mller P, Nix J, Myers W and Swiatecki W, At. DataNucl.Data Tables, 59: 185 (1995)
    [52] Yu Ts Oganessian, V K Utyonkov, Rep. Prog. Phys., 78:036301 (2015)
    [53] J. Dong, W. Zuo and W. Scheid, Phys. Rev. Lett., 107: 012501(2011)
    [54] Z. Ren and C. Xu, Nucl. Phys. A, 759: 64 (2005)
    [55] C. Xu, Z. Ren and Y. Guo, Phys. Rev. C, 78: 044329 (2008)
    [56] M. Warda and J. L. Egido, Phys. Rev. C, 86: 014322 (2012)
    [57] K. P. Santhosh and C. Nithya, Phys. Rev. C, 94: 054621 (2016)
  • [1] S. Hofmann and G. Munzenberg, Rev. Mod. Phys., 72: 733 (2000)
    [2] S. Hofmann, Radiochim. Acta., 99: 405 (2011)
    [3] K. Morita et al, J. Phys. Soc. Jpn., 76: 045001 (2007)
    [4] Yu. Ts. Oganessian et al, Phys. Rev. C, 70: 064609 (2004)
    [5] Yu. Ts. Oganessian et al, Phys. Rev. C, 74: 044602 (2006)
    [6] Yu. Ts. Oganessian et al, Phys. Rev. Lett., 104: 142502 (2010)
    [7] A. Baran, Z. Lojewski, K. Sieja and M. Kowal, Phys. Rev. C, 72: 044310 (2005)
    [8] D. N. Poenaru, R. A. Gherghescu and W. Greiner, J. Phys. G, 40: 105105 (2013)
    [9] Y. Qian and Z. Ren, Phys. Rev. C, 90: 064308 (2014)
    [10] A. Staszczak, A. Baran and W. Nazarewicz, Phys. Rev. C, 87: 024320 (2013)
    [11] K.P. Santhosh and B. Priyanka, Phys. Rev. C, 87: 064611 (2013)
    [12] K. P. Santhosh and B. Priyanka, Phys. Rev. C, 89: 064604 (2014)
    [13] P. Mller and J. R. Nix, Nucl. Phys. A, 549: 84 (1992)
    [14] P. R. Chowdhury, D. N. Basu and C. Samanta, Phys. Rev. C, 75: 047306 (2007)
    [15] D. S. Delion, R. J. Liotta and R. Wyss, Phys. Rev. C, 76: 044301 (2007)
    [16] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C, 81: 034613 (2010)
    [17] A. I. Budaca and I. Silisteanu, Phys. Rev. C, 88: 044618 (2013)
    [18] Y. Qian, Z. Ren and D. Ni, Phys. Rev. C, 89: 024318 (2014)
    [19] P. Jachimowicz, M. Kowal and J. Skalski, Phys. Rev. C, 89: 024304 (2014)
    [20] K. Varga, R. G. Lovas and R. J. Liotta, Phys. Rev. Lett., 69: 37 (1992)
    [21] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C, 51: 559 (1995)
    [22] G. Royer, Nucl. Phys. A, 848: 279 (2010)
    [23] P. Mohr, Phys. Rev. C, 73: 031301 (2006)
    [24] C. Xu and Z. Ren, Phys. Rev. C, 74: 014304 (2006)
    [25] D. N. Poenaru, I. H. Plonski and W. Greiner, Phys. Rev. C, 74: 014312 (2006)
    [26] C. Qi, F. R. Xu, R. J. Liotta and R. Wyss, Phys. Rev. Lett., 103: 072501 (2009)
    [27] H. F. Zhang and G. Royer, Phys. Rev. C, 77: 054318 (2008)
    [28] D. Ni and Z. Ren, Nucl. Phys. A, 825: 145 (2009)
    [29] X. Bao, H. Zhang, H. Zhang, G. Royer and J. Li, Nucl. Phys. A, 921: 85 (2014)
    [30] M. Bender, W. Nazarewicz and P. G. Reinhard, Phys. Lett. B, 515: 42 (2001)
    [31] A. Sobiczewski and I. Muntian, Nucl. Phys. A, 734: 176 (2004)
    [32] A. Dobrowolski, K. Pomorski and J. Bartel, Phys. Rev. C, 75: 024613 (2007)
    [33] R. Smolanczuk, J. Skalski and A. Sobiczewski, Phys. Rev. C, 52: 1871 (1995)
    [34] R. Smolanczuk, Phys. Rev. C, 56: 812 (1997)
    [35] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys, 58: 292 (2007)
    [36] Glenn T. Seaborg, Phys. Rev., 85: 157 (1952)
    [37] W. WhiteHouse and W. Galbraith, Nature, 169: 494 (1952)
    [38] J. R. Huizenga, Phys. Rev., 94: 158 (1954)
    [39] W. Swiatecki, Phys. Rev., 100: 937 (1955)
    [40] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong and J. Q. Li, J. Phys. G, 42: 085101 (2015)
    [41] X. J. Bao, Y. Gao, J. Q. Li and H. F. Zhang, Phys. Rev. C, 92: 034612 (2015)
    [42] X. J. Bao, Y. Gao, J. Q. Li and H. F. Zhang, Phys. Rev. C, 93: 044615 (2016)
    [43] G. Royer and R. A. Gherghescu, Nucl. Phys. A, 699: 479 (2002)
    [44] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo and J. Q. Li, Phys. Rev. C, 80: 057301 (2009)
    [45] A. Sobiczewski, Z. Patyk, and S. Cwiok, Phys. Lett. B, 224: 1 (1989)
    [46] V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem., 28: 741 (1966)
    [47] G. Royer, J. Phys. G: Nucl. Part. Phys., 26: 1149(2000)
    [48] H.F. Zhang, Y. Gao, N. Wang, J.Q. Li, E.G. Zhao and G.Royer, Phys. Rev. C, 85: 014325 (2012).
    [49] N. Wang, M. Liu, X. Z. Wu, J Meng, Phys. Lett. B, 734: 215(2014)
    [50] Y. Z. Wang at al, Phys. Rev. C, 92: 064301 (2015)
    [51] Mller P, Nix J, Myers W and Swiatecki W, At. DataNucl.Data Tables, 59: 185 (1995)
    [52] Yu Ts Oganessian, V K Utyonkov, Rep. Prog. Phys., 78:036301 (2015)
    [53] J. Dong, W. Zuo and W. Scheid, Phys. Rev. Lett., 107: 012501(2011)
    [54] Z. Ren and C. Xu, Nucl. Phys. A, 759: 64 (2005)
    [55] C. Xu, Z. Ren and Y. Guo, Phys. Rev. C, 78: 044329 (2008)
    [56] M. Warda and J. L. Egido, Phys. Rev. C, 86: 014322 (2012)
    [57] K. P. Santhosh and C. Nithya, Phys. Rev. C, 94: 054621 (2016)
  • 加载中

Cited by

1. Alsultan, T.Y.T., Majekodunmi, J.T., Kumar, R. et al. Impact of nuclear rotation corrections on alpha decay half-lives of superheavy nuclei within 98 ≤ Z ≤ 120[J]. Nuclear Physics A, 2024. doi: 10.1016/j.nuclphysa.2023.122784
2. Cai, B.-S., Yuan, C.-X. Random forest-based prediction of decay modes and half-lives of superheavy nuclei[J]. Nuclear Science and Techniques, 2023, 34(12): 204. doi: 10.1007/s41365-023-01354-5
3. Xiao, Q., Cheng, J.-H., Wang, B.-L. et al. Half-lives for proton emission and α decay within the deformed Gamow-like model[J]. Journal of Physics G: Nuclear and Particle Physics, 2023, 50(8): 085102. doi: 10.1088/1361-6471/acdfeb
4. Sowmya, N., Nagaraja, A.M., Manjunatha, H.C. Radioactive decay properties of superheavy element Z = 119[J]. Canadian Journal of Physics, 2023, 101(9): 453-459. doi: 10.1139/cjp-2022-0301
5. Aliyeva, G., Soylu, A., Koyuncu, F. Search for α-decay chains for superheavy nuclei with Z=125-127[J]. Nuclear Physics A, 2021. doi: 10.1016/j.nuclphysa.2021.122213
6. Singh, U.K., Sharma, R., Sharma, P.K. et al. Structural properties and α-decay chains of transfermium nuclei (101≤Z≤110)[J]. Nuclear Physics A, 2021. doi: 10.1016/j.nuclphysa.2020.122066
7. Koyuncu, F., Soylu, A. The alpha-decay chains and decay mode predictions of the nuclei Z = 1 1 8, 119 and 120[J]. International Journal of Modern Physics E, 2020, 29(7): 2050053. doi: 10.1142/S0218301320500536
8. Cheng, J.-H., Chen, J.-L., Deng, J.-G. et al. Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier[J]. Nuclear Physics A, 2019. doi: 10.1016/j.nuclphysa.2019.05.002
9. Hosseini, S.S., Hassanabadi, H., Akrawy, D.T. Alpha particle preformation factor of spherical nuclei for 67 ≤ Z ≤ 91[J]. Modern Physics Letters A, 2019, 34(5): 1950039. doi: 10.1142/S0217732319500391
10. Saxena, G., Kumawat, M., Singh, S.S. et al. Structural properties and decay modes of Z = 1 2 2, 120 and 118 superheavy nuclei[J]. International Journal of Modern Physics E, 2019, 28(1-2): 1950008. doi: 10.1142/S0218301319500083
11. Saxena, G., Singh, U.K., Kumawat, M. et al. Distinct ground state features and the decay chains of Z = 1 2 1 superheavy nuclei[J]. International Journal of Modern Physics E, 2018, 27(9): 1850074. doi: 10.1142/S021830131850074X
12. Akrawy, D.T., Ahmed, A.H. New empirical formula for α-decay calculations[J]. International Journal of Modern Physics E, 2018, 27(8): 1850068. doi: 10.1142/S0218301318500684
13. Li, P.-C., Zhang, H.-F., Wang, Y.-J. Stability of super heavy nuclei associated with the updated nuclear data[J]. Chinese Physics C, 2017, 41(11): 114103. doi: 10.1088/1674-1137/41/11/114103
Get Citation
Jun-Hong Liu, Shu-Qing Guo, Xiao-Jun Bao and Hong-Fei Zhang. Predictions of decay modes for the superheavy nuclei most suitable for synthesis[J]. Chinese Physics C, 2017, 41(7): 074106. doi: 10.1088/1674-1137/41/7/074106
Jun-Hong Liu, Shu-Qing Guo, Xiao-Jun Bao and Hong-Fei Zhang. Predictions of decay modes for the superheavy nuclei most suitable for synthesis[J]. Chinese Physics C, 2017, 41(7): 074106.  doi: 10.1088/1674-1137/41/7/074106 shu
Milestone
Received: 2017-03-05
Fund

    Supported by National Natural Science Foundation of China (11675066) and Feitian Scholar Project of Gansu Province

Article Metric

Article Views(2783)
PDF Downloads(40)
Cited by(13)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Predictions of decay modes for the superheavy nuclei most suitable for synthesis

    Corresponding author: Hong-Fei Zhang,
  • 1.  School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 2.  College of Physics and Information Science, Hunan Normal University, Changsha 410006, China
Fund Project:  Supported by National Natural Science Foundation of China (11675066) and Feitian Scholar Project of Gansu Province

Abstract: The competition between α-decay and spontaneous fission of superheavy nuclei (SHN) is investigated by the generalized liquid drop model (GLDM) and the modified Swiatecki's formula respectively. The theoretical decay modes are in good agreement with the experimental results. Predictions are made for as-yet unobserved superheavy nuclei. The theoretical calculations show that the nuclei 298120, 295119, 290118, 291117, 287117, 294116, 289116, 286116, 285116, 284115, 283115, 283114, 282114, 280113, 276112, 275112, 274112, 273111, 272110, 265109 may be synthesized experimentally in the near future since they not only have relatively large predicted cross sections but can also be identified via α-decay chains.

    HTML

Reference (57)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return