×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay's angle

  • Hannay's angle is a classical analogue of the “geometrical phase factor” found by Berry in his research on the quantum adiabatic theorem. This classical analogue is defined if closed curves of constant action variables return to the same curves in phase space after an adaibatic evolution. Adiabatic evolution of Yang-Mills cosmology, which is described by a time-dependent quartic oscillator, is investigated. Phase properties of the Yang-Mills fields are analyzed and the corresponding Hannay's angle is derived from a rigorous evaluation. The obtained Hannay's angle shift is represented in terms of several observable parameters associated with such an angle shift. The time evolution of Hannay's angle in Yang-Mills cosmology is examined from an illustration plotted on the basis of numerical evaluation, and its physical nature is addressed. Hannay's angle, together with its quantum counterpart Berry's phase, plays a pivotal role in conceptual understanding of several cosmological problems and indeed can be used as a supplementary probe for cosmic inflation.
      PCAS:
  • 加载中
  • [1] D. V. Gal'tsov and E. A. Davydov, Int. J. Mod. Phys.: Conf. Ser., 14: 316 (2012)
    [2] D. V. Gal'tsov and E. A. Davydov, Proc. Steklov Inst. Math., 272: 119 (2011).
    [3] E. A. Davydov and D. V. Gal'tsov, Gravit. Cosmol., 21: 35 (2015)
    [4] D. V. Gal'tsov, Proceedings of the 43rd Rencontres de Moriond La Thuile J08, Gal'tsov(1-16) (2008). [arXiv:0901.0115v1 [gr-qc]]
    [5] V. V. Dyadichev, D. V. Gal'tsov, A. G. Zorin, and M. Yu. Zotov, Phys. Rev. D, 65: 084007 (2002)
    [6] Y. Q. Cai and G. Papini, Mod. Phys. Lett. A, 4: 1143 (1989)
    [7] F. Wilczek and A. Zee, Phys. Rev. Lett., 52: 2111 (1984)
    [8] Y. Q. Cai and G. Papini, Class. Quantum Grav., 7: 269 (1990)
    [9] S. Albeverio and S. Mazzucchi, J. Funct. Anal., 238: 471 (2006)
    [10] O. V. Usatenko, J.-P. Provost, G. Valle, and A. Boudine, Phys. Lett. A, 250: 99 (1998)
    [11] J. H. Hannay, J. Phys. A: Math. Gen., 18: 221 (1985)
    [12] D. H. Kobe and J. Zhu, Int. J. Mod. Phys. B, 7: 4827 (1993)
    [13] H. D. Liu, X. X. Yi, and L. B. Fu, Ann. Phys. (N.Y.), 339: 1 (2013)
    [14] A. K. Pati, Ann. Phys. (N.Y.), 270: 178 (1998)
    [15] O. V. Usatenko, J.-P. Provost, and G. Valle, J. Phys. A: Math. Gen., 29: 2607 (1996)
    [16] B. K. Pal, S. Pal, and B. Basu, Class. Quantum Grav., 30: 125002 (2013)
    [17] D. P. Datta, Phys. Rev. D, 48: 5746 (1993)
    [18] S. P. Kim, Phys. Lett. A, 191: 365 (1994)
    [19] D. P. Datta, Mod. Phys. Lett. A, 08: 601 (1993)
    [20] A. Mostafazadeh, Turk. J. Phys., 24: 411 (2000)
    [21] B. K. Pal, S. Pal, and B. Basu, J. Phys.: Conf. Ser., 405: 012025 (2012)
    [22] R. Brout and G. Venturi, Phys. Rev. D, 39: 2436 (1989)
    [23] H. Rosu, P. Espinoza, and M. Reyes, Il Nuovo Cimento B, 114: 1439 (1999)
    [24] A. D. A. M. Spallicci, Il Nuovo Cimento B, 119: 1215 (2004)
    [25] M. V. Berry and M. A. Morgan, Nonlinearity, 9: 787 (1996)
    [26] W. Zhao, Y. Zhang, and M. Tong, Quantum Yang-Mills condensate dark energy models, in Dark Energy: Theories, Developments and Implications, K. Lefebvre and R. Garcia(eds.), Ch. 5 (New York, Nova Science Publishers, Inc., 2010). pp. 89-110
    [27] Y. Zhang, T. Y. Xia, and W. Zhao, Class. Quantum Grav. 24: 3309 (2007)
    [28] T. Y. Xia and Y. Zhang, Phys. Lett. B, 656: 19 (2007)
    [29] S. Wang, Y. Zhang, and T. Y. Xia, J. Cosmol. Astropart. Phys., 2008: 037 (2008)
    [30] Y. Zhang, Phys. Lett. B, 340: 18 (1994)
    [31] P. A. R. Ade et al, Phys. Rev. Lett., 112: 241101 (2014)
    [32] P. A. R. Ade et al, arXiv: 1603.05976v1 (2016)
    [33] J. J. van der Bij and E. Radu, Int. J. Mod. Phys. A, 18: 2379 (2003)
    [34] G. D. Moore, Phys. Rev. D, 62: 085011 (2000)
    [35] S. Golin, J. Phys. A: Math. Gen., 22: 4573 (1989)
    [36] S. Golin, A. Knauf, and S. Marmi, Commun. Math. Phys., 123: 95 (1989)
    [37] S. Golin and S. Marmi, Europhys. Lett., 8: 399 (1989)
    [38] S. Golin and S. Marmi, Nonlinearity, 3: 507 (1990)
    [39] A. D. A. M. Spallicci, A. Morbidelli, and G. Metris, Nonlinearity, 18: 45 (2005)
    [40] C. A. Mead, Phys. Rev. Lett., 59: 161 (1987)
    [41] S. C. Li, J. Liu, and L. B. Fu, Phys. Rev. A, 83: 042107 (2011)
    [42] A. G. Wagh, V. C. Rakhecha, P. Fischer, and A. Ioffe, Phys. Rev. Lett., 81: 1992 (1998)
  • 加载中

Get Citation
Yacine Bouguerra, Mustapha Maamache and Jeong Ryeol Choi. Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay's angle[J]. Chinese Physics C, 2017, 41(6): 065103. doi: 10.1088/1674-1137/41/6/065103
Yacine Bouguerra, Mustapha Maamache and Jeong Ryeol Choi. Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay's angle[J]. Chinese Physics C, 2017, 41(6): 065103.  doi: 10.1088/1674-1137/41/6/065103 shu
Milestone
Received: 2016-12-16
Revised: 2017-01-14
Fund

    Supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)}

Article Metric

Article Views(1472)
PDF Downloads(40)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay's angle

    Corresponding author: Jeong Ryeol Choi,
  • 1. Laboratoire de Physique Quantique et Systé
  • 2. Dé
  • 3.  Laboratoire de Physique Quantique et Systé
  • 4.  Department of Radiologic Technology, Daegu Health College, Yeongsong-ro 15, Buk-gu, Daegu 41453, Republic of Korea
Fund Project:  Supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)}

Abstract: Hannay's angle is a classical analogue of the “geometrical phase factor” found by Berry in his research on the quantum adiabatic theorem. This classical analogue is defined if closed curves of constant action variables return to the same curves in phase space after an adaibatic evolution. Adiabatic evolution of Yang-Mills cosmology, which is described by a time-dependent quartic oscillator, is investigated. Phase properties of the Yang-Mills fields are analyzed and the corresponding Hannay's angle is derived from a rigorous evaluation. The obtained Hannay's angle shift is represented in terms of several observable parameters associated with such an angle shift. The time evolution of Hannay's angle in Yang-Mills cosmology is examined from an illustration plotted on the basis of numerical evaluation, and its physical nature is addressed. Hannay's angle, together with its quantum counterpart Berry's phase, plays a pivotal role in conceptual understanding of several cosmological problems and indeed can be used as a supplementary probe for cosmic inflation.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return