Physics potential of searching for 0vββ decays in JUNO

Cited by

1. Abdukerim, A., Bo, Z., Chen, W. et al. PandaX-xT—A deep underground multi-ten-tonne liquid xenon observatory[J]. Science China: Physics, Mechanics and Astronomy, 2025, 68(2): 221011. doi: 10.1007/s11433-024-2539-y
2. Singh, M.K., Li, H.B., Wong, H.T. et al. Projections of discovery potentials from expected background[J]. Physical Review D, 2024, 109(3): 032001. doi: 10.1103/PhysRevD.109.032001
3. Cao, X.-G., Chang, Y.-L., Chen, K. et al. NνDEx-100 conceptual design report[J]. Nuclear Science and Techniques, 2024, 35(1): 3. doi: 10.1007/s41365-023-01360-7
4. Felipe, R.G.. Neutrino physics: Experimental and theoretical challenges[J]. Astronomische Nachrichten, 2023, 344(6): e230095. doi: 10.1002/asna.20230095
5. Agostini, M., Benato, G., Detwiler, J.A. et al. Toward the discovery of matter creation with neutrinoless ββ decay[J]. Reviews of Modern Physics, 2023, 95(2): 025002. doi: 10.1103/RevModPhys.95.025002
6. Ding, Y.-Y., Liu, M.-C., Wen, L.-J. et al. A novel approach in synthesizing Te-diol compounds for tellurium-loaded liquid scintillator[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023. doi: 10.1016/j.nima.2023.168111
7. Huang, G.-Y., Nath, N. Inference of neutrino nature and Majorana CP phases from 0νββ decays with inverted mass ordering[J]. European Physical Journal C, 2022, 82(9): 838. doi: 10.1140/epjc/s10052-022-10811-1
8. Bieger, L., Birkenfeld, T., Blum, D. et al. Potential for a precision measurement of solar pp neutrinos in the Serappis experiment[J]. European Physical Journal C, 2022, 82(9): 779. doi: 10.1140/epjc/s10052-022-10725-y
9. Vien, V.V.. Fermion spectrum with normal neutrino mass ordering in a nonrenormalizable B−L model based on Σ(18)×Z2 symmetry[J]. Chinese Journal of Physics, 2022. doi: 10.1016/j.cjph.2021.12.017
10. Abusleme, A., Adam, T., Ahmad, S. et al. JUNO physics and detector[J]. Progress in Particle and Nuclear Physics, 2022. doi: 10.1016/j.ppnp.2021.103927
11. Vien, V.V.. A non-renormalizable B-L model with Q 4× Z 4× Z 2flavor symmetry for cobimaximal neutrino mixing[J]. Chinese Physics C, 2021, 45(12): 123103. doi: 10.1088/1674-1137/ac28f2
12. Avasthi, A., Bowyer, T.W., Bray, C. et al. Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches[J]. Physical Review D, 2021, 104(11): A42. doi: 10.1103/PhysRevD.104.112007
13. Cabrera, A., Abusleme, A., dos Anjos, J. et al. Neutrino physics with an opaque detector[J]. Communications Physics, 2021, 4(1): 273. doi: 10.1038/s42005-021-00763-5
14. Cheng, J., Li, Y.-F., Lu, H.-Q. et al. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements NEUTRAL-CURRENT .... II. METHODOLOGY for ... CHENG, LI, LU, and WEN[J]. Physical Review D, 2021, 103(5): 053002. doi: 10.1103/PhysRevD.103.053002
15. Vien, V.V.. B - L model based on Q4symmetry for fermion spectrum with normal neutrino mass ordering[J]. Modern Physics Letters A, 2021, 36(7): 2150047. doi: 10.1142/S0217732321500474
16. Huang, G.-Y., Zhou, S. Tentative sensitivity of future 0νββ-decay experiments to neutrino masses and Majorana CP phases[J]. Journal of High Energy Physics, 2021, 2021(3): 84. doi: 10.1007/JHEP03(2021)084
17. Abusleme, A., Adam, T., Ahmad, S. et al. Feasibility and physics potential of detecting 8B solar neutrinos at JUNO[J]. Chinese Physics C, 2021, 45(2): 023004. doi: 10.1088/1674-1137/abd92a
18. Li, S.W., Roberts, L.F., Beacom, J.F. Exciting prospects for detecting late-time neutrinos from core-collapse supernovae[J]. Physical Review D, 2021, 103(2): 023016. doi: 10.1103/PhysRevD.103.023016
19. Hu, Y., Li, H., Dong, C. Research on convergence of the nuclear matrix elements for 2νββ decays[J]. Chinese Physics C, 2020, 44(12): 124108. doi: 10.1088/1674-1137/abba13
20. Ge, S.-F., Zhu, J.-Y. Phenomenological advantages of the normal neutrino mass ordering[J]. Chinese Physics C, 2020, 44(8): 083103. doi: 10.1088/1674-1137/44/8/083103
21. Vien, V.V., Long, H.N., Cárcamo Hernández, A.E. U(1) B-L extension of the standard model with S3 symmetry[J]. European Physical Journal C, 2020, 80(8): 725. doi: 10.1140/epjc/s10052-020-8318-7
22. Askins, M., Bagdasarian, Z., Barros, N. et al. Theia: an advanced optical neutrino detector[J]. European Physical Journal C, 2020, 80(5): 416. doi: 10.1140/epjc/s10052-020-7977-8
23. Cao, J., Huang, G.-Y., Li, Y.-F. et al. Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays[J]. Chinese Physics C, 2020, 44(3): 031001. doi: 10.1088/1674-1137/44/3/031001
24. Li, A., Elagin, A., Fraker, S. et al. Suppression of cosmic muon spallation backgrounds in liquid scintillator detectors using convolutional neural networks[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019. doi: 10.1016/j.nima.2019.162604
25. de Salas, P.F., Gariazzo, S., Mena, O. et al. Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects[J]. Frontiers in Astronomy and Space Sciences, 2018. doi: 10.3389/fspas.2018.00036
26. Liu, J.-H., Zhou, S. Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays[J]. International Journal of Modern Physics A, 2018, 33(2): 1850014. doi: 10.1142/S0217751X18500148
27. Wen, L.J., Cao, J., Wang, Y.F. Reactor Neutrino Experiments: Present and Future[J]. Annual Review of Nuclear and Particle Science, 2017. doi: 10.1146/annurev-nucl-101916-123318
Get Citation
Jie Zhao, Liang-Jian Wen, Yi-Fang Wang and Jun Cao. Physics potential of searching for 0vββ decays in JUNO[J]. Chinese Physics C, 2017, 41(5): 053001. doi: 10.1088/1674-1137/41/5/053001
Jie Zhao, Liang-Jian Wen, Yi-Fang Wang and Jun Cao. Physics potential of searching for 0vββ decays in JUNO[J]. Chinese Physics C, 2017, 41(5): 053001.  doi: 10.1088/1674-1137/41/5/053001 shu
Milestone
Received: 2016-10-24
Revised: 2017-01-17
Fund

    Supported by Strategic Priority Research Program of Chinese Academy of Sciences(XDA10010900), CAS Center for Excellence in Particle Physics (CCEPP), Postdoctoral Science Foundation of China and Chinese Academy of Sciences (2015IHEPBSH101), Program of International ST Cooperation of MoST (2015DFG02000)

Article Metric

Article Views(2509)
PDF Downloads(63)
Cited by(27)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Physics potential of searching for 0vββ decays in JUNO

    Corresponding author: Jie Zhao,
    Corresponding author: Liang-Jian Wen,
  • 1.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. State Key Laboratory of Particle Detection and Electronics (Institute of High Energy Physics, Chinese Academy of Sciences and University of Science and Technology of China
Fund Project:  Supported by Strategic Priority Research Program of Chinese Academy of Sciences(XDA10010900), CAS Center for Excellence in Particle Physics (CCEPP), Postdoctoral Science Foundation of China and Chinese Academy of Sciences (2015IHEPBSH101), Program of International ST Cooperation of MoST (2015DFG02000)

Abstract: In the past few decades, numerous searches have been made for the neutrinoless double-beta decay (0vββ) process, aiming to establish whether neutrinos are their own antiparticles (Majorana neutrinos), but no 0vββ decay signal has yet been observed. A number of new experiments are proposed but they ultimately suffer from a common problem: the sensitivity may not increase indefinitely with the target mass. We have performed a detailed analysis of the physics potential by using the Jiangmen Underground Neutrino Observatory (JUNO) to improve the sensitivity to 0vββ up to a few meV, a major step forward with respect to the experiments currently being planned. JUNO is a 20 kton low-background liquid scintillator (LS) detector with 3%E(MeV) energy resolution, now under construction. It is feasible to build a balloon filled with enriched xenon gas (with 136Xe up to 80%) dissolved in LS, inserted into the central region of the JUNO LS. The energy resolution is ~1.9% at the Q-value of 136Xe 0vββ decay. Ultra-low background is the key for 0vββ decay searches. Detailed studies of background rates from intrinsic 2vββ and 8B solar neutrinos, natural radioactivity, and cosmogenic radionuclides (including light isotopes and 137Xe) were performed and several muon veto schemes were developed. We find that JUNO has the potential to reach a sensitivity (at 90% C. L.) to T1/20vββ of 1.8×1028 yr (5.6×1027 yr) with ~50 tons (5 tons) of fiducial 136Xe and 5 years exposure, while in the 50-ton case the corresponding sensitivity to the effective neutrino mass, mββ, could reach (5-12) meV, covering completely the allowed region of inverted neutrino mass ordering.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return