×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Ab initio many-body perturbation theory and no-core shell model

  • In many-body perturbation theory (MBPT) we always introduce a parameter Nshell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses Nmax HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from "bare" and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in "close" model space. In addition, we compare the results using "bare" force with the Okubo-Lee-Suzuki renormalized force.
      PCAS:
  • 加载中
  • [1] P. Navrtil and B. R. Barrett. Phys. Rev. C, 57:562-568 (1998)
    [2] P. Navrtil, J. P. Vary and B. R. Barrett. Phys. Rev. Lett., 84:5728-5731 (2000)
    [3] B. R. Barrett, P. Navrtil and J. P. Vary. Progress in Particle and Nuclear Physics, 69(0):131-181 (2013)
    [4] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa and J. Carlson. Phys. Rev. C, 64:014001 (2001)
    [5] S. C. Pieper, R. B. Wiringa and J. Carlson. Phys. Rev. C, 70:054325 (2004)
    [6] M. Pervin, S. C. Pieper and R. B. Wiringa. Phys. Rev. C, 76:064319 (2007)
    [7] L. E. Marcucci, M. Pervin, S. C. Pieper, R. Schiavilla and R. B. Wiringa. Phys. Rev. C, 78:065501 (2008)
    [8] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen. Phys. Rev. Lett., 101:092502 (2008)
    [9] G. Hagen, T. Papenbrock and D. J. Dean. Phys. Rev. Lett., 103:062503 (2009)
    [10] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen. Phys. Rev. C, 82:034330 (2010)
    [11] R. Roth and P. Navrtil. Phys. Rev. Lett., 99:092501 (2007)
    [12] M. K. G. Kruse, E. D. Jurgenson, P. Navrtil, B. R. Barrett and W. E. Ormand. Phys. Rev. C, 87:044301 (2013)
    [13] L. Coraggio, N. Itaco, A. Covello, A. Gargano and T. T. S. Kuo. Phys. Rev. C, 68:034320 (2003)
    [14] Hasan, A. Mahmoud, J. P. Vary and P. Navrtil. Phys. Rev. C, 69:034332 (2004)
    [15] R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff and H. Feldmeier. Phys. Rev. C, 73:044312 (2006)
    [16] F. R. WANG, X. F. MENG, Y. A. LUO and F. PAN. Chinese physics C, 32(S2):109 (2008)
    [17] F. Pan, V. G. Gueorguiev and J. P. Draayer. Phys. Rev. Lett., 92:112503 (2004)
    [18] S. G. Zhou, C. K. Zheng and J. M. Hu. Chinese physics C, 22(12):1143 (1998)
    [19] Z. Z. Ren and G. O. Xu. Chinese physics C, 19(11):1029 (1995)
    [20] S. G. Zhou, F. R. Xu, C. K. Zheng and J. M. Hu. Chinese physics C, 23(08):803 (1999)
    [21] Y. M. Zhao, J. Q. Chen and B. Q. Chen. Chinese physics C, 21(04):356 (1997)
    [22] Y. M. Zhao and A. Arima. Physics Reports, 545(1):1-45 (2014)
    [23] A. Ekstrm, G. Baardsen, C. Forssn, G. Hagen, M. HjorthJensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich and S. M. Wild. Phys. Rev. Lett., 110:192502 (2013)
    [24] A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary and T. A. Weber. Phys. Rev. C, 70:044005 (2004)
    [25] A. Shirokov, J. Vary, A. Mazur, S. Zaytsev and T. Weber. Physics Letters B, 621(1-2):96-101 (2005)
    [26] A. Shirokov, J. Vary, A. Mazur and T. Weber. Physics Letters B, 644(1):33-37 (2007)
    [27] I. Stetcu, B. Barrett and U. van Kolck. Physics Letters B, 653(2-4):358-362 (2007)
    [28] R. J. Furnstahl, G. Hagen and T. Papenbrock. Phys. Rev. C, 86:031301 (2012)
    [29] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris and J. P. Vary. Phys. Rev. C, 86:054002 (2012)
    [30] S. kubo. Progress of Theoretical Physics, 12(5):603-622 (1954)
    [31] K. Suzuki and S. Y. Lee. Progress of Theoretical Physics, 64(6):2091-2106 (1980)
    [32] K. Suzuki. Progress of Theoretical Physics, 68(1):246-260 (1982)
    [33] K. Suzuki and R. Okamoto. Progress of Theoretical Physics, 70(2):439-451 (1983)
    [34] K. Suzuki. Progress of Theoretical Physics, 68(6):1999-2013 (1982)
    [35] K. Suzuki and R. Okamoto. Progress of Theoretical Physics, 92(6):1045-1080 (1994)
    [36] P. Navrtil and E. Caurier. Phys. Rev. C, 69:014311 (2004)
    [37] R. Machleidt. Phys. Rev. C, 63:024001 (2001)
    [38] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart. Phys. Rev. C, 49:2950-2962 (1994)
    [39] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla. Phys. Rev. C, 51:38-51 (1995)
    [40] P. Doleschall. Phys. Rev. C, 69:054001 (2004)
    [41] D. R. Entem and R. Machleidt. Phys. Rev. C, 68:041001 (2003)
    [42] R. Machleidt and D. Entem. Physics Reports, 503(1):1-75 (2011)
    [43] K. A. Brueckner. Phys. Rev., 97:1353-1366 (1955)
    [44] J. Goldstone. Proc. R. Soc. Lond. A, 239:267-279 (1957)
    [45] H. A. Bethe, B. H. Brandow and A. G. Petschek. Phys. Rev., 129:225-264 (1963)
    [46] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello and N. Itaco. Phys. Rev. C, 65:051301 (2002)
    [47] S. Bogner, T. Kuo and A. Schwenk. Physics Reports, 386(1):1-27 (2003)
    [48] S. K. Bogner, R. J. Furnstahl and R. J. Perry. Phys. Rev. C, 75:061001 (2007)
    [49] R. Roth, H. Hergert, P. Papakonstantinou, T. Neff and H. Feldmeier. Phys. Rev. C, 72:034002 (2005)
    [50] R. Roth, T. Neff and H. Feldmeier. Progress in Particle and Nuclear Physics, 65(1):50-93 (2010)
    [51] B. S. Hu, F. R. Xu, Z. H. Sun, J. P. Vary and T. Li. Phys. Rev. C, 94:014303 (2016)
    [52] C. Constantinou, M. A. Caprio, J. P. Vary and P. Maris (2016)
    [53] J. W. Negele. Phys. Rev. C, 1:1260-1321 (1970)
  • 加载中

Get Citation
B. S. Hu, Q. Wu and F. R. Xu. Ab initio many-body perturbation theory and no-core shell model[J]. Chinese Physics C, 2017, 41(10): 104101. doi: 10.1088/1674-1137/41/10/104101
B. S. Hu, Q. Wu and F. R. Xu. Ab initio many-body perturbation theory and no-core shell model[J]. Chinese Physics C, 2017, 41(10): 104101.  doi: 10.1088/1674-1137/41/10/104101 shu
Milestone
Received: 2017-05-16
Fund

    Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)

Article Metric

Article Views(1683)
PDF Downloads(65)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Ab initio many-body perturbation theory and no-core shell model

  • 1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Fund Project:  Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)

Abstract: In many-body perturbation theory (MBPT) we always introduce a parameter Nshell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses Nmax HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from "bare" and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in "close" model space. In addition, we compare the results using "bare" force with the Okubo-Lee-Suzuki renormalized force.

    HTML

Reference (53)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return