Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum

  • Based on an IR-improved soft-wall AdS/QCD model for mesons, which provides a consistent prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons, we investigate its finite temperature effect. By analyzing the spectral function of mesons and fitting it with a Breit-Wigner form, we perform an analysis for the critical temperature of mesons. The back-reaction effects of bulk vacuum are considered and the thermal mass spectral function of resonance mesons is calculated based on the back-reaction improved action. A reasonable melting temperature is found to be Tc≈150±7 MeV, which is consistent with the recent results from lattice QCD simulations.
      PCAS:
  • 加载中
  • [1] J. M. Maldacena, Adv. Theor. Math. Phys., 2:231(1998)[hep-th/9711200]
    [2] D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30:1343(1973); H. D. Politzer, Phys. Rev. Lett. 30, 1346(1973)
    [3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105(1998)[hep-th/9802109]
    [4] E. Witten, Adv. Theor. Math. Phys., 2:253(1998)[hep-th/9802150]
    [5] J. Polchinski and M. J. Strassler, Phys. Rev. Lett., 88:031601(2002)[hep-th/0109174]
    [6] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, JHEP, 0405:041(2004)[hep-th/0311270]
    [7] T. Sakai and S. Sugimoto, Prog. Theor. Phys., 113:843(2005)[hep-th/0412141]
    [8] T. Sakai and S. Sugimoto, Prog. Theor. Phys., 114:1083(2005)[hep-th/0507073]
    [9] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. Lett., 95:261602(2005)[hep-ph/0501128]
    [10] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D, 74:015005(2006)[hep-ph/0602229]
    [11] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, and S. Nicotri, Phys. Rev. D, 78:055009(2008)[arXiv:0807.1054[hep-ph]]
    [12] T. Gherghetta, J. I. Kapusta, and T. M. Kelley, Phys. Rev. D, 79:076003(2009)[arXiv:0902.1998[hep-ph]]
    [13] Y. Q. Sui, Y. L. Wu, Z. F. Xie, and Y. B. Yang, Phys. Rev. D, 81:014024(2010)[arXiv:0909.3887[hep-ph]]
    [14] Y. Q. Sui, Y. L. Wu, and Y. B. Yang, Phys. Rev. D, 83:065030(2011)[arXiv:1012.3518[hep-ph]]
    [15] L.-X. Cui, Z. Fang, and Y.-L. Wu, arXiv:1310.6487[hep-ph]
    [16] A. Vega and I. Schmidt, Phys. Rev. D, 82:115023(2010)[arXiv:1005.3000[hep-ph]]
    [17] A. Vega and I. Schmidt, Phys.Rev. D, 84:017701(2011)[e-Print:arXiv:1104.4365]
    [18] D. Li, M. Huang, and Q. S. Yan, Eur. Phys. J. C, 73:2615(2013)[arXiv:1206.2824[hep-th]]
    [19] S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett., 96:(2006) 201601[arXiv:hep-ph/0602252]
    [20] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D, 77:056007(2008)[arXiv:0707.3859[hep-ph]]
    [21] S. J. Brodsky and G. F. de Teramond, arXiv:0909.3899[hep-ph]; G. F. de Teramond and S. J. Brodsky, arXiv:0909.3900[hep-ph]
    [22] Y. Nambu, Phys. Rev. Lett., 4:380(1960)
    [23] Y. B. Dai and Y. L. Wu, Eur. Phys. J. C, 39:(2005) S1[arXiv:hep-ph/0304075]
    [24] K. Ghoroku, M. Yahiro, Phys. Rev. D, 73:125010(2006)[hep-ph/0512289]
    [25] M. Fujita, K. Fukushima, T. Misumi, and M. Murata, Phys. Rev. D, 80:035001(2009)[arXiv:0903.2316[hep-ph]]
    [26] M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, and M. Murata, Phys. Rev. D, 81:065024(2010)[arXiv:0911.2298[hep-ph]]
    [27] A. S. Miranda, C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga, JHEP, 0911:119(2009)[arXiv:0909.1790[hep-th]]
    [28] P. Colangelo, F. Giannuzzi, and S. Nicotri, Phys. Rev. D, 80:094019(2009)[arXiv:0909.1534[hep-ph]]
    [29] H. R. Grigoryan, P. M. Hohler, and M. A. Stephanov, Phys. Rev. D, 82:026005(2010)[arXiv:1003.1138[hep-ph]]
    [30] C. P. Herzog, Phys. Rev. Lett., 98:091601(2007)[hep-th/0608151]
    [31] A. S. Miranda, C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga, JHEP, 0911:119(2009)[arXiv:0909.1790[hep-th]]
    [32] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, Phys. Lett. B, 652:73-78(2007)[hep-ph/0703316].
    [33] P. Colangelo, F. Giannuzzi, and S. Nicotri, Phys. Rev. D, 80:094019(2009).[arXiv:0909.1534[hep-ph]]
    [34] L.-X. Cui, S. Takeuchi, and Y.-L. Wu, JHEP, 1204:144(2012)[arXiv:1112.5923[hep-ph]]
    [35] L. X. Cui and Y. L. Wu, Mod. Phys. Lett. A, 28:No. 34, 1350132(2013)[arXiv:1302.4828[hep-ph]]
    [36] D. T. Son and A. O. Starinets, JHEP, 0209:042(2002)[hep-th/0205051]
    [37] E. Santini, M. D. Cozma, A. Faessler, C. Fuchs, M. I. Krivoruchenko, and B. Martemyanov, Phys. Rev. C, 78:034910(2008)[arXiv:0804.3702[nucl-th]]
    [38] M. Post, S. Leupold, and U. Mosel, Nucl. Phys. A, 741:81(2004)[nucl-th/0309085]
    [39] A. K. Dutt-Mazumder, R. Hofmann, and M. Pospelov, Phys. Rev. C, 63:015204(2001)[hep-ph/0005100]
    [40] J. P. Shock, F. Wu, Y.-L. Wu, and Z.-F. Xie, JHEP, 0703:064(2007)[hep-ph/0611227]
    [41] S. Borsanyi et al (Wuppertal-Budapest Collaboration), JHEP, 1009:073(2010)[arXiv:1005.3508[hep-lat]]
    [42] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T. Ding, S. Gottlieb, R. Gupta and P. Hegde et al, Phys. Rev. D, 85:054503(2012)[arXiv:1111.1710[hep-lat]]
    [43] T. Bhattacharya et al, Phys. Rev. Lett., 113:082001(2014)[arXiv:1402.5175[hep-lat]]
  • 加载中

Get Citation
Ling-Xiao Cui, Zhen Fang and Yue-Liang Wu. Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum[J]. Chinese Physics C, 2016, 40(6): 063101. doi: 10.1088/1674-1137/40/6/063101
Ling-Xiao Cui, Zhen Fang and Yue-Liang Wu. Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum[J]. Chinese Physics C, 2016, 40(6): 063101.  doi: 10.1088/1674-1137/40/6/063101 shu
Milestone
Received: 2015-09-15
Revised: 2016-01-21
Fund

    Supported by National Nature Science Foundation of China (NSFC)(10975170, 10905084, 10821504), and Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Science

Article Metric

Article Views(1396)
PDF Downloads(85)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum

    Corresponding author: Ling-Xiao Cui,
    Corresponding author: Zhen Fang,
    Corresponding author: Yue-Liang Wu,
  • 1. Key Laboratory of Theoretical Physics(SKLTP), Beijing 100190, China
  • 2. Kavli Institute for Theoretical Physics China(KITPC), Beijing 100190, China
  • 3. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4. University of Chinese Academy of Sciences(UCAS), Beijing 100049, China
Fund Project:  Supported by National Nature Science Foundation of China (NSFC)(10975170, 10905084, 10821504), and Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Science

Abstract: Based on an IR-improved soft-wall AdS/QCD model for mesons, which provides a consistent prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons, we investigate its finite temperature effect. By analyzing the spectral function of mesons and fitting it with a Breit-Wigner form, we perform an analysis for the critical temperature of mesons. The back-reaction effects of bulk vacuum are considered and the thermal mass spectral function of resonance mesons is calculated based on the back-reaction improved action. A reasonable melting temperature is found to be Tc≈150±7 MeV, which is consistent with the recent results from lattice QCD simulations.

    HTML

Reference (43)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return