Study of hadrons using the Gaussian functional method in the O(4) linear σ model
- Received Date: 2014-08-04
- Accepted Date: 2014-12-04
- Available Online: 2015-06-05
Abstract: We study properties of hadrons in the O(4) linear σ model, where we take into account fluctuations of mesons around their mean field values using the Gaussian functional (GF) method. In the GF method we calculate dressed σ and π masses, where we include the effect of fluctuations of mesons to find a better ground state wave function than the mean field approximation. Then we solve the Bethe-Salpeter equations and calculate physical σ and π masses. We recover the Nambu-Goldstone theorem for the physical pion mass to be zero in the chiral limit. The σ meson is a strongly correlated meson-meson state, and seems to have a two meson composite structure. We calculate σ and π masses as functions of temperature for both the chiral limit and explicit chiral symmetry breaking case. We get similar behaviors for the physical σ and π masses as the case of the mean field approximation, but the coupling constants are much larger than the values of the case of the mean field approximation.