Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries

  • We propose to understand the mixing angles and CP-violating phases from the Δ(48) family symmetry combined with the generalized CP symmetry. A model-independent analysis is performed by scanning all the possible symmetry breaking chains. We find a new mixing pattern with only one free parameter, excellent agreement with the observed mixing angles can be achieved and all the CP-violating phases are predicted to take nontrivial values. This mixing pattern is testable in the near future neutrino oscillation and neutrinoless double-beta decay experiments. Finally, a flavor model is constructed to realize this mixing pattern.
  • [1] Altarelli G, Feruglio F. Rev. Mod. Phys., 2010, 82: 2701; Ishimori H, Kobayashi T, Ohki H, Shimizu Y, Okada H, Tanimoto M. Prog. Theor. Phys. Suppl., 2010, 183: 1; King S F, Luhn C. Rept. Prog. Phys., 2013, 76: 056201[2] AN F P et al. (DAYA-BAY collaboration). Phys. Rev. Lett., 2012, 108: 171803; Ahn J K et al. (RENO collaboration). Phys. Rev. Lett., 2012, 108: 191802; Abe Y et al. (DOUBLE-CHOOZ collaboration). Phys. Rev. Lett., 2012, 108: 131801[3] Ecker G, Grimus W, Konetschny W. Nucl. Phys. B, 1981, 191: 465; Ecker G, Grimus W, Neufeld H. Nucl. Phys. B, 1984, 247: 70; J. Phys. A, 1987, 20: L807; Neufeld H, Grimus W, Ecker G. Int. J. Mod. Phys. A, 1988, 3: 603[4] Feruglio F, Hagedorn C, Ziegler R. JHEP, 2013 1307: 027[5] Holthausen M, Lindner M, Schmidt M A. JHEP, 1304: 122[6] DING G J, King S F, Luhn C, Stuart A J. JHEP, 2013 1305: 084[7] LI C C, DING G J. Nucl. Phys. B, 2014, 881: 206[8] DING G J, King S F, Stuart A J. JHEP, 2013, 1312: 006[9] Girardi I, Meroni A, Petcov S T, Spinrath M. JHEP, 2014, 1402: 050[10] DING G J, ZHOU Y L. JHEP, 2014, 1406: 023[11] Grimus W, Rebelo M N. Phys. Rept., 1997, 281: 239[12] Luhn C, Nasri S, Ramond P. J. Math. Phys., 2007, 48: 073501[13] Harrison P F, Scott W G. Phys. Lett. B, 2002, 535: 163; Phys. Lett. B, 2002, 547: 219; Grimus W, Lavoura L. Phys. Lett. B, 2004, 579: 113; Harrison P F, Scott W G. Phys. Lett. B, 2004, 594: 324; Farzan Y, Smirnov A Y. JHEP, 2007, 0701: 059; Ferreira P M, Grimus W, Lavoura L, Ludl P O. JHEP, 2012, 1209: 128; Grimus W, Lavoura L. Fortsch. Phys., 2013, 61: 535[14] Beringer J et al. (Particle Data Group collaboration). Phys. Rev. D, 2012, 86: 010001[15] Gonzalez-Garcia M C, Maltoni M, Salvado J, Schwetz T. JHEP, 2012, 1212: 123[16] Ade P A R et al. (Planck collaboration). Astron. Astrophys., 2014[17] Rodejohann W. Int. J. Mod. Phys. E, 2011, 20: 1833; Bilenky S M, Giunti C. Mod. Phys. Lett. A, 2012, 27: 1230015; Petcov S T. Adv. High Energy Phys., 2013, 2013: 852987
  • [1] Altarelli G, Feruglio F. Rev. Mod. Phys., 2010, 82: 2701; Ishimori H, Kobayashi T, Ohki H, Shimizu Y, Okada H, Tanimoto M. Prog. Theor. Phys. Suppl., 2010, 183: 1; King S F, Luhn C. Rept. Prog. Phys., 2013, 76: 056201[2] AN F P et al. (DAYA-BAY collaboration). Phys. Rev. Lett., 2012, 108: 171803; Ahn J K et al. (RENO collaboration). Phys. Rev. Lett., 2012, 108: 191802; Abe Y et al. (DOUBLE-CHOOZ collaboration). Phys. Rev. Lett., 2012, 108: 131801[3] Ecker G, Grimus W, Konetschny W. Nucl. Phys. B, 1981, 191: 465; Ecker G, Grimus W, Neufeld H. Nucl. Phys. B, 1984, 247: 70; J. Phys. A, 1987, 20: L807; Neufeld H, Grimus W, Ecker G. Int. J. Mod. Phys. A, 1988, 3: 603[4] Feruglio F, Hagedorn C, Ziegler R. JHEP, 2013 1307: 027[5] Holthausen M, Lindner M, Schmidt M A. JHEP, 1304: 122[6] DING G J, King S F, Luhn C, Stuart A J. JHEP, 2013 1305: 084[7] LI C C, DING G J. Nucl. Phys. B, 2014, 881: 206[8] DING G J, King S F, Stuart A J. JHEP, 2013, 1312: 006[9] Girardi I, Meroni A, Petcov S T, Spinrath M. JHEP, 2014, 1402: 050[10] DING G J, ZHOU Y L. JHEP, 2014, 1406: 023[11] Grimus W, Rebelo M N. Phys. Rept., 1997, 281: 239[12] Luhn C, Nasri S, Ramond P. J. Math. Phys., 2007, 48: 073501[13] Harrison P F, Scott W G. Phys. Lett. B, 2002, 535: 163; Phys. Lett. B, 2002, 547: 219; Grimus W, Lavoura L. Phys. Lett. B, 2004, 579: 113; Harrison P F, Scott W G. Phys. Lett. B, 2004, 594: 324; Farzan Y, Smirnov A Y. JHEP, 2007, 0701: 059; Ferreira P M, Grimus W, Lavoura L, Ludl P O. JHEP, 2012, 1209: 128; Grimus W, Lavoura L. Fortsch. Phys., 2013, 61: 535[14] Beringer J et al. (Particle Data Group collaboration). Phys. Rev. D, 2012, 86: 010001[15] Gonzalez-Garcia M C, Maltoni M, Salvado J, Schwetz T. JHEP, 2012, 1212: 123[16] Ade P A R et al. (Planck collaboration). Astron. Astrophys., 2014[17] Rodejohann W. Int. J. Mod. Phys. E, 2011, 20: 1833; Bilenky S M, Giunti C. Mod. Phys. Lett. A, 2012, 27: 1230015; Petcov S T. Adv. High Energy Phys., 2013, 2013: 852987
  • 加载中

Cited by

1. Ding, G.-J., Valle, J.W.F. The symmetry approach to quark and lepton masses and mixing[J]. Physics Reports, 2025. doi: 10.1016/j.physrep.2024.12.005
2. Ohki, H., Uemura, S. CP-like symmetry with discrete and continuous groups and CP violation/restoration[J]. Journal of High Energy Physics, 2024, 2024(10): 213. doi: 10.1007/JHEP10(2024)213
3. Chauhan, G., Dev, P.S.B., Dubovyk, I. et al. Phenomenology of lepton masses and mixing with discrete flavor symmetries[J]. Progress in Particle and Nuclear Physics, 2024. doi: 10.1016/j.ppnp.2024.104126
4. Denton, P.B., Gehrlein, J. Survey of neutrino flavor predictions and the neutrinoless double beta decay funnel[J]. Physical Review D, 2024, 109(5): 055028. doi: 10.1103/PhysRevD.109.055028
5. Hagedorn, C., Kriewald, J., Orloff, J. et al. Flavour and CP symmetries in the inverse seesaw[J]. European Physical Journal C, 2022, 82(3): 194. doi: 10.1140/epjc/s10052-022-10097-3
6. Feruglio, F., Romanino, A. Lepton flavor symmetries[J]. Reviews of Modern Physics, 2021, 93(1): 015007. doi: 10.1103/RevModPhys.93.015007
7. Chen, P.-T., Ding, G.-J., King, S.F. et al. A new Littlest Seesaw model[J]. Journal of Physics G: Nuclear and Particle Physics, 2020, 47(6): 065001. doi: 10.1088/1361-6471/ab7e8d
8. Liao, J., Nath, N., Wang, T. et al. Nonstandard neutrino interactions and mu-tau reflection symmetry[J]. Physical Review D, 2020, 101(9): 095036. doi: 10.1103/PhysRevD.101.095036
9. Xing, Z.-Z.. Flavor structures of charged fermions and massive neutrinos[J]. Physics Reports, 2020. doi: 10.1016/j.physrep.2020.02.001
10. Pérez, M.J., Rahat, M.H., Ramond, P. et al. Tribimaximal mixing in the SU (5)× T13 texture[J]. Physical Review D, 2020, 101(7): 075018. doi: 10.1103/PhysRevD.101.075018
11. Turner, J., Zhou, Y.-L. Leptogenesis via varying Weinberg operator: the Closed-Time-Path approach[J]. Journal of High Energy Physics, 2020, 2020(1): 22. doi: 10.1007/JHEP01(2020)022
12. Di Iura, A., López-Ibáñez, M.L., Meloni, D. Neutrino masses and lepton mixing from A5 and CP[J]. Nuclear Physics B, 2019. doi: 10.1016/j.nuclphysb.2019.114794
13. Pérez, M.J., Rahat, M.H., Ramond, P. et al. Stitching an asymmetric texture with T13× Z5 family symmetry[J]. Physical Review D, 2019, 100(7): 075008. doi: 10.1103/PhysRevD.100.075008
14. Ding, G.-J., King, S.F., Li, C.-C. Lepton mixing predictions from S4 in the tridirect CP approach to two right-handed neutrino models[J]. Physical Review D, 2019, 99(7): 075035. doi: 10.1103/PhysRevD.99.075035
15. Heinrich, L., Schulz, H., Turner, J. et al. Constraining A 4 leptonic flavour model parameters at colliders and beyond[J]. Journal of High Energy Physics, 2019, 2019(4): 144. doi: 10.1007/JHEP04(2019)144
16. Lu, J.-N., Ding, G.-J. Dihedral flavor group as the key to understand quark and lepton flavor mixing[J]. Journal of High Energy Physics, 2019, 2019(3): 56. doi: 10.1007/JHEP03(2019)056
17. Sinha, R., Roy, P., Ghosal, A. CP transformed mixed μτ antisymmetry for neutrinos and its consequences[J]. Physical Review D, 2019, 99(3): 033009. doi: 10.1103/PhysRevD.99.033009
18. Penedo, J.T., Petcov, S.T. The 10−3 eV frontier in neutrinoless double beta decay[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018. doi: 10.1016/j.physletb.2018.09.059
19. Lu, J.-N., Ding, G.-J. Quark and lepton mixing patterns from a common discrete flavor symmetry with a generalized CP symmetry[J]. Physical Review D, 2018, 98(5): 055011. doi: 10.1103/PhysRevD.98.055011
20. Li, C.-C., Lu, J.-N., Ding, G.-J. Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries[J]. Journal of High Energy Physics, 2018, 2018(2): 38. doi: 10.1007/JHEP02(2018)038
21. Li, C.-C., Ding, G.-J. Implications of residual CP symmetry for leptogenesis in a model with two right-handed neutrinos[J]. Physical Review D, 2017, 96(7): 075005. doi: 10.1103/PhysRevD.96.075005
22. De Medeiros Varzielas, I.. CP-odd invariants for multi-Higgs models and applications with discrete symmetry[J]. Journal of Physics: Conference Series, 2017, 873(1): 012035. doi: 10.1088/1742-6596/873/1/012035
23. Hagedorn, C., Molinaro, E. Flavor and CP symmetries for leptogenesis and 0νββ decay[J]. Nuclear Physics B, 2017. doi: 10.1016/j.nuclphysb.2017.03.015
24. King, S.F.. Unified models of neutrinos, flavour and CP Violation[J]. Progress in Particle and Nuclear Physics, 2017. doi: 10.1016/j.ppnp.2017.01.003
25. Lu, J.-N., Ding, G.-J. Alternative schemes of predicting lepton mixing parameters from discrete flavor and CP symmetry[J]. Physical Review D, 2017, 95(1): 015012. doi: 10.1103/PhysRevD.95.015012
26. Li, C.-C., Lu, J.-N., Ding, G.-J. A4 and CP symmetry and a model with maximal CP violation[J]. Nuclear Physics B, 2016. doi: 10.1016/j.nuclphysb.2016.09.005
27. Yao, C.-Y., Ding, G.-J. CP symmetry and lepton mixing from a scan of finite discrete groups[J]. Physical Review D, 2016, 94(7): 073006. doi: 10.1103/PhysRevD.94.073006
28. Pascoli, S., Zhou, Y.-L. Flavon-induced connections between lepton flavour mixing and charged lepton flavour violation processes[J]. Journal of High Energy Physics, 2016, 2016(10): 145. doi: 10.1007/JHEP10(2016)145
29. De Medeiros Varzielas, I., King, S.F., Luhn, C. et al. CP -odd invariants for multi-Higgs models: Applications with discrete symmetry[J]. Physical Review D, 2016, 94(5): 056007. doi: 10.1103/PhysRevD.94.056007
30. Chen, P., Ding, G.-J., Gonzalez-Canales, F. et al. Classifying CP transformations according to their texture zeros: Theory and implications[J]. Physical Review D, 2016, 94(3): 033002. doi: 10.1103/PhysRevD.94.033002
31. Xing, Z.-Z., Zhao, Z.-H. A review of μ-τ Flavor symmetry in neutrino physics[J]. Reports on Progress in Physics, 2016, 79(7): 076201. doi: 10.1088/0034-4885/79/7/076201
32. Li, C.-C., Yao, C.-Y., Ding, G.-J. Lepton mixing predictions from infinite group series D 9n, 3n(1) with generalized CP[J]. Journal of High Energy Physics, 2016, 2016(5): 7. doi: 10.1007/JHEP05(2016)007
33. Chen, P., Ding, G.-J., King, S.F. Leptogenesis and residual CP symmetry[J]. Journal of High Energy Physics, 2016, 2016(3): 206. doi: 10.1007/JHEP03(2016)206
34. Ding, G.-J., King, S.F. Generalized CP and Δ (3n2) family symmetry for semidirect predictions of the PMNS matrix[J]. Physical Review D, 2016, 93(2): 025013. doi: 10.1103/PhysRevD.93.025013
35. Shimizu, Y., Tanimoto, M. Testing the minimal S 4 model of neutrinos with the Dirac and Majorana phases[J]. Journal of High Energy Physics, 2015, 2015(12): 1-27. doi: 10.1007/JHEP12(2015)132
36. Ballett, P., Pascoli, S., Turner, J. Mixing angle and phase correlations from A5 with generalized CP and their prospects for discovery[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 2015, 92(9): 093008. doi: 10.1103/PhysRevD.92.093008
37. Chen, P., Yao, C.-Y., Ding, G.-J. Neutrino mixing from CP symmetry[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 2015, 92(7): 073002. doi: 10.1103/PhysRevD.92.073002
38. Li, C.-C., Ding, G.-J. Deviation from bimaximal mixing and leptonic CP phases in S 4 family symmetry and generalized CP[J]. Journal of High Energy Physics, 2015, 2015(8): 17. doi: 10.1007/JHEP08(2015)017
39. Li, C.-C., Ding, G.-J. Lepton mixing in A 5 family symmetry and generalized CP[J]. Journal of High Energy Physics, 2015, 2015(5): 100. doi: 10.1007/JHEP05(2015)100
40. Zhou, S.. Theoretical results on neutrinos[J]. Proceedings of Science, 2015.
Get Citation
DING Gui-Jun and ZHOU Ye-Ling. Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries[J]. Chinese Physics C, 2015, 39(2): 021001. doi: 10.1088/1674-1137/39/2/021001
DING Gui-Jun and ZHOU Ye-Ling. Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries[J]. Chinese Physics C, 2015, 39(2): 021001.  doi: 10.1088/1674-1137/39/2/021001 shu
Milestone
Received: 2014-09-16
Revised: 1900-01-01
Article Metric

Article Views(2418)
PDF Downloads(361)
Cited by(40)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries

    Corresponding author: DING Gui-Jun,
    Corresponding author: ZHOU Ye-Ling,

Abstract: We propose to understand the mixing angles and CP-violating phases from the Δ(48) family symmetry combined with the generalized CP symmetry. A model-independent analysis is performed by scanning all the possible symmetry breaking chains. We find a new mixing pattern with only one free parameter, excellent agreement with the observed mixing angles can be achieved and all the CP-violating phases are predicted to take nontrivial values. This mixing pattern is testable in the near future neutrino oscillation and neutrinoless double-beta decay experiments. Finally, a flavor model is constructed to realize this mixing pattern.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return