Magnetized strange quark matter in a mass-density-dependent model

  • We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss when the density is fixed at two times the normal nuclear saturation density.
      PCAS:
  • [1] Bodmer A R. Phys. Rev. D, 1971, 4: 1601[2] Terazawa H. INS-Report 336, University of Tokyo. 1979[3] Witten E. Phys. Rev. D, 1984, 30: 272[4] Farhi E, Jaffe R L. Phys. Rev. D, 1984, 30: 2379[5] Chodos A, Jaffe R L, Johnson K, Thorn C B, Weiskopf V F. Phys. Rev. D, 1974, 9: 3471[6] Hatsuda T. Mod. Phys. Lett. A, 1987, 2: 805[7] Sato K, Suzuki H. Phys. Rev. Lett., 1987, 58: 2722[8] Chakrabarty S. Phys. Rev. D, 1996, 54: 1306[9] Duncan R, Thompson C. Astron. J., 1992, 32: L9[10] Kouveliotou C et al. Nature, 1988, 393: 235[11] Tatsumi T, Maruyama T, Nakano E, Nawa K. Nucl. Phys. A, 2006, 774: 827[12] Martínez A Pérez, Pérez Rojas H, Mosquera Cuesta H J, Boligan M, Orsaria M G. Int. J. Mod. Phys. D, 2005, 14: 1959[13] Pérez Martínez A, Pérez Rojas H, Mosquera Cuesta H J, Orsaria M G. Int. J. Mod. Phys. D, 2007, 16: 255[14] Chaichian M, Masood S S, Montonen C, Pérez Martíez A, Pérez Rojas H. Phys. Rev. Lett., 2000, 84: 5261[15] Pérez Martíez A, Pérez Rojas H, Mosquera Cuesta H J. Eur. Phys. J. C, 2003, 29: 111[16] González Felipe R, Mosquera Cuesta H J, Pérez Martíez A, Pérez Rojas H. Chin. J. Astron. Astronphys., 2005, 5: 399[17] Ebert D, Klimenko K G. Nucl. Phys. A, 2003, 728: 203[18] Frolov I E, Zhukovsky V C, Klimenko K G. Phys. Rev. D, 2010, 82: 076002[19] Fayazbakhsh S, Sadooghi N. Phys. Rev. D, 2011, 83: 025026[20] Menezes D P, Benghi Pinto M, Avancini S S, Providência C. Phys. Rev. C, 2009, 80: 065805[21] Avancini S. S, Menezes D P, Providência C. Phys. Rev. C, 2011, 83: 065805; Rabhi A, Providência C. Phys. Rev. C, 2011, 83: 055801[22] Mizher A J, Chernodub M N, Fraga E S. Phys. Rev. D, 2010, 82: 105016[23] Walecka J D. Oxford Stud. Nucl. Phys., 1995, 16: 1[24] Henley E M, Müther H. Nucl. Phys. A, 1990, 513: 667[25] Brown G E, Rho M. Phys. Rev. Lett., 1991, 66: 2720[26] Cohen T D, Furnstahl R J, Griegel D K. Phys. Rev. Lett., 1991, 67: 961; Phys. Rev. C, 1992, 45: 1881[27] Schertler K, Greiner C, Thoma M H. Nucl. Phys. A, 1997, 616: 659[28] Buballa M, Oertel M. Phys. Lett. B, 1999, 457: 261[29] WEN X J, SU S Z, YANG D H, PENG G X. Phys. Rev. D, 2012, 86: 034006[30] Fowler G N, Raha S, Weiner R M. Z. Phys. C, 1981, 9: 271[31] Chakrabarty S, Raha S, Sinha B. Phys. Lett. B, 1989, 229: 113[32] Chakrabarty S. Phys. Rev. D, 1991, 43: 627[33] Chakrabarty S. Phys. Rev. D, 1993, 48: 627[34] PENG G X, Chiang H C, YANG J J, LI L, LIU B. Phys. Rev. C, 1999, 61: 015201[35] PENG G X, Chiang H C, ZHOU B S, NING P Z, LUO S J. Phys. Rev. C, 2000, 62: 025801[36] WEN X J, ZHONG X H, PENG G X, SHEN P N, NING N Z. Phys. Rev. C, 2005, 72: 015204[37] WANG P. Phys. Rev. C, 2000, 62: 015204[38] PENG G X, NING P Z, Chiang H Q. Phys. Rev. C, 1997, 56: 491[39] ZHENG X P, LIU X W, KANG M, YANG S H. Phys. Rev. C, 2004 70: 015803[40] Lugones G, Horvath J E., Int. J. Mod. Phys. D, 2003, 12: 495[41] WEN X J, PENG G X, CHEN Y D. J. Phys. G: Nucl. Part. Phys., 2007, 34: 1697[42] WEN X J, PENG G X, SHEN P N. Int. J. mod. Phys. A, 2007, 22, 1649; PENG G X, WEN X J, CHEN Y D. Phys. Lett. B, 2006, 633: 313[43] YAO W M et al. J. Phys. G: Nucl. Part. Phys., 2006, 33: 1[44] PENG G X, LI A, Lombardo U. Phys. Rev. C, 2008, 77: 065807[45] Laudau L D, Lifshitz E M. Quantum Mechanics. New York: Pergamon, 1965[46] Benvenuto O G, Horvath J E, Vucetich H. Int. J. Mod. Phys. A, 1991, 6: 4769; Alcock C, Olinto A. Annu. Rev. Nucl. Part. Sci., 1988, 38: 161[47] Isayev A A, YANG J. J. Phys. G: Nucl. Part. Sci., 2013, 40: 035105[48] Flipe R G, Martinez A P, Pojas H P, Orsaria. Phys. Rev. C, 2008, 77: 015807[49] Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J. Nature (London), 2010, 467: 1081[50] Antoniadis J et al. Science, 2013, 340: 1233232[51] PENG G X. Nucl. Phys. A, 2005, 747: 25
  • [1] Bodmer A R. Phys. Rev. D, 1971, 4: 1601[2] Terazawa H. INS-Report 336, University of Tokyo. 1979[3] Witten E. Phys. Rev. D, 1984, 30: 272[4] Farhi E, Jaffe R L. Phys. Rev. D, 1984, 30: 2379[5] Chodos A, Jaffe R L, Johnson K, Thorn C B, Weiskopf V F. Phys. Rev. D, 1974, 9: 3471[6] Hatsuda T. Mod. Phys. Lett. A, 1987, 2: 805[7] Sato K, Suzuki H. Phys. Rev. Lett., 1987, 58: 2722[8] Chakrabarty S. Phys. Rev. D, 1996, 54: 1306[9] Duncan R, Thompson C. Astron. J., 1992, 32: L9[10] Kouveliotou C et al. Nature, 1988, 393: 235[11] Tatsumi T, Maruyama T, Nakano E, Nawa K. Nucl. Phys. A, 2006, 774: 827[12] Martínez A Pérez, Pérez Rojas H, Mosquera Cuesta H J, Boligan M, Orsaria M G. Int. J. Mod. Phys. D, 2005, 14: 1959[13] Pérez Martínez A, Pérez Rojas H, Mosquera Cuesta H J, Orsaria M G. Int. J. Mod. Phys. D, 2007, 16: 255[14] Chaichian M, Masood S S, Montonen C, Pérez Martíez A, Pérez Rojas H. Phys. Rev. Lett., 2000, 84: 5261[15] Pérez Martíez A, Pérez Rojas H, Mosquera Cuesta H J. Eur. Phys. J. C, 2003, 29: 111[16] González Felipe R, Mosquera Cuesta H J, Pérez Martíez A, Pérez Rojas H. Chin. J. Astron. Astronphys., 2005, 5: 399[17] Ebert D, Klimenko K G. Nucl. Phys. A, 2003, 728: 203[18] Frolov I E, Zhukovsky V C, Klimenko K G. Phys. Rev. D, 2010, 82: 076002[19] Fayazbakhsh S, Sadooghi N. Phys. Rev. D, 2011, 83: 025026[20] Menezes D P, Benghi Pinto M, Avancini S S, Providência C. Phys. Rev. C, 2009, 80: 065805[21] Avancini S. S, Menezes D P, Providência C. Phys. Rev. C, 2011, 83: 065805; Rabhi A, Providência C. Phys. Rev. C, 2011, 83: 055801[22] Mizher A J, Chernodub M N, Fraga E S. Phys. Rev. D, 2010, 82: 105016[23] Walecka J D. Oxford Stud. Nucl. Phys., 1995, 16: 1[24] Henley E M, Müther H. Nucl. Phys. A, 1990, 513: 667[25] Brown G E, Rho M. Phys. Rev. Lett., 1991, 66: 2720[26] Cohen T D, Furnstahl R J, Griegel D K. Phys. Rev. Lett., 1991, 67: 961; Phys. Rev. C, 1992, 45: 1881[27] Schertler K, Greiner C, Thoma M H. Nucl. Phys. A, 1997, 616: 659[28] Buballa M, Oertel M. Phys. Lett. B, 1999, 457: 261[29] WEN X J, SU S Z, YANG D H, PENG G X. Phys. Rev. D, 2012, 86: 034006[30] Fowler G N, Raha S, Weiner R M. Z. Phys. C, 1981, 9: 271[31] Chakrabarty S, Raha S, Sinha B. Phys. Lett. B, 1989, 229: 113[32] Chakrabarty S. Phys. Rev. D, 1991, 43: 627[33] Chakrabarty S. Phys. Rev. D, 1993, 48: 627[34] PENG G X, Chiang H C, YANG J J, LI L, LIU B. Phys. Rev. C, 1999, 61: 015201[35] PENG G X, Chiang H C, ZHOU B S, NING P Z, LUO S J. Phys. Rev. C, 2000, 62: 025801[36] WEN X J, ZHONG X H, PENG G X, SHEN P N, NING N Z. Phys. Rev. C, 2005, 72: 015204[37] WANG P. Phys. Rev. C, 2000, 62: 015204[38] PENG G X, NING P Z, Chiang H Q. Phys. Rev. C, 1997, 56: 491[39] ZHENG X P, LIU X W, KANG M, YANG S H. Phys. Rev. C, 2004 70: 015803[40] Lugones G, Horvath J E., Int. J. Mod. Phys. D, 2003, 12: 495[41] WEN X J, PENG G X, CHEN Y D. J. Phys. G: Nucl. Part. Phys., 2007, 34: 1697[42] WEN X J, PENG G X, SHEN P N. Int. J. mod. Phys. A, 2007, 22, 1649; PENG G X, WEN X J, CHEN Y D. Phys. Lett. B, 2006, 633: 313[43] YAO W M et al. J. Phys. G: Nucl. Part. Phys., 2006, 33: 1[44] PENG G X, LI A, Lombardo U. Phys. Rev. C, 2008, 77: 065807[45] Laudau L D, Lifshitz E M. Quantum Mechanics. New York: Pergamon, 1965[46] Benvenuto O G, Horvath J E, Vucetich H. Int. J. Mod. Phys. A, 1991, 6: 4769; Alcock C, Olinto A. Annu. Rev. Nucl. Part. Sci., 1988, 38: 161[47] Isayev A A, YANG J. J. Phys. G: Nucl. Part. Sci., 2013, 40: 035105[48] Flipe R G, Martinez A P, Pojas H P, Orsaria. Phys. Rev. C, 2008, 77: 015807[49] Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J. Nature (London), 2010, 467: 1081[50] Antoniadis J et al. Science, 2013, 340: 1233232[51] PENG G X. Nucl. Phys. A, 2005, 747: 25
  • 加载中

Cited by

1. Chen, H.-M., Li, X.-W., Xia, C.-J. et al. Magnetized strangelets with anomalous magnetic moment and Coulomb interactions[J]. Physical Review D, 2024, 109(5): 054013. doi: 10.1103/PhysRevD.109.054013
2. Katore, S.D., Hatkar, S.P., Tadas, D.P. Accelerating Kaluza-Klein Universe in Modified Theory of Gravitation[J]. Astrophysics, 2023, 66(1): 98-113. doi: 10.1007/s10511-023-09773-3
3. Xia, C.-J., Xu, J.-F., Peng, G.-X. et al. Interface effects of quark matter: Light-quark nuggets and compact stars[J]. Physical Review D, 2022, 106(3): 034016. doi: 10.1103/PhysRevD.106.034016
4. Chen, H.-M., Xia, C.-J., Peng, G.-X. Strange quark matter and proto-strange stars in a baryon density-dependent quark mass model[J]. Chinese Physics C, 2022, 46(5): 055102. doi: 10.1088/1674-1137/ac4b5b
5. Chen, H.-M., Xia, C.-J., Peng, G.-X. Strangelets at finite temperature in a baryon density-dependent quark mass model[J]. Physical Review D, 2022, 105(1): A72. doi: 10.1103/PhysRevD.105.014011
6. Deb, D., Mukhopadhyay, B., Weber, F. Effects of Anisotropy on Strongly Magnetized Neutron and Strange Quark Stars in General Relativity[J]. Astrophysical Journal, 2021, 922(2): 149. doi: 10.3847/1538-4357/ac222a
7. Wang, L., Hu, J., Xia, C.-J. et al. Stable up-down quark matter nuggets, quark star crusts, and a new family of white dwarfs[J]. Galaxies, 2021, 9(4): 70. doi: 10.3390/galaxies9040070
8. Xia, C.-J.. Interface effects of strange quark matter[J]. AIP Conference Proceedings, 2019. doi: 10.1063/1.5117819
9. Xia, C.-J., Peng, G.-X., Sun, T.-T. et al. Interface effects of strange quark matter with density dependent quark masses[J]. Physical Review D, 2018, 98(3): 034031. doi: 10.1103/PhysRevD.98.034031
10. Xia, C.-J.. A unified description for strange quark matter objects[J]. Journal of Physics: Conference Series, 2017, 861(1): 012022. doi: 10.1088/1742-6596/861/1/012022
11. Xu, J.-F., Luo, Y.-A., Li, L. et al. Quark matter in the perturbation QCD model with a rapidly convergent matching-invariant running coupling[J]. International Journal of Modern Physics E, 2017, 26(6): 1750034. doi: 10.1142/S0218301317500343
12. Xia, C.-J., Zhou, S.-G. Stable strange quark matter objects with running masses and coupling constant[J]. Nuclear Physics B, 2017. doi: 10.1016/j.nuclphysb.2017.01.022
13. Chu, P.-C., Wang, B., Jia, Y.-Y. et al. Quark magnetar in three-flavor Nambu-Jona-Lasinio model under strong magnetic fields with two types of vector interactions[J]. Physical Review D, 2016, 94(12): 123014. doi: 10.1103/PhysRevD.94.123014
14. Lu, Z.-Y., Peng, G.-X., Zhang, S.-P. et al. Quark mass scaling and properties of light-quark matter[J]. Nuclear Science and Techniques, 2016, 27(6): 148. doi: 10.1007/s41365-016-0148-9
15. Fogaça, D.A., Sanches, S.M., Motta, T.F. et al. Compact stars with strongly coupled quark matter in a strong magnetic field[J]. Physical Review C, 2016, 94(5): 055805. doi: 10.1103/PhysRevC.94.055805
16. Peng, C., Peng, G.-X., Xia, C.-J. et al. Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions[J]. Nuclear Science and Techniques, 2016, 27(4): 98. doi: 10.1007/s41365-016-0095-5
17. Xia, C.-J., Peng, G.-X., Zhao, E.-G. et al. Properties of strange quark matter objects with two types of surface treatments[J]. Physical Review D, 2016, 93(8): 085025. doi: 10.1103/PhysRevD.93.085025
18. Xia, C.. Strange quark matter: From strangelets to strange stars[J]. Scientia Sinica: Physica, Mechanica et Astronomica, 2016, 46(1) doi: 10.1360/SSPMA2015-00516
19. Xu, J.F., Peng, G.X., Liu, F. et al. Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 2015, 92(2): 025025. doi: 10.1103/PhysRevD.92.025025
20. Cui, S.-S., Peng, G.-X., Lu, Z.-Y. et al. Properties of color-flavor locked strange quark matter in an external strong magnetic field[J]. Nuclear Science and Techniques, 2015, 26(4): 040503. doi: 10.13538/j.1001-8042/nst.26.040503
Get Citation
HOU Jia-Xun, PENG Guang-Xiong, XIA Cheng-Jun and XU Jian-Feng. Magnetized strange quark matter in a mass-density-dependent model[J]. Chinese Physics C, 2015, 39(1): 015101. doi: 10.1088/1674-1137/39/1/015101
HOU Jia-Xun, PENG Guang-Xiong, XIA Cheng-Jun and XU Jian-Feng. Magnetized strange quark matter in a mass-density-dependent model[J]. Chinese Physics C, 2015, 39(1): 015101.  doi: 10.1088/1674-1137/39/1/015101 shu
Milestone
Received: 2014-03-07
Revised: 2014-04-14
Article Metric

Article Views(1910)
PDF Downloads(352)
Cited by(20)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Magnetized strange quark matter in a mass-density-dependent model

    Corresponding author: XU Jian-Feng,

Abstract: We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss when the density is fixed at two times the normal nuclear saturation density.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return