Expanding the thermodynamical potential and analysis of the possible phase diagram of decon nement in the FL model

  • Decon nement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, phase transition can only be first order in the whole μ-T phase plane. Using a Landau expansion, we further study the phase transition order and the possible phase diagram of decon nement. We discuss the possibilities of second order phase transitions in the FL model. From our analysis, if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations, second order phase transition may occur. By an ansatz of the Landau parameters, we obtain a possible phase diagram with both the first and second order phase transitions, including the tri-critical point which is similar to that of the chiral phase transition.
      PCAS:
    • 11.30.-j(Symmetry and conservation laws)
    • 11.10.Kk(Field theories in dimensions other than four)
    • 04.50.-h(Higher-dimensional gravity and other theories of gravity)
  • [1] Gyulassy M, McLerran L. Nucl. Phys. A, 2005, 750: 302 Kapusta J I. J. Phys. G, 2007, 34: S295-3043 Svetisky B, Ya e L G. Nucl. Phys. B, 1982, 210: 4234 Pisarski R D, Wilczek F. Phys. Rev. D, 1984, 29: 3385 Shuryak E, Schaefer T. Phys. Rev. Lett., 1995, 75: 17076 Alford M, Rajagopal K, Wilczek F. Phys. Lett. B, 1998,422: 247; Berges J, Rajagopal K. Nucl. Phys. B, 1999 538:2157 McLerran L, Pisarski R D. Nucl. Phys. A, 2007, 796: 83-100; McLerran L, Redlich K, Sasaki C. Nucl. Phys. A, 2009,824: 86-1008 Fukushima K. Phys. Rev. D, 2003, 68: 045004; Nishida Y, Fukushima K, Hatsuda T. Phys. Rept., 2004, 398: 281-3009 Karsch F. Lect. Notes Phys., 2002, 583: 209-24910 Scavenius O, Mocsy A, Mishustin I N, Rischke D H. Phys. Rev. C, 2001, 64: 04520211 Stephanov M, Rajagopal K, Shuryak E. Phys. Rev. Lett.,1998, 81: 4816-481912 Alford M, Rajagopal K, Wilczek F. Phys. Lett. B, 1998,422: 247-25613 Polyakov A M. Phys. Lett. B, 1978, 72: 47714 Svetitsky B. Phys. Rept., 1986, 132: 115 Fukushima K. Phys. Lett. B, 2004, 591: 27716 Roessner S, Ratti C, Weise W. Phys. Rev. D, 2007, 75:03400717 Schaefer B J, Pawlowski J M, Wambach J. Phys. Rev. D,2007, 76: 07402318 Kahara T, Tuominen K. Phys. Rev. D, 2008, 78: 03401519 MAO H, JIN J, Huang M. J. Phys. G, 2010, 37: 03500120 Friedberg R, Lee T D. Phys. Rev. D, 1977, 15: 169421 Gold am R, Wilets L. Phys. Rev. D, 1982, 25: 195122 Birse M C. Prog. Part. Nucl. Phys., 1990, 25: 123 Reinhardt H, DANG B V, Schulz H. Phys. Lett. B, 1985,159: 16124 LI M, Birse M C, Wilets L. J. Phys. G, 1987, 13: 125 WANG E K, Li J R and Liu L S. Phys. Rev. D, 1990, 41:2288; GAO S, WANG E K, LI J R. Phys. Rev. D, 1992,46: 3211; DENG S H, LI J R. Phys. Lett. B, 1993, 302:27926 MAO H, SU R K, ZHAO W Q. Phys. Rev. C, 2006, 74:055204; MAO H, YAO M J, ZHAO W Q. Phys. Rev. C,2008, 77: 06520527 SHU S, LI J R. Phys. Rev. C, 2010, 82: 045203
  • [1] Gyulassy M, McLerran L. Nucl. Phys. A, 2005, 750: 302 Kapusta J I. J. Phys. G, 2007, 34: S295-3043 Svetisky B, Ya e L G. Nucl. Phys. B, 1982, 210: 4234 Pisarski R D, Wilczek F. Phys. Rev. D, 1984, 29: 3385 Shuryak E, Schaefer T. Phys. Rev. Lett., 1995, 75: 17076 Alford M, Rajagopal K, Wilczek F. Phys. Lett. B, 1998,422: 247; Berges J, Rajagopal K. Nucl. Phys. B, 1999 538:2157 McLerran L, Pisarski R D. Nucl. Phys. A, 2007, 796: 83-100; McLerran L, Redlich K, Sasaki C. Nucl. Phys. A, 2009,824: 86-1008 Fukushima K. Phys. Rev. D, 2003, 68: 045004; Nishida Y, Fukushima K, Hatsuda T. Phys. Rept., 2004, 398: 281-3009 Karsch F. Lect. Notes Phys., 2002, 583: 209-24910 Scavenius O, Mocsy A, Mishustin I N, Rischke D H. Phys. Rev. C, 2001, 64: 04520211 Stephanov M, Rajagopal K, Shuryak E. Phys. Rev. Lett.,1998, 81: 4816-481912 Alford M, Rajagopal K, Wilczek F. Phys. Lett. B, 1998,422: 247-25613 Polyakov A M. Phys. Lett. B, 1978, 72: 47714 Svetitsky B. Phys. Rept., 1986, 132: 115 Fukushima K. Phys. Lett. B, 2004, 591: 27716 Roessner S, Ratti C, Weise W. Phys. Rev. D, 2007, 75:03400717 Schaefer B J, Pawlowski J M, Wambach J. Phys. Rev. D,2007, 76: 07402318 Kahara T, Tuominen K. Phys. Rev. D, 2008, 78: 03401519 MAO H, JIN J, Huang M. J. Phys. G, 2010, 37: 03500120 Friedberg R, Lee T D. Phys. Rev. D, 1977, 15: 169421 Gold am R, Wilets L. Phys. Rev. D, 1982, 25: 195122 Birse M C. Prog. Part. Nucl. Phys., 1990, 25: 123 Reinhardt H, DANG B V, Schulz H. Phys. Lett. B, 1985,159: 16124 LI M, Birse M C, Wilets L. J. Phys. G, 1987, 13: 125 WANG E K, Li J R and Liu L S. Phys. Rev. D, 1990, 41:2288; GAO S, WANG E K, LI J R. Phys. Rev. D, 1992,46: 3211; DENG S H, LI J R. Phys. Lett. B, 1993, 302:27926 MAO H, SU R K, ZHAO W Q. Phys. Rev. C, 2006, 74:055204; MAO H, YAO M J, ZHAO W Q. Phys. Rev. C,2008, 77: 06520527 SHU S, LI J R. Phys. Rev. C, 2010, 82: 045203
  • 加载中

Cited by

1. Wu, Y.-L.. Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory[J]. Science China: Physics, Mechanics and Astronomy, 2023, 66(6): 260411. doi: 10.1007/s11433-022-2052-6
2. Wu, Y.-L.. The foundation of the hyperunified field theory I-Fundamental building block and symmetry[J]. International Journal of Modern Physics A, 2021, 36(28): 21430016. doi: 10.1142/S0217751X21430016
3. Wu, Y.-L.. The foundation of the hyperunified field theory II - Fundamental interaction and evolving universe[J]. International Journal of Modern Physics A, 2021, 36(28): 2143002. doi: 10.1142/S0217751X21430028
4. Wu, Y.-L.. Hyperunified field theory and Taiji program in space for GWD[J]. International Journal of Modern Physics A, 2018, 33(31): 1844014. doi: 10.1142/S0217751X18440141
5. Wu, Y.-L.. Hyperunified field theory and gravitational gauge–geometry duality[J]. European Physical Journal C, 2018, 78(1): 28. doi: 10.1140/epjc/s10052-017-5504-3
Get Citation
SHU Song and LI Jia-Rong. Expanding the thermodynamical potential and analysis of the possible phase diagram of decon nement in the FL model[J]. Chinese Physics C, 2012, 36(4): 316-321. doi: 10.1088/1674-1137/36/4/004
SHU Song and LI Jia-Rong. Expanding the thermodynamical potential and analysis of the possible phase diagram of decon nement in the FL model[J]. Chinese Physics C, 2012, 36(4): 316-321.  doi: 10.1088/1674-1137/36/4/004 shu
Milestone
Received: 2011-08-02
Revised: 2011-07-28
Article Metric

Article Views(2237)
PDF Downloads(318)
Cited by(5)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Expanding the thermodynamical potential and analysis of the possible phase diagram of decon nement in the FL model

Abstract: Decon nement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, phase transition can only be first order in the whole μ-T phase plane. Using a Landau expansion, we further study the phase transition order and the possible phase diagram of decon nement. We discuss the possibilities of second order phase transitions in the FL model. From our analysis, if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations, second order phase transition may occur. By an ansatz of the Landau parameters, we obtain a possible phase diagram with both the first and second order phase transitions, including the tri-critical point which is similar to that of the chiral phase transition.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return