Octupole deformation for Ba isotopes in a reflection-asymmetric relativistic mean-field approach
- Received Date: 2010-03-01
- Accepted Date: 2010-03-19
- Available Online: 2010-08-05
Abstract:
The potential energy surfaces of even-even 142—156Ba are investigated in the constrained reflection-asymmetric relativistic mean-field approach with parameter set PK1. It is shown that for the ground states, 142Ba is near spherical, 156Ba well quadrupole-deformed, and in between 144-154Ba octupole deformed. In particular, the nuclei 148,150Ba with N=92, 94 have the largest octupole deformations. By including the octupole degree of freedom, energy gaps N=88, N=94 and Z=56 near Fermi surfaces for the single-particle levels in 148Ba with β2~0.26 and β3~0.17 are found. Furthermore, the performance of the octupole deformation driving pairs (ν2f7/2, ν1i13/2) and (π2d5/2, π1h11/2) is demonstrated by analyzing the single-particle levels near Fermi surfaces in 148Ba.