Simulation and analysis of 13N+p elastic resonance scattering
- Received Date: 2008-06-13
- Accepted Date: 2008-07-24
- Available Online: 2009-03-05
Abstract:
The 13N+p elastic resonance scattering has been studied at the secondary radioactive beam facility of CIAE in inverse kinematics via a thick-target method. The excitation function for the 13N(p,p) scattering was obtained in the energy interval of Ecm≈0.5—3.2 MeV with a 13N secondary beam of (47.8±1.5) MeV. Careful analysis of the secondary beam components and extensive Monte-Carlo simulations enable the resolution of the experimental proton spectra. The resonance parameters for five low-lying levels in 14O were deduced by R-matrix fitting calculations with MULTI7 and SAMMY-M6-BETA. The present results show general agreement with those from a recent similar work, and thus confirm the observation of a new 0- level at 5.7 MeV in 14O with an improved width of 400(45) keV.