Photoproduction of the Θ+ and its vector and axial-vector structure
- Received Date: 2009-08-07
- Accepted Date: 1900-01-01
- Available Online: 2009-12-05
Abstract:
We present recent investigations on the vector and axial-vector transitions of the baryon antidecuplet within the framework of the self-consistent SU(3) chiral quark-soliton model, taking into account the 1/Nc rotational and linear ms corrections. The main contribution to the electric-like transition form factor comes from the wave-function corrections. This is a consequence of the generalized Ademollo-Gatto theorem. It is also found that in general the leading-order contributions are almost canceled by the rotational 1/Nc corrections. The results are summarized as follows: the vector and tensor $\rm K*NΘ coupling constants, gK*NΘ= 0.74—0.87 and fK*NΘ= 0.53—1.16, respectively, and ΓΘ→KN=0.71 MeV, based on the result of the KNΘ coupling constant gKnΘ=0.83. We also show the differential cross sections and beam asymmetries, based on the present results. We also discuss the connection of present results with the original work by Diakonov, Petrov, and Polyakov.