-
[1]
CDF Collaboration, T. Aaltonen et al., Science 376(6589), 170-176 (2022)
-
[2]
J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, Eur. Phys. J. C 78(8), 675 (2018), arXiv:1803.01853[hep-ph
-
[3]
P. A. Zyla et al. (Particle Data Group), PTEP 2020(8), 083C01 (2020)
-
[4]
J. de Blas, M. Ciuchini, E. Franco et al., Phys. Rev. D 106, 033003 (2022)
-
[5]
C.-T. Lu, L. Wu, Y. Wu et al., Phys. Rev. D 106, 035034 (2022)
-
[6]
C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia et al., GeV antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ~ 60– 70 GeV dark matter particle? arXiv: 2204.03767
-
[7]
Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai et al., Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects, arXiv: 2204.03693.
-
[8]
A. Strumia, J. High Energ. Phys. 2022, 248 (2022)
-
[9]
J. M. Yang and Y. Zhang, Sci. Bull. 67, 1430 (2022)
-
[10]
T.-P. Tang, M. Abdughani, L. Feng et al., NMSSM neutralino dark matter for W-boson mass and muon
and the promising prospect of direct detection, arXiv:2204.04356\begin{document}$ g-2 $\end{document} -
[11]
X. K. Du, Z. Li, F. Wang et al., Explaining The Muon
Anomaly and New CDF Ⅱ W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation, arXiv: 2204.04286\begin{document}$g-2$\end{document} -
[12]
C. Campagnari and M. Mulders, Science 376(6589), abm0101 (2022)
-
[13]
G. Cacciapaglia and F. Sannino, Phys. Lett. B 832, 137232 (2022)
-
[14]
M. Blennow, P. Coloma, E. Fernández-Martínez et al., Right-handed neutrinos and the CDF Ⅱ anomaly, arXiv:2204.04559
-
[15]
K. Sakurai, F. Takahashi, and W. Yin, Phys. Lett. B 833, 137324 (2022)
-
[16]
B.-Y. Zhu, S. Li, J.-G. Cheng et al., Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly, arXiv: 2204.04688
-
[17]
F. Arias-Aragón, E. Fernández-Martínez, M. González-López et al., Dynamical Minimal Flavour Violating Inverse Seesaw, arXiv: 2204.04672
-
[18]
X. Liu, S.-Y. Guo, B. Zhu et al., Sci. Bull. 67, 1437 (2022)
-
[19]
A. Paul and M. Valli, Phys. Rev. D 106, 013008 (2022)
-
[20]
K. S. Babu, S. Jana, and V.a P. K., Phys. Rev. Lett. 129, 121803 (2022)
-
[21]
J. Gu, Z. Liu, T. Ma et al., Speculations on the W-Mass Measurement at CDF, arXiv: 2204.05296
-
[22]
L. Di Luzio, R. Gröber, and P. Paradisi, Phys. Lett. B 832, 137250 (2022)
-
[23]
J. J. Heckman, Phys. Lett. B 833, 137387 (2022)
-
[24]
H. M. Lee and K. Yamashita, Eur. Phys. J. C 82, 661 (2022)
-
[25]
Y. Cheng, X.-G. He, Z.-L. Huang et al., Phys. Lett. B 831, 137218 (2022)
-
[26]
H. Bahl, J. Braathen, and G. Weiglein, Phys. Lett. B 833, 137295 (2022)
-
[27]
H. Song, W. Su, and M. Zhang, Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements, arXiv: 2204.05085
-
[28]
P. Asadi, C. Cesarotti, K. Fraser et al., Oblique Lessons from the W Mass Measurement at CDF Ⅱ, arXiv: 2204.05283
-
[29]
P. Athron, M. Bach, D. H. J. Jacob et al., Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY, arXiv: 2204.05285
-
[30]
Y. Heo, D.-W. Jung, and J. S. Lee, Phys. Lett. B 833, 137274 (2022)
-
[31]
A. Crivellin, M. Kirk, T. Kitahara et al., Phys. Rev. D 106, L031704 (2022)
-
[32]
M. Endo and S. Mishima, New physics interpretation of W-boson mass anomaly, arXiv: 2204.05965
-
[33]
X. K. Du, Z. Li, F. Wang et al., Explaining The New CDF Ⅱ W-Boson Mass Data In The Georgi-Machacek Extension Models, arXiv: 2204.05760
-
[34]
K. Cheung, W.-Y. Keung, and P.-Y. Tseng, Phys. Rev. D 106, 015029 (2022)
-
[35]
L. Di Luzio, M. Nardecchia, and C. Toni, Phys. Rev. D 105, 115042 (2022)
-
[36]
T. Biekötter, S. Heinemeyer, and G. Weiglein, Excesses in the low-mass Higgs-boson search and the W-boson mass measurement, arXiv: 2204.05975
-
[37]
N. V. Krasnikov, Nonlocal generalization of the SM as an explanation of recent CDF result, arXiv: 2204.06327
-
[38]
M.-D. Zheng, F.-Z. Chen, and H.-H. Zhang, The
-vertex corrections to W-boson mass in the R-parity violating MSSM, arXiv: 2204.06541\begin{document}$W\ell\nu$\end{document} -
[39]
Y. H. Ahn, S. K. Kang, and R. Ramos, Implications of New CDF-Ⅱ W Boson Mass on Two Higgs Doublet Model, arXiv: 2204.06485
-
[40]
K.-S. Sun, W.-H. Zhang, J.-B. Chen et al., The lepton flavor violating decays of vector mesons in the MRSSM, arXiv: 2204.06234
-
[41]
J. Kawamura, S. Okawa, and Y. Omura, Phys. Rev. D 106, 015005 (2022)
-
[42]
Z. Péli and Z. Trócsányi, Vacuum stability and scalar masses in the superweak extension of the standard model, arXiv: 2204.07100
-
[43]
A. Ghoshal, N. Okada, S. Okada et al., Type Ⅲ seesaw with R-parity violation in light of
(CDF), arXiv: 2204.07138\begin{document}$m_W$\end{document} -
[44]
P. Fileviez Perez, H. H. Patel, and A. D. Plascencia, Phys. Lett. B 833, 137371 (2022)
-
[45]
K. I. Nagao, T. Nomura, and H. Okada, A model explaining the new CDF Ⅱ W boson mass linking to muon
and dark matter, arXiv: 2204.07411\begin{document}$ g-2 $\end{document} -
[46]
S. Kanemura and K. Yagyu, Phys. Lett. B 831, 137217 (2022)
-
[47]
P. Mondal, Phys. Lett. B 833, 137357 (2022)
-
[48]
R. A. Wilson, A toy model for the W/Z mass ratio, arXiv: 2204.07970
-
[49]
K.-Y. Zhang and W.-Z. Feng, Explaining W boson mass anomaly and dark matter with a
dark sector, arXiv: 2204.08067\begin{document}$U(1)$\end{document} -
[50]
V. Cirigliano, W. Dekens, J. de Vries et al., Beta-decay implications for the W-boson mass anomaly, arXiv: 2204.08440
-
[51]
D. Borah, S. Mahapatra, D. Nanda et al., Phys. Lett. B 833, 137297 (2022)
-
[52]
T. A. Chowdhury, J. Heeck, S. Saad et al., Phys. Rev. D 106, 035004 (2022)
-
[53]
G. Arcadi and A. Djouadi, The 2HD+a model for a combined explanation of the possible excesses in the CDF
measurement and\begin{document}${{\bf{M}}_{\bf{W}}}$\end{document} with Dark Matter, arXiv: 2204.08406\begin{document}$\mathbf(g-2)_\mu$\end{document} -
[54]
O. Popov and R. Srivastava, The Triplet Dirac Seesaw in the View of the Recent CDF-Ⅱ W Mass Anomaly, arXiv: 2204.08568
-
[55]
L. M. Carpenter, T. Murphy, and M. J. Smylie, Phys. Rev. D 106, 055005 (2022)
-
[56]
A. Bhaskar, A. A. Madathil, T. Mandal et al., Combined explanation of W-mass, muon
,\begin{document}$g-2$\end{document} and\begin{document}$R_{K^{(*)}}$\end{document} anomalies in a singlet-triplet scalar leptoquark model, arXiv: 2204.09031\begin{document}$R_{D^{(*)}}$\end{document} -
[57]
K. Ghorbani and P. Ghorbani, W-Boson Mass Anomaly from Scale Invariant 2HDM, arXiv: 2204.09001
-
[58]
M. Du, Z. Liu, and P. Nath, Phys. Lett. B 834, 137454 (2022)
-
[59]
Y.-P. Zeng, C. Cai, Y.-H. Su et al., Extra boson mix with Z boson explaining the mass of W boson, arXiv: 2204.09487
-
[60]
A. Batra, S. K. A., S. Mandal et al., W boson mass in Singlet-Triplet Scotogenic dark matter model, arXiv: 2204.09376
-
[61]
D. Borah, S. Mahapatra, and N. Sahu, Phys. Lett. B 831, 137196 (2022)
-
[62]
J. Cao, L. Meng, L. Shang et al., Interpreting the W mass anomaly in the vectorlike quark models, arXiv: 2204.09477
-
[63]
S. Baek, Implications of CDF W-mass and
on\begin{document}$(g-2)_\mu$\end{document} model, arXiv: 2204.09585\begin{document}$U(1)_{L_\mu-L_\tau}$\end{document} -
[64]
J. Heeck, W-boson mass in the triplet seesaw model, arXiv: 2204.10274
-
[65]
A. Addazi, A. Marciano, A. P. Morais et al., CDF Ⅱ W-mass anomaly faces first-order electroweak phase transition, arXiv: 2204.10315
-
[66]
Y. Cheng, X.-G. He, F. Huang et al., Phys. Rev. D 106, 055011 (2022)
-
[67]
E. d. S. Almeida, A. Alves, O. J. P. Eboli et al., Impact of CDF-Ⅱ measurement of
on the electroweak legacy of the LHC Run Ⅱ, arXiv: 2204.10130\begin{document}$M_W$\end{document} -
[68]
S. Lee, K. Cheung, J. Kim et al., Status of the two-Higgs-doublet model in light of the CDF
measurement, arXiv: 2204.10338\begin{document}$m_W$\end{document} -
[69]
C. Cai, D. Qiu, Y.-L. Tang et al., Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF W-mass anomaly, arXiv: 2204.11570
-
[70]
R. Benbrik, M. Boukidi, and B. Manaut, W-mass and 96 GeV excess in type-Ⅲ 2HDM, arXiv: 2204.11755
-
[71]
T. Yang, S. Qian, S. Deng et al., The physics case for a neutrino lepton collider in light of the CDF W mass measurement, arXiv: 2204.11871
-
[72]
A. Batra, S. K. A, S. Mandal et al., CDF-Ⅱ W Boson Mass Anomaly in the Canonical Scotogenic Neutrino-Dark Matter Model, arXiv: 2204.11945
-
[73]
A. E. Faraggi and M. Guzzi,
s and sterile neutrinos from heterotic string models: exploring\begin{document}$Z'$\end{document} mass exclusion limits, arXiv: 2204.11974\begin{document}$Z'$\end{document} -
[74]
H. B. T. Tan and A. Derevianko, Implications of W-boson mass anomaly for atomic parity violation, arXiv: 2204.11991
-
[75]
H. Abouabid, A. Arhrib, R. Benbrik et al., Is the new CDF
measurement consistent with the two higgs doublet model? arXiv: 2204.12018\begin{document}$M_W$\end{document} -
[76]
R. Rahaman, On two-body and three-body spin correlations in leptonic
production and anomalous couplings at the LHC, arXiv: 2204.12152\begin{document}$t{\bar{t}}Z$\end{document} -
[77]
T.-K. Chen, C.-W. Chiang, and K. Yagyu, Phys. Rev. D 106, 055035 (2022)
-
[78]
R. Dermisek, J. Kawamura, E. Lunghi et al., Leptonic cascade decays of a heavy Higgs boson through vectorlike leptons at the LHC, arXiv: 2204.13272
-
[79]
R. S. Gupta, Running away from the T-parameter solution to the W mass anomaly, arXiv: 2204.13690
-
[80]
V. Basiouris and G. K. Leontaris, Sterile neutrinos,
decay and the W-boson mass anomaly in a Flipped\begin{document}$0\nu\beta\beta$\end{document} from F-theory, arXiv: 2205.00758\begin{document}$SU(5)$\end{document} -
[81]
J.-W. Wang, X.-J. Bi, P.-F. Yin et al., Phys. Rev. D 106, 055001 (2022), arXiv:2205.00783 [hep-ph
-
[82]
F. J. Botella, F. Cornet-Gomez, C. Miró et al., Muon and electron
anomalies in a flavor conserving 2HDM with an oblique view on the CDF\begin{document}$g-2$\end{document} value, arXiv: 2205.01115\begin{document}$M_W$\end{document} -
[83]
J. Kim, Phys. Lett. B 832, 137220 (2022)
-
[84]
J. Kim, S. Lee, P. Sanyal et al., Phys. Rev. D 106, 035002 (2022)
-
[85]
B. Barman, A. Das, and S. Sengupta, New W-Boson mass in the light of doubly warped braneworld model, arXiv: 2205.01699
-
[86]
S.-P. He, A leptoquark and vector-like quark extended model for the simultaneous explanation of the W boson mass and muon
anomalies, arXiv: 2205.02088\begin{document}$g-2$\end{document} -
[87]
X.-Q. Li, Z.-J. Xie, Y.-D. Yang et al., Correlating the CDF W-boson mass shift with the
anomalies, arXiv: 2205.02205\begin{document}$b \to s \ell^+ \ell^-$\end{document} -
[88]
R. Dcruz and A. Thapa, W boson mass, dark matter and
in ScotoZee neutrino mass model, arXiv: 2205.02217\begin{document}$(g-2)_\ell$\end{document} -
[89]
A. W. Thomas and X. G. Wang, Phys. Rev. D 106, 056017 (2022)
-
[90]
X.-F. Han, F. Wang, L. Wang et al., Chin. Phys. C 46, 103105 (2022)
-
[91]
Q. Zhou and X.-F. Han, The CDF W-mass, muon g-2, and dark matter in a
model with vector-like leptons, " arXiv: 2204.13027\begin{document}$U(1)_{L_\mu-L_\tau}$\end{document} -
[92]
J. de Blas, M. Pierini, L. Reina et al., Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits, arXiv: 2204.04204
-
[93]
J. Fan, L. Li, T. Liu et al., W-Boson Mass, Electroweak Precision Tests and SMEFT, arXiv: 2201.06586
-
[94]
E. Bagnaschi, J. Ellis, M. Madigan et al., SMEFT Analysis of
, arXiv: 2204.05260\begin{document}$m_W$\end{document} -
[95]
R. Balkin, E. Madge, T. Menzo et al., On the implications of positive W mass shift, arXiv: 2204.05992
-
[96]
P. Athron, A. Fowlie, C.-T. Lu et al., The W boson Mass and Muon
: Hadronic Uncertainties or New Physics? arXiv: 2204.03996\begin{document}$g-2$\end{document} -
[97]
M. Pellen, R. Poncelet, A. Popescu et al., Angular coefficients in W+j production at the LHC with high precision, arXiv: 2204.12394
-
[98]
L.-B. Chen, L. Dong, H. T. Li et al., One-loop squared amplitudes for hadronic
production at next-to-next-to-leading order in QCD, arXiv: 2204.13500\begin{document}$tW$\end{document} -
[99]
Z. Liu and L.-T. Wang, Physics at Future Colliders: the Interplay Between Energy and Luminosity, in 2022 Snowmass Summer Study. 4, 2022. arXiv: 2205.00031
-
[100]
J. Isaacson, Y. Fu, and C. P. Yuan, ResBos2 and the CDF W Mass Measurement, arXiv: 2205.02788
-
[101]
M. Aaboud et al. (ATLAS Collaboration), Eur. Phys. J. C 78(2), 110 (2018), arXiv:1701.07240[hep-ex].[Erratum:Eur.Phys.J.C78,898(2018)
-
[102]
R. Aaij et al. (LHCb Collaboration), JHEP 01, 036 (2022), arXiv:2109.01113[hep-ex
-
[103]
T. A. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 88(5), 052018 (2013), arXiv:1307.7627[hep-ex
-
[104]
S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Electroweak Working Group), Phys. Rept. 532, 119-244 (2013), arXiv:1302.3415[hep-ex
-
[105]
R. D. Ball et al. (NNPDF Collaboration), Eur. Phys. J. C 77(10), 663 (2017), arXiv:1706.00428[hep-ph
-
[106]
J. Gao, M. Guzzi, J. Huston et al., Phys. Rev. D 89(3), 033009 (2014), arXiv:1302.6246[hep-ph
-
[107]
T.-J. Hou et al., Phys. Rev. D 103(1), 014013 (2021), arXiv:1912.10053[hep-ph
-
[108]
S. Bailey, T. Cridge, L. A. Harland-Lang et al., Eur. Phys. J. C 81(4), 341 (2021), arXiv:2012.04684[hep-ph
-
[109]
P. M. Nadolsky, AIP Conf. Proc. 753(1), 158-170 (2005), arXiv:hep-ph/0412146
-
[110]
G. Bozzi, L. Citelli, and A. Vicini, Phys. Rev. D 91(11), 113005 (2015), arXiv:1501.05587[hep-ph
-
[111]
S. Farry, O. Lupton, M. Pili et al., Eur. Phys. J. C 79(6), 497 (2019), arXiv:1902.04323[hep-ex
-
[112]
E. Bagnaschi and A. Vicini, Phys. Rev. Lett. 126(4), 041801 (2021), arXiv:1910.04726[hep-ph
-
[113]
M. Hussein, J. Isaacson, and J. Huston, J. Phys. G 46(9), 095002 (2019), arXiv:1905.00110[hep-ph
-
[114]
J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999), arXiv:hep-ph/9905386
-
[115]
J. M. Campbell, R. K. Ellis, and C. Williams, JHEP 07, 018 (2011), arXiv:1105.0020[hep-ph
-
[116]
T. Carli, D. Clements, A. Cooper-Sarkar et al., Eur. Phys. J. C 66, 503-524 (2010), arXiv:0911.2985[hep-ph
-
[117]
D. Stump, J. Huston, J. Pumplin et al., JHEP 10, 046 (2003), arXiv:hep-ph/0303013
-
[118]
L. A. Harland-Lang, A. D. Martin, P. Motylinski et al., Eur. Phys. J. C 75(5), 204 (2015), arXiv:1412.3989[hep-ph
-
[119]
R. D. Ball et al., The Path to Proton Structure at One-Percent Accuracy, arXiv: 2109.02653
-
[120]
J. Gao, L. Harland-Lang, and J. Rojo, Phys. Rept. 742, 1-121 (2018), arXiv:1709.04922[hep-ph
-
[121]
W.-K. Tung, S. Kretzer, and C. Schmidt, J. Phys. G 28, 983-996 (2002), arXiv:hep-ph/0110247
-
[122]
Kotwal, Ashutosh V, Phys. Rev. D 98(3), 033008 (2018)
-
[123]
S. Dulat, T.-J. Hou, J. Gao, et al., Phys. Rev. D 93(3), 033006 (2016), arXiv:1506.07443[hep-ph
-
[124]
A. D. Martin, W. J. Stirling, R. S. Thorne et al., Eur. Phys. J. C 63, 189-285 (2009), arXiv:0901.0002[hep-ph
-
[125]
R. D. Ball et al., Nucl. Phys. B 867, 244-289 (2013), arXiv:1207.1303[hep-ph
-
[126]
S. Alekhin, J. Blümlein, S. Moch et al., Phys. Rev. D 96(1), 014011 (2017), arXiv:1701.05838[hep-ph
-
[127]
H. Abramowicz et al. (H1and ZEUS Collaborations), Eur. Phys. J. C 75(12), 580 (2015), arXiv:1506.06042[hep-ex
-
[128]
G. Aad et al. (ATLAS Collaboration), JHEP 07, 223 (2021), arXiv:2101.05095[hep-ex
-
[129]
A. Accardi, L. T. Brady, W. Melnitchouk et al., Phys. Rev. D 93(11), 114017 (2016), arXiv:1602.03154[hep-ph
-
[130]
Tevatron Electroweak Working Group, Combination of CDF and D0 Results on the Width of the W boson, arXiv: 1003.2826
-
[131]
J. Gao and P. Nadolsky, JHEP 07, 035 (2014), arXiv:1401.0013[hep-ph
-
[132]
J. Pumplin, D. R. Stump, and W. K. Tung, Phys. Rev. D 65, 014011 (2001), arXiv:hep-ph/0008191
-
[133]
D. Stump, J. Pumplin, R. Brock et al., Phys. Rev. D 65, 014012 (2001), arXiv:hep-ph/0101051
-
[134]
D. Liu, C. Sun, and J. Gao, Machine learning of log-likelihood functions in global analysis of parton distributions, arXiv: 2201.06586
-
[135]
J. Pumplin, D. Stump, R. Brock et al., Phys. Rev. D 65, 014013 (2001), arXiv:hep-ph/0101032