• [1]

    . Visentin B et al. Cavity Baking: a Cure for the High Accelerator Field Q0 Drop. Proc. of the 9th Workshop on RF Superconductivity. Los Alamos National Laboratory, 1999.1982. Safa H. High Field Behavior of SCRF Cavities. Proc. of the 10th Workshop on RF Superconductivity. Tsukuba: KEK,2001. 2793. Lilje L et al. Electropolishing and In-Situ Baking of 1.3GHz Niobium Cavities. Proc. of the 9th Workshop on RF Superconductivity. Los Alamos National Laboratory, 1999. 744. Lilje L. High Accelerating Gradient in 1.3GHz Niobium Cavities. Proc. of the 10th Workshop on RF Superconductivity. Tsukuba: KEK, 2001. 2875. Kneisel P. Preliminary Experience with In-Situ Baking of Niobium Cavities. Proc. of the 9th Workshop on RF Superconductivity. Los Alamos National Laboratory, 1999. 3286. Visentin B. Change of RF Superconducting Parameters Induced by Heat Treatment on Niobium Cavities. Proc. of the 2001 Particle Accelerator Conference. Chicago: ANL,2001. 10567. Brinkmann R, Floettmann K, Rossbach J et al. TESLA Technical Design Report. Hamburg:DESY, 2001. Ⅱ-148. Palmer F L. IEEE Trans. Magn., 1987, 23(2): 16179. Grundner M, Halbritter J. J. Appl. Phys., 1979, 51: 39710. Bonin B. Materials for Superconducting Cavities. Proc. of CERN Accelerator School CERN96-03. Hamburg, 1996.19111. Hagen M. Internal Report, WU D 88-8. University of Wuppertal, March 198812. Knobloch J et al. High Field Q Slope in SC Cavities due to Magnetic Field Enhancement at Grain Boundaries. Proc. of the 9th Workshop on RF Superconductivity. Los Alamos National Laboratory, 1999. 7713. Halbritter J. Material Science of Nb RF Accelerator Cavities: Where doWe Stand 2001? Proc. of the 10thWorkshop on RF Superconductivity. Tsukuba: KEK, 2001. 29214. Halbritter J. IEEE Trans. on Appl. Supercond, 2001, 11:1864