-
[1]
ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)
-
[2]
CMS Collaboration, Phys. Lett. B 716, 30 (2012)
-
[3]
T. Behnke, J. E. Brau, P. N. Burrows et al., The international linear collider technical design report - volume 4: Detectors, 2013. arXiv: 1306.6329
-
[4]
M. Dong, et al. (CEPC Study Group), CEPC Conceptual Design Report: Volume 2 - Physics & Detector (2018). arXiv: 1811.10545
-
[5]
The FCC Collaboration, The European Physical Journal Special Topics 228, 261 (2019)
-
[6]
A. Robson, P. N. Burrows, N. C. Lasheras et al., The compact linear e+e- collider (clic): Accelerator and detector, 2018. arXiv: 1812.07987
-
[7]
F. An et al., Chin. Phys. C 43, 043002 (2019), arXiv:1810.09037
-
[8]
ATLAS Collaboration, Measurement of the properties of higgs boson production at
TeV in the\begin{document}$\sqrt{s}=13$\end{document} channel using 139 fb-1 of pp collision data with the atlas experiment, 2022. arXiv: 2207.00348\begin{document}$H \rightarrow \gamma \gamma$\end{document} -
[9]
Measurements of Higgs boson properties in the diphoton decay channel at
TeV, Technical Report, CERN, Geneva, 2020. URL: https://cds.cern.ch/record/2725142\begin{document}$\sqrt{s}=13$\end{document} -
[10]
M. Cepeda et al., CERN Yellow Rep. Monogr. 7, 221-584 (2019), arXiv:1902.00134
-
[11]
CEPC Accelerator Study Group, Snowmass2021 white paper af3- cepc, 2022, arXiv: 2203.09451
-
[12]
H. Cheng et al. (CEPC Physics Study Group), The Physics potential of the CEPC. Prepared for the US Snowmass Community Planning Exercise (Snowmass 2021), in: 2022 Snowmass Summer Study, 2022. arXiv: 2205.08553
-
[13]
B. Qi and Y. Liu, R & d of a novel high granularity crystal electromagnetic calorimeter, Instruments 6 (2022), URL: https://www.mdpi.com/2410-390X/6/3/40
-
[14]
Y. Liu, J. Jiang, and Y. Wang, High-granularity crystal calorimetry: conceptual designs and first studies, Journal of Instrumentation 15, C04056–C04056 (2020)
-
[15]
M. Thomson, Spectrometers, Detectors and Associated Equipment 611, 25-40 (2009)
-
[16]
W. Kilian and T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011), arXiv:0708.4233
-
[17]
T. Sjostrand, L. Lonnblad, S. Mrenna et al., Pythia 6.3 physics and manual (2003), arXiv: hep-ph/0308153
-
[18]
T. Taylor and D. Treille, The Large Electron Positron Collider (LEP): Probing the Standard Model, Adv. Ser. Direct. High Energy Phys. 27, 217–261 (2017) https://cds.cern.ch/record/2312570
-
[19]
CEPC Conceptual Design Report: Volume 1 - Accelerator (2018). arXiv: 1809.00285
-
[20]
X. Mo, G. Li, M.-Q. Ruan et al., Chin. Phys. C 40, 033001 (2016), arXiv:1505.01008
-
[21]
P. Mora de Freitas and H. Videau, Detector simulation with MOKKA /GEANT4: Present and future (2002) 623–627
-
[22]
S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250-303 (2003)
-
[23]
M. Ruan, Arbor, a new approach of the particle flow algorithm, 2014. doi: 10.48550/ARXIV.1403.4784
-
[24]
M. Ruan et al., Eur. Phys. J. C 78, 426 (2018), arXiv:1806.04879
-
[25]
F. Gaede, S. Aplin, R. Glattauer et al., Journal of Physics: Conference Series 513, 022011 (2014)
-
[26]
D. Yu, M. Ruan, V. Boudry et al., The European Physical Journal C 77 (2017)
-
[27]
S. Catani, Y. Dokshitzer, M. Olsson et al., Phys. Lett. B 269, 432-438 (1991)
-
[28]
A. Hoecker et al., TMVA - Toolkit for Multivariate Data Analysis, (2007) arXiv: physics/0703039
-
[29]
M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society. Series B (Methodological) 36, 111–147 (1974)
-
[30]
G. Cowan, K. Cranmer, E. Gross et al., The Eur. Phys. J. C 71 (2011)
-
[31]
Y. Wang, S. Descotes-Genon, O. Deschamps et al., JHEP 12, 135 (2022)