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Abstract: This  study  systematically  investigates  the  cosmological  dynamics  of  two  well-motivated  functional
forms in   gravity within a flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe. Here T denotes the
torsion scalar and B the boundary term, with the special choice   recovering General Relativity. We
focus  on  a  multiplicative  power-law  model    and  an  additive  mixed  power-law  model

. Using dynamical system techniques, we construct autonomous systems and identify de Sitter
attractors  that  naturally explain late-time cosmic acceleration.  Analytical  stability  conditions for  these fixed points
are  derived,  and  numerical  simulations  reveal  characteristic  evolutionary  patterns,  such  as  spiral  trajectories  and
damped  oscillations  in  the  additive  mixed  power-law  model.  Furthermore,  statefinder  diagnostics  are  applied  to
quantitatively distinguish these models from the standard ΛCDM paradigm and other dark energy scenarios. The res-
ults  indicate  that    gravity  offers  a  theoretically  consistent  and  observationally  distinguishable  geometric
framework for explaining cosmic acceleration, presenting a compelling alternative to conventional dark energy models.
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I.  INTRODUCTION

A  major  puzzle  in  modern  physics  is  the  universe's
late-time  acceleration  [1−3] and  the  observed  mass   dis-
crepancy  in  large-scale  structures  [4],  whose  dynamics
cannot be explained by visible matter [5]. These phenom-
ena are often attributed to dark energy and dark matter –
hypothetical components that influence cosmic evolution
despite having no direct electromagnetic signatures.

Dark energy presents a particular enigma due to its re-
pulsive gravitational  effect,  which  counteracts   conven-
tional gravitational  attraction.  Two  major  theoretical   ap-
proaches have been developed to address these cosmolo-
gical  puzzles.  The  first  retains  the  geometric  framework
of General Relativity (GR) while introducing new matter
components, such as scalar fields with negative pressure.
The second approach fundamentally modifies gravitation-
al theory itself, either by extending the geometry underly-
ing  Einstein's  field  equations  or  by  reinterpreting  how
matter  influences  spacetime  curvature.  Such  modified
gravity  theories  generally  generalize  the  Einstein-Hilbert
action  via  various  geometric  extensions,  giving  rise  to

f (R) f (G)
several  well-established  frameworks.  These  include
curvature-based  modifications  like    [6−8]  and 
gravity  [9, 10],  higher-order  polynomial  extensions  such
as cubic gravity [11−13], topological invariants in Love-
lock  gravity  [14],  and  scalar-tensor couplings   exempli-
fied by Horndeski's theory [15] and its Galileon general-
izations [16, 17]. This dichotomy underscores the central
debate in  modern  cosmology:  whether  dark  energy   ori-
ginates from new material constituents or from an exten-
sion of gravitational theory itself.

An  alternative  formulation  of  gravity,  dynamically
equivalent to GR at the level of field equations, employs
torsion rather than curvature as the fundamental geomet-
ric  descriptor.  This  approach,  known  as  the  Teleparallel
Equivalent  of  General  Relativity  (TEGR)  [18,  19],  de-
scribes  gravity  through  a  torsion-based  geometry  where
gravitational interactions  result  from  the  parallel   trans-
port  of  tetrad  fields.  In  TEGR,  the  gravitational  field  is
characterized by  the  torsion  tensor  with  dynamics   gov-
erned  by  the  torsion  scalar T,  a  quadratic  contraction  of
the torsion tensor.  A further  equivalent  representation of
Einstein’s theory can be formulated in a flat, torsion-free
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Qαµν = ∇αgµν
f (Q)

f (T )

f (T )

f (T )

geometry  where  gravitation  is  fully  encoded  in  the  non-
metricity tensor  . This framework, known as
symmetric  teleparallel  gravity,  leads  to    gravity
[20−22];  further  details  on this  theory and its  extensions
can be found in [23−27]. Although TEGR reproduces the
predictions of GR, it offers a distinct geometric interpret-
ation [28−30], casting gravity as a manifestation of space-
time torsion rather than curvature. Nevertheless, like GR,
TEGR alone does not resolve large-scale cosmological is-
sues  such  as  dark  energy  or  inflation.  To  address  these
limitations, modified teleparallel theories, collectively re-
ferred  to  as   gravity,  have  been  developed  [31−33],
generalizing  the  Lagrangian  to  arbitrary  functions  of  T.
As an extension of TEGR,   gravity opens new path-
ways  for  explaining  cosmic  acceleration  and  large-scale
structure  formation [34−37].  Still,  whether    theories
can outperform GR on both theoretical and observational
grounds remains an open question, warranting further de-
tailed investigation.

f (R)
f (T,B)

f (R)
f (T,B) f (R)

f (−T +B)

To  construct  a  complete  teleparallel  analog  of 
gravity, the   extension plays an essential role [19,
38,  39].  In  this  framework,  the  torsion  scalar T  and  the
boundary  term  B  respectively  capture  the  second-  and
fourth-order  derivative  contributions  present  in 
gravity.  Notably,    naturally  incorporates 
gravity as the specific case  , while allowing for
a wider range of gravitational Lagrangians.

f (T,B)

f (T,B)

f (T,B) f (R)

The    framework  has  been  widely  explored
across  diverse  phenomenological  contexts.  Gravitational
wave  studies  in  this  theory  indicate  luminal  propagation
speeds and the presence of polarization modes beyond the
standard transverse-traceless ones of GR [40, 41].  Solar-
system tests further confirm the viability of many 
models,  showing  agreement  with  high-precision  astro-
nomical  measurements  [42].  In  cosmology,  such  models
offer promising mechanisms to alleviate  the Hubble  ten-
sion  [43−45].  Recent  theoretical  developments  include:
(i)  a  rigorous  establishment  of  the  correspondence
between    and    gravity  [19,  38],  along  with
thermodynamic  and  cosmological  reconstruction  studies
[55];  (ii)  exact  and  perturbed  black  hole  solutions  [47],
extending  the  theory's  applicability  to  compact  objects;
and (iii)  comprehensive  analyses  of  background   expan-
sion and linear perturbation growth [48−52].

f (T,B)

f (R) f (R,T )

This study investigates the cosmological dynamics of
 gravity within an isotropic,  homogeneous FLRW

universe  using  the  dynamical  system  approach.  The
strong  nonlinearity  of  the  field  equations  renders  exact
solutions  intractable  and  obstructs  direct  observational
tests,  owing  to  the  complex  coupling  among  terms.  To
address  this,  the  dynamical  system  method  [53−55],
which has been used to investigate cosmological  models
in  various  modified  gravity,  including  Hořava-Lifshitz
gravity  [56−59],    gravity  [60,  61],    gravity

[62, 63], Gauss-Bonnet gravity [64], Einstein cubic grav-
ity [65],  and other  cosmological  scenarios [66, 67].  This
method  reformulates  the  cosmological  equations  into  an
autonomous system,  enabling the  examination of  critical
points,  phase-space  trajectories,  and  stability,  yielding
global dynamical insight (including attractors and transi-
ent  states)  without  relying  on  exact  solutions.  Such  a
global  perspective  is  essential  for  comparing  theories
with observations,  as  it  reveals  the  full  dynamical   land-
scape rather than individual solutions. Recently, using the
dynamical  system method,  Kritpetch et  al.  [68]  clarified
the interaction  mechanism between dark  sector  compon-
ents in  dark  energy  models  incorporating  both   quint-
essence and phantom fields via a switching parameter. In
parallel, Halder et al. [69] identified new stable accelerat-
ing scaling attractors within interacting phantom dark en-
ergy frameworks. These attractors offer a potential mech-
anism for alleviating the cosmic coincidence problem.

f (T,B)

This study is structured as follows. Section 2 provides
a  brief  review  of  teleparallel  gravity  and  its  extensions.
In Section 3, we derive the cosmological dynamical sys-
tem for the   model. Section 4 presents a dynamic-
al  analysis  of  the  two  considered  models,  and  Section  5
examines their  statefinder  diagnostics.  Finally,  Section 6
summarizes  the  key  findings  and  offers  a  concluding
discussion. 

f (T,B)

II.  TELEPARALLEL GRAVITY AND ITS EXTEN-
SION  GRAVITY

f (T,B)
Γa
µν

Wµa
ν

This  section  provides  a  brief  review  of  Teleparallel
Gravity (TG) and its extension to   gravity. GR de-
scribes  gravity  using  the  Levi-Civita  connection  ,
which  is  characterized  by  non-zero curvature,  zero   tor-
sion,  and  metric  compatibility.  In  contrast,  Teleparallel
Gravity  adopts  the  Weitzenböck  connection    –  a
curvature-free,  metric-compatible connection  that   cap-
tures  gravitational  effects  entirely  through  torsion  [70].
This shift in geometric foundation has profound implica-
tions:  while  GR  and  its  modifications  employ  the
Riemann  tensor  to  measure  spacetime  curvature,  the
Riemann tensor vanishes identically in TG due to the flat-
ness of the Weitzenböck connection. As a result, TG ne-
cessitates a reconstruction of gravitational quantities from
the  ground  up,  offering  novel  theoretical  possibilities
while  preserving  dynamical  equivalence  with  GR  at  the
level of field equations.

ea
µ

xµ ea
µ Eµa

In  the  TG  framework,  the  fundamental  dynamical
variables  are  the  tetrad  fields  (vierbeins)  ,  which form
an orthonormal basis for the tangent space at each space-
time point  .  The  tetrads    and  their  inverse  fields 
satisfy the orthonormality conditions 

em
µ Eµn = δ

m
n ,e

m
µ Eνm = δ

ν
µ, (1)
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(m,n)
(µ,ν)

gµν

where Latin indices   refer to coordinates in the tan-
gent space, and Greek indices   denote spacetime co-
ordinates. The metric tensor   is reconstructed from the
tetrad fields via the relation 

gµν = ea
µe

b
νηab,

ηabwhere   is the Minkowski metric on the tangent space.
The Weitzenböck connection is defined as [19] 

Wµa
ν = ∂µea

ν .

T a
µνThe torsion tensor    is  given by the  antisymmetric

part of the Weitzenböck connection 

T a
µν =Wµa

ν−Wνaµ = ∂µea
ν −∂νea

µ. (2)

Kµa
ν

S a
µν Kµλν

Two key tensors in TG are the contorsion tensor 
and the superpotential  . The contorsion tensor   is
defined as 

Kµλν =
1
2
(
T λµν−Tµνλ+Tµλν

)
, (3)

S σµν

and plays  a  significant  role  in  establishing  the   equival-
ence between TG and GR at the level of field equations.
The superpotential   is given by 

S σµν =
1
2
(
Kσµν−δµσT ν+δνσT µ

)
. (4)

The torsion  scalar T  is constructed  through the  com-
plete contraction of the torsion tensor with its superpoten-
tial 

T = S σµνTσµν. (5)

This scalar serves as the Lagrangian density in the TEGR 

S TEGR = −
1

2κ2

∫
d4xeT +

∫
d4xeLm, (6)

κ2 = 8πG Lmwhere    and    is  the  matter  Lagrangian.  This
quadratic combination  encodes  the  teleparallel   equival-
ent of the Ricci scalar R satisfying the identity 

R = −T +
2
e
∂µ(eT µ) = −T +B, (7)

e = det
(
ea
µ

) √−g

B =
2
e
∂µ(eT µ) = 2∇µT µ

where  , and the boundary term is defined

as  .

f (T )

A natural  generalization  of  the  TEGR  action  is   ob-
tained  by  promoting  the  torsion  scalar T  to  an  arbitrary
function  , leading to 

S f (T ) = −
1

2κ2

∫
d4xe f (T )+

∫
d4xeLm. (8)

f (R)
f (T )

R = −T +B
f (T,B) f (R)

Unlike the   framework, which leads to fourth-or-
der  field  equations,    gravity  retains  second-order
equations of  motion.  This  distinction  arises  from the   re-
laxed  constraints  of  Lovelock's  theorem  in  teleparallel
geometry,  where  a  torsion-based  description  allows  for
modifications  that  avoid  ghost  instabilities  [29].  Never-
theless, the full structure of the theory involves two fun-
damental  geometric  scalars:  the  torsion  scalar T  and  the
boundary term B. Their relation to the Ricci scalar via the
identity    motivates  the  generalization  to

  gravity,  which  not  only  encompasses    grav-
ity as  a  special  case  but  also  provides  a  minimal   exten-
sion incorporating both second- and fourth-order derivat-
ive terms.

f (T,B)In the present work, we consider the   action in
the form [50] 

S f (T,B) =
1

2κ2

∫
d4xe(−T + f (T,B))+

∫
d4xeLm. (9)

f (T,B) = 0Note that the TEGR action is recovered when  .
Varying  this  action  with  respect  to  the  tetrad  yields  the
field equations [19, 40] 

eλa□ fB− eσa∇λ∇σ fB+
1
2

B fBeλa +2S µλa (∂µ fT +∂µ fB)+

2
e

( fT −1)∂µ
(
eS µλa

)
−2( fT −1)TσµaS λµσ −

1
2

(−T + f )eλa = κ
2Θλa,

(10)

fT = ∂ f /∂T fB = ∂ f /∂B Θλν = ea
νΘ
λ
awhere  ,  ,  and    denotes

the  standard  energy-momentum tensor  for  matter.  These
field equations are derived under the assumption of a van-
ishing spin connection, which is a consistent choice in the
context of a flat FLRW cosmology [19, 39, 40].

The choice of tetrad is 

ea
µ = diag(1,a(t),a(t),a(t)),

a(t)where    is  the  scale  factor.  This  tetrad  yields  the  flat
FLRW metric 

ds2 = −dt2+a(t)(dx2+dy2+dz2),

from which the torsion scalar T and the boundary term B
are obtained as 
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T = 6H2, B = 6(3H2+ Ḣ), (11)

R = −T +B = 6(Ḣ+2H2)

where the overdot represents a derivative with respect to
cosmic time  t.  The corresponding Ricci  scalar R  for  this
metric is thus recovered as  .

With  the  FLRW  metric  and  the  chosen  tetrad,  the
field equations  reduce  to  the  modified  Friedmann   equa-
tions 

3H2 = κ2(ρm+ρgd), (12)

 

3H2+2Ḣ = −κ2(pm+ pgd), (13)

ρm pm

ωm pm = ωmρm

ρgd

pgd

where   and   respectively represent the energy dens-
ity  and pressure  of  the  matter  (baryons  and dark  matter)
whose  equation  of  state    is  defined  as  ,
while the geometric dark energy density   and the cor-
responding pressure   are given by 

κ2ρgd = −
1
2

f +T fT +
1
2

B fB−3H ḟB, (14)

 

κ2 pgd =
1
2

f −T fT −2Ḣ fT −2H ḟT −
1
2

B fB+ f̈B, (15)

The conservation equation of the matter is 

ρ̇m+3Hρm = 0, (16)

pm = 0where we have assumed  ,  then the geometric dark
energy also observes the conservation equation [39] 

ρ̇gd+3H(ρgd+ pgd) = 0. (17)

ωgdThe equation of state for the geometric dark energy   is
defined as 

ωgd =
pgd

ρgd
= −1+

−4Ḣ fT −4H ḟT −6H ḟB+2 f̈B

− f +2T fT +B fB−6H ḟB
, (18)

while the total equation of state is given by 

ωtot =
pm+ peff

ρm+ρeff
= −1− 2Ḣ

3H2
. (19)

ωtotThe deceleration parameter q is related to   via 

q = − ä
aH2

=
1
2

(1+3ωtot), (20)

q < 0 ωtot < −
1
3

implying that  the  universe  undergoes  accelerated  expan-
sion when  , or equivalently, when  .

Γαµν
C = B

f (T,B)
f (Q,C)

f (T,B)
f (Q,C)

In metric teleparallel gravity, with the affine connec-
tion   vanishing in FLRW geometry, the boundary term
satisfies  . Under this condition, the modified Fried-
mann  equations  of  the  present    model  become
equivalent  to  those  of  the    theory  [71,  72].  This
equivalence indicates that the two models may share fun-
damental  features  in  their  cosmological  dynamics.
Moreover,  the  dynamical  system  analysis  developed  in
the following sections for   gravity can be directly
applied  to  the    formulation when  the  affine   con-
nection is set to zero. 

f (T,B)

III.  DYNAMICAL SYSTEM STRUCTURE OF
 COSMOLOGY

f (T,B)
In  this  section,  we  perform  a  qualitative  analysis  of

the  cosmological  dynamics  in    gravity  using  the
dynamical systems approach. By introducing suitable di-
mensionless  variables,  the  modified  field  equations  can
be  reformulated  as  an  autonomous  dynamical  system.
Such a system is characterized by two fundamental com-
ponents: a  state  space comprising all  possible configura-
tions,  and  a  set  of  differential  equations  governing  the
evolution of trajectories within this space.

Ẋ = 0 Ẋ = f (X)
X = (x1, x2, · · · , xn)

f (T,B)

f (T,B)

The fixed points of the system, defined by the condi-
tion    for  a  system  of  the  form    with

, correspond to equilibrium solutions in
the  cosmological  context.  These  critical  points  represent
distinct  cosmological  epochs  within  the    frame-
work.  Their  stability,  determined  via  linear  perturbation
analysis,  dictates the global  evolutionary behavior of the
universe:  stable  points  act  as  cosmological  attractors
characterizing late-time asymptotic states, unstable points
correspond to  transient  phases,  and saddle  points   repres-
ent metastable regimes that temporarily influence the dy-
namics  before  the  system  evolves  toward  an  attractor.
Through  this  approach,  key  epochs  in  cosmic  history  –
such  as  radiation  domination,  matter  domination,  and
late-time acceleration – naturally arise as specific critical
points in the phase space, revealing how different eras of
universe  evolution  are  embedded  within  the  structure  of

 gravity.
To construct  the  dynamical  system  for  the   cosmolo-

gical  model,  we  introduce  the  following  dimensionless
variables: 

Ωm =
κ2ρm

3H2
, Ωgd =

ρgd

6H2
, x =

f
6H2
, u = fT ,

v = fB, y =
B

6H2
, z =

ḟB

H
, σ = yv =

B fB

6H2
. (21)
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Ωm

Ωgd = −x+2u+
σ− z

f (T,B)

Here,    quantifies  the  relative  density  of  matter  in
the  total  effective  cosmic  fluid,  while 

 represents the contribution from geometric dark en-
ergy within the   framework. The quantities x, u, σ,
and z characterize different aspects of the geometric dark
energy  sector.  Their  relative  dominance  in  the  phase
space can signal transitions between distinct dark energy-
dominated regimes. At fixed points of the dynamical sys-
tem, the values of these variables help identify the nature
of  the  corresponding  cosmological  epoch,  clarifying  the
physical role  of  each  component  in  the  evolution   gov-
erned by the critical points.

Using the dimensionless variables defined in Eq. (21),
the Friedmann equation (12) takes the form 

Ωm− x+2u+σ− z = 1, (22)

while Eq. (13) becomes 

f̈B

H2
= −3Ωm+2(y−3)(u−1)+3z+2

ḟT

H
. (23)

ḟT/HThe term   can be expanded as 

ḟT

H
= 2(y−3)T fTT +

Ḃ
6H2

T fT B, (24)

fTT = ∂
2 f /∂T 2 fT B = ∂

2 f /(∂T∂B)where   and  .
Furthermore,  from  the  dynamical  variables  y  and  z,

we derive the following relations: 

Ḣ
H2
= y−3, (25)

 

Ḃ
6H3

=
z−2(y−3)T fBT

T fBB
, (26)

fBT = ∂
2 f /(∂B∂T ) fBB = ∂

2 f /∂B2

fBB , 0
in  which  ,  , and  it  is   as-
sumed that  .

ωgd

ωtot

Finally,  the  dark  energy  equation  of  state  ,  the
total equation of state  , and the deceleration paramet-
er q are given by 

ωgd =
2−3y

3(1−Ωm)
, ωtot = 1−2/3y, q = 2− y. (27)

N ≡ lna
H > 0

H = 0
f (T,B)

To construct  the cosmological  dynamical  system, we
introduce  the  independent  variable  ,  commonly
used in expanding cosmological scenarios ( ) but in-
applicable in bouncing models where   at the bounce
epoch  [50].  The  field  equations  of    gravity  can
then be expressed as the following autonomous dynamic-
al system: 

Ω′m = Ωm(3−2y),

x′ = 2(y−3)(u− x)+ v
Ḃ

6H3
,

u′ =
ḟT

H
,

σ′ = yz−2σ(y−3)+ v
Ḃ

6H3
,

y′ = −2y(y−3)+
Ḃ

6H3
,

v′ = z,

z′ = −(y−3)z+
f̈B

H2
, (28)

′

N = lna
where the prime symbol   denotes differentiation with re-
spect to  .  Using the variables defined in Eq. (21)
and the relations in Eqs. (22) and (23), the system can be
reduced to: 

Ω′m = Ωm(3−2y),

x′ = 2(y−3)(u− x)+ v
Ḃ

6H3
,

u′ =
ḟT

H
,

y′ = −2y(y−3)+
Ḃ

6H3
,

v′ = −1+Ωm− x+2u+ yv. (29)

f (T,B)

λ = Ḧ/H3

f (T,B)

Upon  specifying  the  functional  form  of  ,  the
dynamical  system  presented  above  becomes  fully
autonomous,  in  contrast  to  approaches  that  rely  on  the
parameterization   as used in [49, 51, 52, 73]. In
the subsequent sections, we focus on two specific 
models introduced in [39]: the power-law model 

f (T,B) = c1T αBβ,

and the mixed power-law model 

f (T,B) = c2T α+ c3Bβ,

c1,c2,c3,α,β

f (T ) f (R)

where   are constant parameters of the cosmo-
logical model. Both of these representative and well-mo-
tivated  prototype  functional  forms  are  chosen  because
they  can  naturally  reduce  to  GR  or  to  other  established
modified  gravity  theories,  such  as    or    gravity,
within specific parameter limits, thereby ensuring theoret-
ical  consistency.  They  also  serve  complementary  aims:
the multiplicative power-law form is intended to explore
novel  dynamical  effects  that  stem  from  a  non-trivial
coupling  between  the  torsion  scalar T  and  the  boundary
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f (R)

f (T,B)
f (T,B) = A0+A1T+A2T 2+A3B+A4T B f (T,B) =

ξT +αB ln B f (T,B) = Bg(T )
f (T,B) = Tg(B)

f (T,B)

term  B,  an  interaction  inherently  absent  in  additive  or
pure    models.  In  contrast,  the  additive  power-law
form enables  a  clear  separation  and  comparative   assess-
ment of the individual contributions of T and B to cosmic
evolution.  Furthermore,  the  power-law ansatz  yields   ho-
mogeneous  terms  in  the  resulting  Friedmann  equations,
which significantly facilitates the search for exact scaling
solutions  and  the  construction  of  a  closed  autonomous
dynamical  system.  It  should  also  be  noted  that  other
forms of   may be considered in future studies, such
as   [40, 49], 

  [52],  as  well  as    and
 [50]. By systematically analyzing the two

foundational  ansätze  selected  here,  we  aim  to  map  the
key  dynamical  features  of    cosmology and   estab-
lish a benchmark for future studies involving more com-
plex functional dependencies. 

f (T,B)

IV.  COSMOLOGICAL DYNAMICS OF TWO
 MODELS

 

f (T,B) = c1T αBβA.    Power law model 
f (T,B) =

c1T αBβ

fBB , 0 β , 0,1
c1 , 0

We  first  consider  the  power  law  model 
.  For  Eq.  (26)  to  be  well-defined,  the  condition
  must  be  satisfied,  which  requires    and
.  In  this  case,  the  dynamical  variables u  and v  can

be written as 

u = αx, v = β
x
y
. (30)

Substituting these into Eq. (26) yields 

Ḃ
6H3

=
y2(−1+Ωm+ (−1+2α+β))−2αβxy(y−3)

(β−1)βx
. (31)

The  cosmological  dynamical  system  for  the  power

law model then reduces to the autonomous form 

Ω′m =Ωm(3−2y),

x′ =2(α−1)(y−3)x+

y(−1+Ωm+ (−1+2α+β))−2αβx(y−3)
β−1

,

y′ =−2y(y−3)+

y2(−1+Ωm+ (−1+2α+β))−2αβxy(y−3)
(β−1)βx

. (32)

P1
gd

{ea1,ea2,ea3}

The  autonomous  system  (32)  admits  a  unique  fixed
point, denoted as  . Its coordinates and the correspond-
ing cosmological parameters are summarized in Table 1.
The eigenvalues  of  the  Jacobian matrix  evaluated at  this
point, denoted as  , are given by ®
−3,−3

2
− 3

√
A1

2β(β−1)(2α+β−1)
,−3

2
+

3
√

A1

2β(β−1)(2α+β−1)

´
,

where 

A1 = β(β−1)(2α+β−1)2(8+16α2+24α(β−1)−17β+9β2).

P1
gd

∧ ∨
α = 3

β = −4 P1
gd

Table 2 summarizes the existence and linear stability
conditions  for  ,  along  with  its  acceleration  behavior,
where  the  symbols    and    denote  logical  “and”  and
“or”, respectively. For the specific parameter values 
and  ,  the  fixed  point    is  a  stable  node.  The
phase  space  stream plot  of  the  model  for  this  parameter
set  is  shown  in  Figure  1,  while  the  evolution  of  the
corresponding  cosmological  parameters  is  displayed  in
Figure 2.

P1
gd

a ∼ eH0t

The  fixed  point    corresponds  to  a  cosmological
epoch dominated  by  geometric  dark  energy,   character-
ized by a de Sitter expansion   and a total equation

 

Table 1.    Fixed point of dynamical system (32)

Point Ωm Ωgd x y u v σ z ωtot H a

P1
gd 0 1

1
2α+β−1 3

α

2α+β−1
β

3(2α+β−1)
β

2α+β−1 0 −1 H0 eH0t

 

P1
gdTable 2.    (color online) Summary of existence, stability, and acceleration properties for the fixed point 

Point Existence Stability Acceleration

P1
gd 2α+β , 1

α ⩽ 0∧ (0 ⩽ β ⩽ 1∨1−α < β ⩽ 1−2α))

∨(0 < α <
1
2
∧ (0 ⩽ β ⩽ 1−2α∨1−α < β ⩽ 1))

∨(α =
1
2
∧ (β = 0∨ 1

2
< β ⩽ 1)

∨(
1
2
< α < 1∧ (1−2α ⩽ β < 0∨1−α < β ⩽ 1)))

∨(α = 1∧−1 ⩽ β ⩽ 1)
∨(α > 1∧ (1−2α ⩽ β < 1−α∨0 ⩽ β ⩽ 1))

stable for (

always
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ωtot = −1

(α,β)

f (T,B)

of  state  . At  this  point,  the  geometric  dark   en-
ergy  components x, u,  and σ  collectively sustain  the   ac-
celerated  expansion.  Owing  to  its  stable  nodal  behavior
for  suitable  parameter  choices  ,  this  fixed  point
provides a viable mechanism for explaining the late-time
cosmic acceleration within the power-law   frame-
work. 

f (T,B) = c2T α+ c3BβB.    Mixed power law model 

f (T,B) = c2T α+ c3Bβ fBB , 0
β , 0,1 c3 , 0

Ḃ/(6H3)

We  now  consider  the  mixed  power  law  model
. Here, the condition   is satis-

fied  provided  that    and  .  In  this  model,  the
variable x and the term   can be written as 

x =
1
α

u+
1
β

yv, (33)

 

Ḃ
6H3

=

y
Å
−1+Ωm+2u+ yv− 1

α
u− 1
β

yv
ã

(β−1)v
. (34)

The  corresponding  autonomous  dynamical  system  takes

the form 

Ω′m = Ωm(3−2y),

u′ = 2(α−1)(y−3)u,

y′ = −2(y−3)y+
y
Å
−1+Ωm+2u+ yv− 1

α
u− 1
β

yv
ã

(β−1)v
,

v′ = −1+Ωm+2u+ yv− 1
α

u− 1
β

yv. (35)

Pi
gd

(Ωi
m,u

i,yi,vi) i = 2,3
This  system  possesses  two  fixed  points,  denoted  as 
with coordinates   for  .

P2
gdThe fixed point   is characterized by the coordinates

 

P2
gd =

Å
0,
α(β+3(1−β)v∗)

(2α−1)β
, 3, v∗

ã
,

v∗ ∈ R v∗ , 0 P2
gdwhere   and  . More precisely,   corresponds

to a line of equilibrium points. The eigenvalues of the lin-
earized system at this point are given by ®

0,−3,−3
2
−

√
3A2

2(2α−1)(β−1)αβv∗
,−3

2
+

√
3A2

2(2α−1)(β−1)αβv∗

´
,

with 

A2 = v∗α2β(2α−1)2(β−1)
[
8β(α−1)−3v∗(8α−9β)(β−1)

]
.

Ωm = 0 Ωgd = 1
At  this  fixed  point,  the  cosmological  parameters  satisfy

  and  ,  indicating  a  universe  dominated  by
geometric  dark  energy.  As  a  de  Sitter  point  with  a  scale

 

f (T,B) = c1TαBβ (α1,β1) = (3,−4)Fig. 1.    (color online) Phase space flow of the model   for  .

 

(α1,β1) = (3,−4) (Ωm0 , x0,y0) =
(0.3,0.3,2.5)

Fig. 2.      (color online) Evolution of cosmological parameters
for    and  initial  conditions 

.
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a ∼ eH0t P2
gdfactor  evolving  as  ,    provides a  potential   ex-

planation  for  the  current  cosmic  acceleration  within  the
model, provided it acts as a stable attractor.

P3
gdThe fixed point   is located at

 

P3
gd =

Å
0, 0, 3,

β

3(β−1)

ã
.

P2
gd

v∗ =
β

3(β−1)
P3

gd

This  point  belongs  to  the  equilibrium  line  ,  corres-

ponding to  the specific  case where  . The ei-
genvalues of the linearization at   are
 ®

0,−3,−3
2
+

3
√

9α2β4−8α2β3

2αβ2
, −3

2
− 3

√
9α2β4−8α2β3

2αβ2

´
.

P2
gdLike  , this  point  also  corresponds  to  a  phase  of   geo-

metric dark  energy  dominance  and  exponential   expan-
sion of the universe. If linearly stable, it  could provide a
mechanism for late-time cosmic acceleration.

ṽ = β(α−1)/(3(β−1)(α−β))

The coordinates and cosmological parameters of both
fixed points are summarized in Table 3, while their exist-
ence,  stability,  and  acceleration  properties  are  listed  in
Table 4, where  . In the mixed
power-law model, both obtained fixed points exhibit one
zero  eigenvalue  and  are  therefore  non-hyperbolic.  The
central  manifold  theorem  was  attempted  to  assess  their
stability; however, after decomposing the system into lin-
ear and nonlinear components, it was found that the non-
linear terms do not vanish in the vicinity of the equilibri-
um,  thus  precluding  definitive  stability  conclusions
through this method. Consequently, we specify the condi-

e j3 e j4

j = b,c
tion  that  the  real  parts  of  the  eigenvalues  ,    (with

) must be negative in Table 4, and present the sta-
bility  behavior  of  both  points  via  phase  portrait  analysis
in Figure 3.

(α2,β2) = (5,−1000) (α3,β3) =
(5,2/3)
P2

gd

(5,−1000)
Ωm Ωgd ωtot ωgd

(0,1,−1,−1)
(5,2/3) ωtot ωgd

We perform  numerical  analysis  for  two   representat-
ive  parameter  pairs:    and 

, as illustrated in Figures 3 and 4. In the y-u plane,
  is  stable  under  both  parameter  choices  and  exhibits

spiral  dynamics  for  . The  cosmological   para-
meters  ,  ,  ,  and    all  asymptotically
approach the same final  state  .  However,  for
the pair  , the evolution of   and   shows dis-
tinct  damped  oscillations  before  settling  to  the  de  Sitter
attractor. 

V.  STATEFINDER DIAGNOSTIC

This  section  applies  the  statefinder  diagnostic  to  the
two  cosmological  models  introduced  above.  The
statefinder parameters r and s,  first proposed in [74, 75],
provide a useful tool for distinguishing between different
dark energy scenarios. These dimensionless quantities are
defined  in  terms  of  the  scale  factor  and  its  higher-order
derivatives as [74]: 

r =
...a

aH3
, s =

r−1

3
Å

q− 1
2

ã . (36)

The statefinder  diagnostic  offers  a  practical   frame-
work for classifying alternative dark energy models. Even
when  two  models  predict  similar  expansion  histories,
their  evolutionary trajectories  in  the r-s plane can reveal

 

Table 3.    Fixed points of dynamical system (35)

Point Ωm Ωgd x y u v σ z ωtot H a

P2
gd 0 1

β+3v∗(2α−β)
(2α−1)β 3

αβ−3αv∗(β−1)
(2α−1)β

v∗ 3v∗ 0 −1 H0 eH0t

P3
gd 0 1

1
β−1 3 0

β

3(β−1)
β

β−1 0 −1 H0 eH0t

 

P2
gd P3

gdTable 4.    Existence, stability, and acceleration properties of   and 

Point Existence (e j3,e j4 < 0, j = b,c)Stability  Acceleration

P2
gd

β , 0

∧α , 1
2

∧v∗ , 0

α < 0∧ ((β ⩽ α∧ ṽ < v∗ < 0)∨ (β = α∧ v∗ < 0)∨ (α < β < 0∧ (v∗ < 0∨ v∗ > ṽ))
∨(0 < β < 1∧ ṽ < v∗ < 0)∨ (β > 1∧0 < v∗ < ṽ)))

∨(0 < α <
1
2
∧ ((β < 0∧ ṽ < v∗ < 0)∨ (0 < β < α∧ (v∗ < 0∨ v∗ > ṽ)∨ (β = α∧ v∗ < 0)
∨(α < β < 1∧ ṽ < v∗ < 0)∨ (β > 1∧0 < v∗ < ṽ)))

∨(
1
2
< α < 1∧ ((β < 0∧ ṽ < v∗ < 0)∨ (0 < β < α∧ (v∗ < 0∨ v∗ > ṽ))∨ (β = α∧ v∗ < 0)

∨(α < β < 1∧ ṽ < v∗ < 0)∨ (β > 1∧0 < v∗ < ṽ)))
∨(α = 1∧0 < β < 1∧ (v∗ < 0∨ v∗ > 0))

∨(α > 1∧ ((β < 0∧0 < v∗ < ṽ)∨ (0 < β < 1∧ (v∗ < ṽ∨ v∗ > 0))
∨(1 < β < α∧ (v∗ < 0∨ v∗ > ṽ))∨ (β = α∧ v∗ < 0)∨ (β > α∧ ṽ < v∗ < 0)))

(

always

P3
gd β , 1 α , 0∧0 < β < 1 always
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{r, s}clear differences. Characteristic values of   for sever-
al standard dark energy models include [74, 75]:
 
• {r = 1, s = 1}  :  Standard  cold  dark  matter  (SCDM)

model
 
• {r = 1, s = 0}  : ΛCDM model

 
• {r > 1, s < 0}  : Chaplygin gas model

 
• {r < 1, s > 0}  : Quintessence model

 

f (T,B) = c1T αBβ

The application of statefinder diagnostics within a dy-
namical  systems framework proves  particularly  effective
in  distinguishing  between different  acceleration  regimes,
as  demonstrated in  recent  studies  of  dark energy models
[76,  77].  In  present  work,  for  the  power-law  model

, the statefinder parameters take the form 

r =10−3y+
−2αβxy(y−3)+y2[Ωm+(2α+β−1)x−1]

β(β−1)x
,

s =
−6β(β−1)(y−3)x−4αβxy(y−3)+2y2[Ωm+ (2α+β−1)x−1)]

3β(β−1)(3−2y)x
,

(37)

f (T,B) =
c2T α+ c3Bβ
whereas  for  the  mixed  power-law  model 

, they are given by 

r =10−3y+
y(−1+Ωm+2u+ yv− u

α
− yv
β

)

(β−1)v
,

s =
−6(β−1)(y−3)v+2y(−1+Ωm+2u+ yv− u

α
− yv
β

)

3(β−1)(3−2y)v
.

(38)

q = 2− y
In both cases,  the deceleration parameter is  expressed as

.

 

(α2,β2,v2) =

(5,−1000,0.00125) (α3,β3,v3) = (5,2/3,1) (α3,β3) = (5,2/3)
Fig.  3.      (color online) Phase  space  flow  of  the  mixed  power-law  model  under  different  parameters:  (a),  (c): 

; (b):  ; (d):  .
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f (T,B) =
c1T αBβ

f (T,B) = c2T α+ c3Bβ

The evolutionary  trajectories  of  the  statefinder   para-
meters  r  and  s  are  illustrated  in  the  r-q  and  r-s  planes:
Figure  5  corresponds  to  the  power-law  model 

,  and  Figure  6  to  the  mixed  power-law  model
.

(α,β) = (5,−1000)

{r = 1, s = 0}
(α,β) = (5,2/3)

(5,2/3)

As shown in Figure 5,  the power-law model exhibits
dynamical behavior analogous to that of a Chaplygin gas
model  before  asymptotically  approaching  a  ΛCDM-like
regime. In Figure 6, although the mixed power-law mod-
el  also  converges  to  a  ΛCDM-like  state  in  the  late-time
limit, the evolutionary paths in the r-q and r-s planes dif-
fer  significantly  between  the  two  parameter  sets.  For

, the  trajectory  remains  within  the   re-
gion  characteristic  of  the  Chaplygin  gas  model  before
reaching  the  ΛCDM  point  .  In  contrast,  for

,  the  trajectory  crosses  the  ΛCDM  point,
showing  damped  transitions  between  the  Chaplygin  gas
and quintessence regimes. Additionally, the trajectory for

 displays a spiral structure in the r-q plane.

{r,q} {r, s}

In particular, the distinct evolutionary trajectories ob-
served  in  the  statefinder  diagnostic  planes  highlight  the
sensitivity and discriminatory power of the   and 

f (T,B)

f (T,B) = c1T αBβ

f (T,B) = c2T α+ c3Bβ

(α,β) (5,2/3)

f (T,B)

diagnostics  in  distinguishing  between  multiplicative
power-law  and  additive  mixed  power-law  forms  of

 models. The notable differences in both the paths
and  transitional  behaviors  between  these  two  functional
forms  can  be  attributed  to  their  distinct  gravitational
dynamics.  The  multiplicative  form 
introduces a strong and inseparable coupling between tor-
sion and the boundary term, which constrains the evolu-
tionary path to remain within Chaplygin gas-like regimes
until  late  times.  Conversely,  the  additive  form

 decouples the contributions of T and
B,  permitting  more  varied  interactions.  This  decoupling
enables transitions  between  Chaplygin  gas  and   quint-
essence  behaviors,  and  can  even  lead  to  oscillatory  or
spiral  approaches  to  the  ΛCDM  attractor,  as  evident  in
the r-q plane for the parameter set   =  . There-
fore, the  statefinder  analysis  not  only  effectively   distin-
guishes between the two   ansätzes but also reveals
how the  structural  choice  (namely,  whether  to  couple  or
to separate T and B) fundamentally shapes the dynamical
character and potential  transient  phases  of  cosmic  accel-
eration. 

 

(Ωm0 ,u0,y0,v0) = (0.3,1,2.5,1) (α2,β2) = (5,−1000) (α3,β3) = (5,2/3)
Fig.  4.      (color online) Evolution  of  cosmological  parameters  for  the  mixed  power-law  model  from  initial  conditions

. (a):  ; (b):  .

 

f (T,B) = c1TαBβ

(Ωm0 , x0,y0) = (0.3,0.3,2.5) (α1,β1) = (3,−4)

Fig. 5.    (color online) Evolution of statefinder parameters in the r-q and r-s planes for the model  , with initial values
 and parameter choice  .
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VI.  CONCLUSIONS

f (T,B)
f (T,B) = c1T αBβ

f (T,B) = c2T α+ c3Bβ

This  study  systematically  analyzes  the  cosmological
dynamics  of  two  well-motivated  models  within  the
framework  of   modified  gravity.  Focusing  on  the
multiplicative  power-law  form    and  the
additive mixed power-law form  , we
examine how the coupling and decoupling of the torsion
scalar  T  and  the  boundary  term  B  shape  the  late-time
evolution of a flat FLRW universe.

(α,β) = (5,2/3)

By constructing  autonomous  systems  for  both   mod-
els, we identify stable de Sitter-type fixed points that act
as  late-time attractors,  providing  a  purely  geometric   ex-
planation  for  cosmic  acceleration.  The  multiplicative
power-law model shows a smooth convergence toward a
ΛCDM-like state  via  an  intermediate  Chaplygin  gas   re-
gime.  In  contrast,  the  additive  mixed  power-law  model
displays richer dynamical behavior, including damped os-
cillations  and spiral  trajectories  in  the  statefinder  planes,
as  illustrated  for  parameters  such  as  .
Moreover, statefinder diagnostics, specifically the r-s and
r-q  planes,  effectively  distinguish  each  model  from  the
other and  from  the  standard  ΛCDM scenario,   highlight-
ing observationally testable features.

Methodologically,  our  analysis  differs  from  several
earlier  dynamical  studies  in  modified  gravity,  such  as

λ = Ḧ/H3
those  in  [49,  51,  52,  73],  which  commonly  adopt  the
parameterization  .  Instead,  we  introduce  the
auxiliary variables y and v, which ensure the autonomy of
the dynamical  system  without  requiring  additional   phe-
nomenological assumptions.

f (T ) f (R)

f (T ) f (R)
f (T,B)

f (T,B)

In  comparison  with    and    cosmologies,  the
present  work  highlights  how  the  structural  choice
between multiplicative and additive coupling of T and B
qualitatively  influences  the  dynamical  landscape.  Unlike

 or   models, the additive mixed power-law form
of    permits  richer  transitional  behaviors  that  are
less common  in  simpler  frameworks.  These  findings   in-
dicate that   gravity, especially in its additive form,
provides  a  more  flexible  phenomenological  framework
for describing dynamical dark energy while naturally ac-
counting for late-time cosmic acceleration.

ci

f (T,B)

Future research could naturally build on this  founda-
tion in several ways. Extending the dynamical analysis to
explicitly  include  matter-dominated  phases  would
provide a more complete description of cosmic evolution.
The models should also be tested against a broader set of
observational data, such as cosmic chronometers, baryon
acoustic oscillations, and the growth of large-scale struc-
ture,  to better  constrain the parameters α, β,  and  . Fur-
thermore,  exploring  more  general  functional  forms  of

  (for example,  logarithmic,  exponential,  or   piece-

 

f (T,B) = c2Tα + c3Bβ

(Ωm0 ,u0,y0,v0) = (0.3,1,2.5,1) (α2,β2) = (5,−1000) (α3,β3) = (5,2/3)

Fig. 6.    (color online) Evolution of statefinder parameters in the r-q and r-s planes for the model  , with initial val-
ues  . Panels (a) and (b):  ; panels (c) and (d):  .
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wise-defined combinations) could help assess the robust-
ness  of  the  dynamical  features  identified  in  this  work.
Another fruitful avenue would be to examine the implica-
tions  of  such  models  for  early-universe cosmology,   in-
cluding  scenarios  related  to  inflation  and  singularity
avoidance.
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