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Abstract: The 2HDM+S is the singlet extension of the two-Higgs-doublet model (2HDM). The singlet field and its
mixing with the 2HDM Higgs sector lead to new contributions to the electroweak precision observables, in particu-
lar,  the  oblique  parameters.  In  this  study,  we  performed  a  systematic  investigation  of  the  impacts  of  each  mixing
angle on the oblique parameters. We adopted the mixing angles and physical Higgs masses as our parameters, which
allow a mapping when a specific symmetry structure of the Higgs potential and various theoretical considerations are
taken into account. We identified five benchmark cases, where at most one mixing angle was nonzero, and analyzed
the 95% C.L. allowed parameter space using the oblique parameters. In the alignment limit of the 2HDM, we find
that, other than the usual mass relations of  or , electroweak precision measurements also im-
pose an upper limit on the neutral Higgs masses. In the cases with nonzero singlet mixing with the 2HDM Higgses H
or A, we find approximate mass relations of  or . These relations
are universal to the 2HDM+S models, with or without further symmetry assumption. We also studied the non-align-
ment limit of the 2HDM+S, which typically has tighter constraints on the masses and mixing angles. Finally, we ex-
amined the complementarity between the electroweak precision analyses and the Higgs coupling precision measure-
ments.
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I.  INTRODUCTION

Electroweak  precision  observables  have  provided  a
precise test of the standard model (SM) at the loop level
[1, 2], which is consistent with the observations of a 125
GeV  SM-like  Higgs  [3, 4].  However,  the  SM  could  not
provide  satisfactory  solutions  to  dark  matter,  neutrino
mass,  baryogenesis,  etc.  [5−8]. Furthermore,  the natural-
ness problem in the SM points to new physics beyond the
SM [9].

One of the simplest extensions of the SM Higgs sec-
tor is the two-Higgs doublet model (2HDM) [10], which
has  been  studied  extensively.  The  2HDM can  be  further
extended  by  an  additional  singlet  field,  which  is  the

N2HDM  with  a  real  singlet  [11−13],  and  the  2HDM+S
with  a  complex  singlet  [14, 15].  The  2HDM+S matches
the  next-to  minimal  supersymmetric  standard  model
(NMSSM) [16]  at  a  low energy  scale  and  can  provide  a
dark  matter  candidate  [17−19],  as  well  as  accommodate
the  possible  95  GeV  excess  at  the  LEP  and  LHC  [15].
The  phenomenological  properties  of  the  2HDM+S  have
only  been  explored  in  some  specific  scenarios,  whereas
the more general cases of the 2HDM+S have not yet been
studied in  detail.  In  this  study,  we  explore  the  implica-
tions  of  the  electroweak  precision  measurements  on  the
2HDM+S parameter space. In particular, we focus on the
oblique parameters S, T, and U, which are sensitive to the
new  physics  contributions  to  the W and Z self-energies
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[20, 21].
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The  scalar  sector  of  the  2HDM+S  includes  two
 doublets and a complex singlet.  The singlet field

does  not  couple  to  the  SM  gauge  bosons  and  fermions.
After the  neutral  components  achieve  vacuum  expecta-
tion  values  (vev),  assuming  no  CP-violation,  the  mass
spectrum of the Higgs sectors includes 3 CP-even scalars,
two  CP-odd  scalars,  and  a  pair  of  charged  Higgses.  In
particular,  the  CP-even  and  CP-odd  singlet  components
mix with the corresponding ones in the  doublets,
which leads to the couplings of the singlet-like scalars to
the  SM  gauge  bosons,  as  well  as  modifications  of  the
couplings  of  the  doublet-like  scalars  to  the  SM  sector.
The  most  general  2HDM+S  Higgs  potential  has  27  free
parameters,  and  11  of  these  can  be  chosen  to  be  the
masses of the Higgs bosons, as well as the mixing angles
between Higgses. The remaining parameters in the Higgs
potential  are  the  Higgs  self-couplings, which do not  dir-
ectly  contribute  to  the  oblique  parameters.  Therefore,  in
our  study,  we  only  focus  on  the STU constraint  and  the
relevant parameters, including these 11 mass and mixing
parameters.  We parameterize such mixing parameters by

, the mixing of the CP-even singlet with the 125 GeV
SM-like Higgs h, , the mixing of the CP-even singlet
with the 2HDM CP-even Higgs H, and , the mixing of
the CP-odd singlet with the 2HDM CP-odd Higgs A.

While  the  general  formalism for  the  contributions  of
various Higgses to the oblique parameter exists in literat-
ure  [22], the  analyses  of  electroweak  precision  con-
straints in the 2HDM+S could be complex given the en-
larged parameter space. In our analyses,  we performed a
systematic study of the impacts of each mixing angle on
the oblique  parameters.  Including  the  usual  2HDM mix-
ing angle of the CP-even Higgses α, we introduce five ba-
sic  benchmark  scenarios,  Case-0 for  the  2HDM  align-
ment  limit  and  Cases-I−IV  in  which  only  one  mixing
angle  is  set  to  be  nonzero.  We analyze the  contributions
to the oblique parameters in each case and study the 95%
C.L. allowed region in the relevant parameter spaces un-
der the oblique parameters.  After the discussion of these
five  benchmark  scenarios,  we  discuss  the  cases  with  a
non-zero  singlet  mixing  angle  away  from  the  alignment
limit.

The implications  of  electroweak  precision  measure-
ments in the 2HDM and singlet  extended SM have been
studied in the literature [22−27]. Our study offers a com-
prehensive  electroweak  precision  analysis  of  the
2HDM+S and  identifies  the  impact  of  each  singlet  mix-
ing angle. As only the couplings between the Higgses and
the  SM  gauge  bosons  enter  the  oblique  parameters,  our
results  are  universal  to  the  2HDM+S  models,  with  or
without further symmetry assumption of the Higgs poten-
tial.  In  addition,  we  explore  the  complementarity  of  the
electroweak  precision  analyses  with  the  Higgs  precision
measurements. Note that, if we start from the parameters

in the Higgs potential for a specific 2HDM+S model, and
impose the  theoretical  considerations  of  successful  elec-
troweak symmetry  breaking,  vacuum  stability,  perturb-
ativity,  and  unitarity,  the  resulting  values  of  the  mixing
angles and mass differences might be restricted to a cer-
tain  range.  These  ranges  would  depend on the  particular
symmetry  assumption  of  the  Higgs  potential,  and  could
also be relaxed with the variation of other model paramet-
ers. In our analyses, we consider a model independent ap-
proach  and  use  the  various  mixing  angles  and  physics
Higgs  masses  as  our  relevant  model  parameters  for  the
STU study. We let the mixing angles vary over the whole
range  and  the  mass  difference  up  to  approximately  1
TeV, which allows a straightforward mapping of a partic-
ular Higgs potential scenario to the general results of the
electroweak precision constraints that we studied herein.

The  remainder  of  this  paper  is  organized  as  follows.
In  Section  II,  we  introduce  the  theoretical  framework  of
the 2HDM+S,  as  well  as  five  benchmark  cases.  In  Sec-
tion III, we introduce the electroweak oblique parameters
and  the  contributions  from  the  Higgs  sector  in  the
2HDM+S.  In  Section  IV,  we  present  95%  C.L. STU al-
lowed  regions  in  the  2HDM+S  parameter  spaces  of  the
five  benchmark  cases.  In  Section  V,  we  study  the  cases
beyond  the  alignment  limit.  In  Section  VI,  we  show the
complementarity  of  electroweak  precision  analyses  with
Higgs precision measurements. We conclude this paper in
Section VII. 

II.  THEORETICAL FRAMEWORK

The 2HDM+S is the singlet  extension of the 2HDM,
which has the following scalar contents: 

Φ1 =

Ñ
χ+1
ρ1+ iη1√

2

é
, Φ2 =

Ñ
χ+2
ρ2+ iη2√

2

é
, S =

ρS + iηS√
2
, (1)

Φ1 Φ2

Y = 1/2

Φ1 Φ2

v1 v2 vS

√
v2

1+ v2
2 =

v ≈ 246 tanβ =
v2

v1
β ∈ (0,

π/2)

where  and  are  the SU(2)L doublets with  hyper-
charge ,  and S is  the  gauge  singlet.  The  general
Higgs  potential  of  the  2HDM+S  has  been  introduced  in
[14], whereas the simplified version of the 2HDM+S po-
tential can be found in [15] when certain symmetries are
imposed. After electroweak symmetry breaking, the neut-
ral components of , , and S develop non-zero vacu-
um  expectation  values, , ,  and ,  with 

 GeV.  We  also  introduce  with 
.  Assuming  no  CP-violation,  the  mass  spectrum  of

the 2HDM+S includes three neutral CP-even scalars, two
neutral CP-odd scalars, and one pair of charged Higgs bo-
sons.

ρ1,2,S

hS 3×3

The  neutral  CP-even  states,  mix  together  to
form three mass eigenstates: the non-SM-like H, the SM-
like Higgs h, and the singlet-like ,  with the  rota-
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tion matrix R Ü
H

h

hS

ê
= R

Ü
ρ1

ρ2

ρS

ê
, RM2

S RT = diag{m2
H ,m

2
h,m

2
hS
}. (2)

αHS αhS

ρ1,2

ρS

The R matrix is parameterized using three mixing angles
α, ,  and ,  which  characterize  the  mixing  angle
between  the  two  neutral  components  of  the  Higgs
doublets ,  and  the  mixing  angles  between  the  singlet

 with the 2HDM CP-even Higgses:

 

R =

Ü
1 0 0

0 cαhS sαhS

0 −sαhS cαhS

êÜ
cαHS 0 sαHS

0 1 0

−sαHS 0 cαHS

êÜ
cα sα 0

−sα cα 0

0 0 1

ê
=

Ü
cαcαHS sαcαHS sαHS

−sαcαhS − cα sαHS sαhS cαcαhS − sα sαHS sαhS cαHS sαhS

sα sαhS − cα sαHS cαhS −sα sαHS cαhS − cα sαhS cαHS cαhS

ê
, (3)

sx = sin x
cx = cos x
where  we  use  the  shorthand  notations  and

. For the CP-odd states, we have Ü
G0

A

AS

ê
=

Ü
1 0 0

0

0
RA

êÜ
cβ sβ 0

−sβ cβ 0

0 0 1

êÜ
η1

η2

ηS

ê
,

RA =

(
cαAS sαAS

−sαAS cαAS

)
, (4)

G0

αAS

ηS

H±

G± α,αHS ,

αhS ,αAS

where  is  the  neutral  Goldstone  boson,  and  the  angle
 is  the  mixing  between  the  2HDM  pseudoscalar  and

the singlet pseudoscalar . In addition, the charged sec-
tor  of  the  2HDM+S  is  the  same  as  that  of  the  2HDM,
containing one pair of charged Higgses  and the Gold-
stone  bosons .  Each  of  the  mixing  angles 

 varies in the range of 

−π
2
< αi <

π

2
. (5)

αi = ±π/4When , the  mixing  between  the  two Higgs  bo-

π/4 < |αi| < π/2
sons reaches maximum, and the properties of the two cor-
responding  scalars  flip  when .  Note  that
the effects of different signs of the mixing angles appear
only  when  all  four  mixing  angles  are  nonzero.  When  at
least  one  mixing  angle  is  nonzero,  the  properties  of  the
Higgs  bosons  are  independent  of  the  sign  of  the  mixing
angles. When the theoretical considerations of successful
electroweak symmetry  breaking,  vacuum  stability,  per-
turbativity, and unitarity are imposed on the Higgs poten-
tial, the resulting values of the mixing angles might be re-
stricted to a smaller range. These ranges would depend on
the particular  symmetry  assumption  of  the  Higgs  poten-
tial. We consider the whole range of these mixing angles,
which  allows  a  straightforward  mapping  of  a  particular
Higgs potential scenario to the general results of the elec-
troweak  precision  constraints  that  we  investigate  in  this
study.

tanβ

After the diagonalization of the Higgs mass matrices,
there are 11 free parameters for the mass eigenstates: six
Higgs  boson  masses, ,  and  four  mixing  angles.  As
only  the  couplings  between  the  Higgses  and  the  SM
gauge  bosons  enter  the  oblique  parameters,  we  focus  on
the  following  nine  free  parameters  for  our  study  of  the
oblique parameters:

 

mh = 125 GeV, mH , mA, mH± , cos(β−α),︸                                                   ︷︷                                                   ︸
2HDM parameters

mhS , mAS , αHS , αhS , αAS︸                            ︷︷                            ︸
singlet parameters

. (6)

Using the  mixing matrices,  one  can obtain  the  coup-
lings of physical Higgses to the gauge bosons, which are
denoted by the following effective couplings:
 

gµνhiVV = chiVV i
2m2

V

v
gµν, (7)

hiwhere  represents  all  possible  neutral  CP-even  states,

hS V =W, Z
chiVV

including h, H,  and ,  and .  The  normalized
couplings  are shown in Table 2.

In addition, the gauge boson can couple to two differ-
ent Higgs bosons: the Z boson couples to two Higgs bo-
sons  with  different  CP  properties,  and  the W bosons
couple to neutral and charged Higgs bosons. These inter-
actions can be parameterized as
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gµϕiφ jV = cϕiφ jV i
mV

v
(pµϕi
− pµφ j

), (8)
 

gµH−H+γ = cH+H−γ ie(pµH− − pµH+ ), (9)

 

gµH−H+Z = cH+H−Z ie
c2

W − s2
W

sWcW
(pµH− − pµH+ ), (10)

ϕi φ j

H±

where  and  correspond  to  different  types  of  Higgs
bosons: φ includes neutral states, and ϕ includes charged
Higgs  1). Furthermore, the Higgs bosons can couple to
gauge bosons via the quartic interactions, which are 

gµνφiφ jVV = cφiφ jVV
i2m2

V

v2
gµν. (11)

Given the  complexity  of  the  2HDM+S scalar  sectors
and the  appearance  of  multiple  mixing  angles,  we  con-
sider  five  benchmark  cases  to  disentangle  the  impact  of
each  mixing  angle.  For  Case-0,  we  have  all  the  mixing
angles  set  to  be  0,  which  is  the  2HDM  alignment  limit
case.  For other  cases,  only one mixing angle is  nonzero,
whereas the others are fixed to 0, as shown in Table 1.
 

cβ−α = αHS = αhS = αAS = 0

hS AS

HH±W∓ AH±W∓

H+H−VV

●  Case-0  with  is  the
2HDM alignment limit, where the singlet components are
decoupled,  and  the  125 GeV Higgs h is  the  same as  the
SM  Higgs.  In  this  case,  all  the  couplings  of  the  singlet
Higgs  bosons ,  to  SM  particles  are  zero,  and  the
beyond  the  SM  (BSM)  Higgs  coupling HVV is  zero.
However,  the  BSM  Higgs  bosons  can  still  couple  to
gauge bosons via AHZ, , , HHVV, AAVV,
and  couplings.
 

αHS = αhS = αAS = 0● Case-I with  is the 2HDM limit,
when  the  singlet  components  are  completely  decoupled.
The mixing between H and h is parameterized by α, as in
the usual 2HDM.
 

αhS , 0
hS

H/A

●  Case-II  with  represents  the  case  when  the
125  GeV h mixes  with  the  singlet  Higgs ;  thus,  the
SM-like Higgs properties are similar to those of the sing-
let  extended  SM  (SSM).  However,  the  BSM  doublet
components  are  the  same  as  the  alignment  limit  of
the 2HDM.
 

αHS , 0
hS

● Case-III with  represents the case when the
non-SM H mixes with the singlet Higgs ,  whereas the
125 GeV Higgs h is completely SM-like.

αAS , 0
AS

●  Case-IV  with  represents  the  case  when A
mixes  with  the  singlet  pseudoscalar ,  where  the  CP-
even  sector  is  the  same  as  the  alignment  limit  of  the
2HDM, plus a decoupled singlet scalar S.
 

αAS = 0
AS hZ

AS hS Z

AS

hS

HhVV
αHS αhS

In Table 2, we list the couplings between the Higgses
and the SM gauge bosons, which are relevant for the cal-
culation of  the  oblique  parameters.  The  general  expres-
sions are given in the second column, as well as the coup-
lings  in  the  individual  Case-0 − Case-IV.  As  the STU
parameters  only  depend  on  couplings  between  the
Higgses and gauge bosons, the fermionic couplings of the
Higgs  bosons  are  irrelevant  in  this  study.  Therefore,  the
contributions  to  the STU parameters  are  independent  of
the specific structure of the Yukawa couplings. In partic-
ular,  when  the  singlet  CP-odd  Higgs  is  decoupled  by

, the 2HDM+S is similar to the N2HDM (the real
singlet extension of the 2HDM [11]). Note that the 
and  couplings are  always  zero  for  these  bench-
mark  cases,  as  multiple  non-zero  mixing  angles  are
needed to couple the CP-odd singlet Higgs  to the CP-
even  Higgs h and .  In  addition,  the  quartic  coupling

 is  zero  for  the  benchmark  cases  and  is  non-zero
only when  and  are both non-zero. 

III.  OBLIQUE PARAMETERS

hiVV
hia jZ hi/aiH±W∓ Z/γH±H∓

hihiVV aiaiVV H±H∓VV

As  the  oblique  parameters STU are  constructed  with
the W and Z self-energies  [21],  as  shown  in  Eqs.  (A2)−
(A3), they  receive  contributions  from  the  Feynman  dia-
grams in Fig. 1. The three-point vertices (including ,

, ,  and ),  as  well  as  the  four-
point  vertices (including , ,  and ),
contribute to the self-energies of the gauge bosons.

The  contributions  to  the STU parameters from  vari-
ous  Higgses  can  be  found  in  Ref.  [22]. Using  those  ex-
pressions, the STU parameters in the 2HDM+S are given
by

 

Table 1.    Five benchmark cases for the mixing angle config-
urations

Benchmark Case Fixed mixing angles
Variable

mixing angles

Case-0
(2HDM

alignment limit)
cβ−α = αHS = αhS = αAS = 0 　—

Case-I (2HDM limit) αHS = αhS = αAS = 0 cβ−α　

Case-II (SSM limit) cβ−α = αHS = αAS = 0 αhS　

Case-III cβ−α = αhS = αAS = 0 αHS　

Case-IV cβ−α = αhS = αHS = 0 αAS　
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Table 2.    Couplings between Higgs bosons and gauge bosons in the 2HDM+S.

Couplings Case-0 Case-I Case-II Case-III Case-IV

chiVV = Ri1cβ +Ri2 sβ

cHVV cβ−αcαHS 0 cβ−α 0 0 0

chVV sβ−αcαhS − cβ−αsαHS sαhS 1 sβ−α cαhS 1 1

chS VV −sβ−αsαhS − cβ−αsαHS cαhS 0 0 −sαhS 0 0

caih jZ = RA
i1R j1 +RA

i2R j2

cAHZ −cαAS cαHS sβ−α −1 −sβ−α −1 −cαHS −cαAS

cAhZ cαAS

(
cβ−αcαhS + sβ−αsαHS sαhS

)
0 cβ−α 0 0 0

cAhS Z −cαAS

(
cβ−αsαhS − sβ−αsαHS cαhS

)
0 0 0 sαHS 0

cAS HZ sαAS cαHS sβ−α 0 0 0 0 sαAS

cAS hZ −sαAS

(
cβ−αcαhS + sβ−αsαHS sαhS

)
0 0 0 0 0

cAS hS Z sαAS

(
cβ−αsαhS − sβ−αsαHS cαhS

)
0 0 0 0 0

cϕiH±W∓ = Rϕi2cβ −Rϕi1 sβ

cHH±W∓ −icαHS sβ−α −i −isβ−α −i −icαHS −i

chH±W∓ i
(

cβ−αcαhS + sβ−αsαHS sαhS

)
0 icβ−α 0 0 0

chS H±W∓ −i
(

cβ−αsαhS − sβ−αsαHS cαhS

)
0 0 0 −isαHS 0

cAH±W∓ cαAS 1 1 1 1 cαAS

cAS H±W∓ −sαAS 0 0 0 0 −sαAS

cϕiϕ jVV = Rϕi1Rϕj1 +Rϕi2Rϕj2
cHHVV c2

αHS
1 1 1 c2

αHS
1

chhVV c2
αhS
+ s2
αHS

s2
αhS

1 1 c2
αhS

1 1

chS hS VV c2
αhS

s2
αHS
+ s2
αhS

0 0 s2
αhS

s2
αHS

0

cHhVV − 1
2

s2αHS sαhS
0 0 0 0 0

cHhS VV − 1
2

s2αHS cαhS
0 0 0 − 1

2
s2αHS

0

chhS VV − 1
2

c2
αHS

s2αhS
0 0 − 1

2
s2αhS

0 0

cAAVV c2
αAS

1 1 1 1 c2
αAS

cAS AS VV s2
αAS

0 0 0 0 s2
αAS

cAAS VV − 1
2

s2αAS
0 0 0 0 − 1

2
s2αAS

cH±H∓Z 1 1 1 1 1

cH±H∓γ 1 1 1 1 1

cH±H∓VV 1 1 1 1 1

Relevant mixing — H,h h,hS H,hS A,AS

 

Fig. 1.    Feynman diagrams that contribute to the self energy of the SM gauge bosons.
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S =
1

24π

ï
(2s2

W −1)2G(m2
H± ,m

2
H± ,m

2
Z)+

∑
i, j

|caih jZ |2G(m2
ai
,m2

h j
,m2

Z)+
3∑

i=1

chihiVV ln(m2
hi

)

+

2∑
i=1

caiaiVV ln(m2
ai

)−2ln(m2
H± )− ln(m2

href
)+

3∑
i=1

|chiVV |2Ĝ(m2
hi
,m2

Z)− Ĝ(m2
href
,m2

Z)
ò
, (12)

 

T =
1

16πs2
Wm2

W

ï 3∑
i=1

|chiH±W∓ |2F(m2
H± ,m

2
hi

)+
2∑

i=1

|caiH±W∓ |2F(m2
H± ,m

2
ai

)−
∑

i, j

|caih jZ |2F(m2
ai
,m2

h j
)

+3
3∑

i=1

|chiVV |2
(
F(m2

Z ,m
2
hi

)−F(m2
W ,m

2
hi

)
)
−3
(
F(m2

Z ,m
2
href

)−F(m2
W ,m

2
href

)
)ò
, (13)

 

U =
1

24π

ï 3∑
i=1

|chiH±W∓ |2G(m2
H± ,m

2
hi
,m2

W)+
2∑

i=1

|caiH±W∓ |2G(m2
H± ,m

2
ai
,m2

W)− (2s2
W −1)2G(m2

H± ,m
2
H± ,m

2
Z)

−
∑

i, j

|caih jZ |2G(m2
ai
,m2

h j
,m2

Z)+
3∑

i=1

|chiVV |2
(
Ĝ(m2

hi
,m2

W)− Ĝ(m2
hi
,m2

Z)
)
− Ĝ(m2

href
,m2

W)+ Ĝ(m2
href
,m2

Z)
ò
, (14)

mhref = 125
Ĝ

where  GeV  is  the  reference  mass  of  the  SM
Higgs.  The  functions F, G, and  can  be  found  in  Eqs.
(A4), (A5), and (A6) in Appendix A.

φiφiWW
φiφiZZ

hiVV aih jZ ai/hiH±W∓

ZH±H∓

G(m2
H± ,m

2
H± ,m

2
Z) aih jZ

For the T parameter, the contributions from the quart-
ic couplings are canceled out, as  are the same as

 and the T observable is defined by the self-energy
difference  between  the W boson  and Z boson  (see  Eq.
(A1)). Thus, the T observable only receives the contribu-
tion from the , , and  couplings. Fur-
thermore, the S parameter mainly represents the Z boson
self-energy,  and  receives  contributions  from  the 
interaction  via  and  the  interaction

G(m2
ai
,m2

h j
,m2

Z)
hihiVV aiaiVV H±H±VV
via .  In  addition,  the  quartic  couplings

, ,  and  enter into the S parameter
via  the  logarithmic  functions.  For  the U parameter,  the
contributions  of  the  quartic  interactions  are  canceled out
again. Furthermore, the U parameter is related to the dim-
8 operator, which is usually suppressed. Therefore, in our
discussion below,  we mostly  focus  on the S and T para-
meters, which are more sensitive to the BSM effects.

mhref = 125

The  experimental  measurements  for  the  electroweak
precision  observables  yield  the  following  best-fit  values
of STU [28] for  GeV:

 

S exp = −0.04, T exp = 0.01, Uexp = −0.01,

∆S = 0.10, ∆T = 0.12, ∆U = 0.09,

corr(S ,T ) = +0.93, corr(S ,U) = −0.70, corr(T,U) = −0.87,

(15)

corr(S ,T ) corr(S ,U) corr(T,U)
χ2

where , , and  are the correlation coefficients between S, T, and U. The contributions to the
oblique parameters STU in the 2HDM+S, i.e., Eqs. (13), (12), and (14), can be used to obtain the  value [26, 29],
 

χ2
S TU =

Ä
S −S exp, T −T exp, U −Uexp

ä
· cov−1 ·

Ü
S −S exp

T −T exp

U −Uexp

ê
, (16)

where
 

cov =

Ü
∆S 2 corr(S ,T )∆S∆T corr(S ,U)∆S∆U

corr(S ,T )∆S∆T ∆T 2 corr(T,U)∆T∆U

corr(S ,U)∆S∆U corr(T,U)∆T∆U ∆U2

ê
. (17)

∆χ2 = χ2
S TU −χ2

S TU |minimal < 5.99The two-dimensional fit to the STU parameters at 95% C.L. corresponds to .
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IV.  FIVE BENCHMARK CASES

H±

β−α αhS αHS αAS

In the 2HDM, the STU parameters play an important
role in constraining the mass splittings between the BSM
neutral  Higgses  and  the  charged  Higgses .  In  the
2HDM+S,  the  singlet  field  enters  via  the  mixing,  which
further changes the dependence of the STU parameters on
the model parameters. In this section, we explore the im-
pacts  of  electroweak  constraints  on  the  mixing  angles,

, , ,  and , as  well  as  various  mass  split-
tings.  For  convenience,  we  define  the  following  mass
splittings, which are relevant for the STU constraints: 

∆mH = mH −mH± , ∆mA = mA−mH± ,

∆mhS = mhS −mH± , ∆mAS = mAS −mH± . (18)

Z2

With a general scan of the model parameters in the Higgs
potential with  theoretical  considerations  taken  into  ac-
count, we find that a relatively large range of mass differ-
ences  is  allowed,  particularly  with  the  variation  of  the
soft  breaking mass parameter in the Higgs potential. 

A.    Case-0

cβ−α = αHS = αhS = αAS = 0
For a starting point, we study the simplest Case-0 (the

2HDM  alignment  limit)  with .
According to Table 2, the non-zero couplings in this case
are 

chVV , cAHZ , cHH±W∓ , cAH±W∓ , cZH±H∓ ,

chhVV , cHHVV , cAAVV , cH±H±VV , (19)

hS AS

with norm 1. The 125 GeV Higgs h is the SM Higgs, and
singlet  Higgs  bosons  and  both  decouple.  The

H±

HH±W∓ AH±W∓

ZH±H∓

H±H∓VV
H±

mhS mAS

doublet  BSM  Higgses H, A, and  enter  via AHZ,
,  and  interactions and mainly contribute

to the terms involving F functions in the T parameter. In
addition,  and  quartic  interactions HHVV, AAVV,
and  contribute  to  the S parameter. Con-
sequently, the masses of H, A, and  are relevant for the
oblique  parameters,  whereas  the  singlet  Higgs  masses

 and  are irrelevant.
T0

S 0

The T and S parameters  in  this  case,  denoted  as 
and , respectively, are given by [29] 

T0 =
1

16πs2
Wm2

W
[F(m2

H± ,m
2
H)−F(m2

A,m
2
H)+F(m2

H± ,m
2
A)],

(20)
 

S 0 =
1

24π
[(2s2

W −1)2G(m2
H± ,m

2
H± ,m

2
Z)+G(m2

A,m
2
H ,m

2
Z)

+ ln
Å

m2
H

m2
H±

ã
+ ln
Å

m2
A

m2
H±

ã
], (21)

T0 ∆mH ∆mA

∆mH ∆mA = 0, ±50
∆mA ∆mH = 0,

±50 T0

∆mH = 0 ∆mA = 0

T0

mH mA T0 ∆mH

T0 ∆mA

T0 ∆mH ∆mA

∆mA > 0 ∆mH > 0
∆mA ∆mH T0 > 0 ∆mH

∆mA T0 < 0 ∆mH ∆mA

The  values  of  with  varying  and  are
presented by the solid lines in Fig. 2. The left panel indic-
ates varying  with fixed  GeV, and the
right  panel  indicates  varying  with  fixed 

 GeV.  As  indicated  by  Eq.  (20),  is  exactly  zero
when  or . The grey hatch area is the 1σ
region of the electroweak precision observable fit to the T
parameter.  is  also  symmetric  under  the  exchange  of

 and . Therefore, the  dependence on  in the
left panel is the same as the  dependence on  in the
right  panel.  increases  as  ( )  increases  for

 ( ) but decreases for the opposite sign of
 ( ).  Furthermore,  when  both  and
 have the same sign, and  when  and 

 

T0 ∆TI/c2
β−α ∆mH ∆mA

∆mA,H = mH±

Fig. 2.    (color online)  (solid lines) and  (dotted lines) with varying  (left) and  (right). The cyan, red, and blue
lines indicate 0, + 50 GeV, and −50 GeV, respectively. The grey hatch area is the 1σ region of the T observable.  is chosen
to be 800 GeV.
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have opposite signs.
S 0

∆mA ∆mH

G(m2
i ,m

2
j ,m

2
k)

S 0 ln(m2
H,A/

m2
H± ) ∆mH,A ±700 |S 0| < 0.15

However,  the  parameter  is  not  zero  even  when
both  and  are  zero.  The  contributions  from

 are typically very small. The main contribu-
tions  to  come  from  the  logarithmic  terms 

. For  in the range of  GeV,  is
within the 1 σ range of the fitted value.

∆mH ∆mA

cβ−α = αHS = αhS =

αAS = 0 mH± = 800
∆mH = 0 ∆mA = 0

∆mA ∆mH

Figure 3 shows the 95% C.L. allowed region from the
STU constraints  in the  vs.  plane. The blue re-
gion  corresponds  to  Case-0  with 

 and  GeV,  which  centers  around
 or .  Owing  to  the  positive  correlation

between the S and T observables, the area with positive T
is preferred. Therefore, the allowed regions with the same
signs  of  and  are larger  than  the  allowed  re-

gions with opposite signs.

∆mA,H cβ−α
cβ−α = 0
∆mA,H ≲ 900 ∆mH,A = 0 mH± = 800

∆mA,H

m12

∆mA,H

mH± H±

mH± = 1000
∆mA,H = ±50

∆mH,A

In Fig.  4,  the  95%  C.L.  allowed  regions  under  the
STU constraints  are  shown  in  the  vs.  plane.
For ,  the  95%  C.L.  fit  to  the STU parameters
gives  GeV  with  for 
GeV (blue region). The upper limits on  come from
the logarithm contributions. Note that a large mass differ-
ence  can  be  allowed  after  theoretical  considerations  are
taken into account, as long as  and other model para-
meters are allowed to vary within a certain range.  These
upper  limits  of  vary with  the  benchmark value of

 and increase as  becomes heavier, as indicated by
the  green  dashed  curve  for  GeV.  For  non-
zero  values  of  GeV,  the  allowed  range  of

 is much smaller, as shown by the regions with the
 

∆mH ∆mA cβ−α = 0
0.35 mH± = 800 αHS = αhS = αAS = 0 mH± = 1000

cβ−α = 0 mH± = 800 cβ−α = 0.35

Fig. 3.    (color online) 95% C.L. allowed region from STU constraints in the plane  vs.  with  (solid blue region) and
 (solid orange region) for  GeV. The other parameters are . For  GeV, the allowed region

for  is approximately the same as that for  GeV, whereas the region for  is shown by the green regions.

 

cβ−α ∆mH ∆mA cβ−α
αHS = αhS = αAS = 0 m±H = 800

∆mA,H = 0, 50, −50 mH± = 1000 ∆mA,H=0

Fig. 4.    (color online) 95% C.L. allowed region via STU constraints on  vs.  (left) and  vs.  (right). The other para-
meters  are  chosen  as  and  GeV  (solid  curves).  The  blue,  purple,  and  orange  regions  correspond  to

 GeV, respectively. The green dashed curves represent  GeV and .
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purple and orange boundary curves in Fig. 4. 

cβ−α , 0B.    Case-I: 
cβ−α , 0 αHS = αhS = αAS = 0In Case-I (  and ), the sing-

let fields decouple completely, and the model is the same
as  the  2HDM. In  particular,  we have the  following non-
zero couplings in addition to those shown in Eq. (19) 

cHVV , cAhZ , chH±W∓ , (22)

cβ−α

mhS mAS

mH mA mH±

which  are  proportional  to  and  provide  additional
contributions  to  the STU parameters.  Similar  to  Case-0,
the  singlet  masses  and  are  irrelevant,  and  only
the  doublet-like  Higgs  masses , ,  and  enter.
The STU constraints  of  the  2HDM have  been  studied  in
the literature [26, 30]. The T observable in Case-I is 

TI = T0+∆TI, (23)

 

∆TI =
c2
β−α

16πs2
Wm2

W
{F(m2

h,m
2
H± )−F(m2

h,m
2
A)

− [F(m2
H ,m

2
H± )−F(m2

H ,m
2
A)]

−3[F(m2
h,m

2
Z)−F(m2

h,m
2
W± )]

+3[F(m2
H ,m

2
Z)−F(m2

H ,m
2
W± )]}. (24)

∆TI

cβ−α
∆mA = 0

Compared with Case-0, the additional contribution of 
is  proportional  to ,  which  is  non-zero  even  for

.
T0

∆TI/c2
β−α ∆mH

∆mA ∆mH = −675
mH = mh = 125 ∆TI = 0
∆TI

T0 ∆mH

∆mA

In Fig. 2, we show the values of  (solid curves) and
 (dashed curves) for different values of  and

.  The  left  panel  shows  that,  for  GeV,
which  corresponds  to  GeV, .  The
right panel shows that  has the opposite (same) sign of

 for positive (negative) , except for a small negat-
ive  region.

∆mH ∆mA cβ−α = 0.35
∆mH > 0

T0 ∆TI

∆mA = 0 ∆mH ∼ cβ−α = 0.35
T0

∆TI

mH± = 1000
mH± = 800

The  95%  C.L. STU allowed  parameter  space  in  the
 vs.  plane is shown in Fig. 3 for  (or-

ange).  The  allowed  regions  shift  to  the  right  ( ),
given the cancellation between  and . In particular,
the  point  with 100  GeV  and 
would be excluded, as  is zero and cannot eliminate the
non-zero .  The regions enclosed by the green dashed
curves indicate  GeV, which is close to the or-
ange regions of  GeV.

cβ−α ∆mH ∆mA

cβ−α = 0 c2
β−α ∆mA = 0

cβ−α
mH = 125 T0 = 0 ∆mA = 0

The left panel of Fig. 4 shows the 95% C.L. STU al-
lowed parameter space in  vs.  for various .
The  allowed  regions  are  symmetric  with  respect  to

, given the  dependence. For  (region
enclosed  by  the  solid  blue  curve),  all  the  values  of 
are allowed at  GeV:  since , and

∆TI = 0 mH = mh = 125
|mH −mh125 |

m±H ∆mA

T0 ∆TI

∆mH

∆TI ∆mA

∆mA |cβ−α|

 for  GeV.  The  allowed  regions
shrink for larger . The green dashed line indic-
ates the impact of the value of . For non-zero , the
non-zero  could be cancelled by . The allowed re-
gions  favor  mostly  positive , as  shown  by  the  re-
gions  enclosed  by  the  purple  curves  and  orange  curves.
As the absolute value of  is larger when  is posit-
ive as shown in Fig. 2, the allowed regions with positive

 favor smaller . The 2HDM non-alignment case
has  been  studied  in  [30],  which  did  not  cover  the  case
with much larger mass splittings.

cβ−α ∆mA ∆mH

∆mH = 0
cβ−α ∆mA ∼ −30

∆TI ∼ 0 S 0 T0

cβ−α ∆mA > 0
∆mA < 0 |∆TI| ∆mA

∆mH = −50
∆mA −30 ∆TI

T0 ∆mH

∆mA

∆mH = 50 ∆TI T0

∆mA |cβ−α| ≲ 0.25 ∆mA > 0
|cβ−α| ≳ 0.25 ∆mA < 0

The right panel of Fig. 4 shows the 95% C.L. STU al-
lowed parameter space in  vs.  for various .
For  (region enclosed by the solid blue curves), a
relatively  large  region  of  is  allowed  for 
GeV,  when  and  and  are small.  The  al-
lowed regions of  for  are smaller than those
for , as  is larger for positive . Note that,
for  negative  GeV,  only  a  narrow  range  of

 around  GeV is allowed. This is because  has
the  same  signs  as  for  negative .  Therefore,  only
small  values  of  are  allowed.  However,  for  positive

 GeV,  and  have opposite signs. A wide
range  of  is  allowed:  for ,  and

 for . 

αhS , 0C.    Case-II: 
αhS , 0 cβ−α = αHS = αAS = 0

hS

hS VV sαhS

AhS Z
hS H±W∓

αhS hS

H±

hS VV
mhS

In Case-II (e.g.,  and ), the
125  GeV  Higgs h mixes  with  the  singlet-like  Higgs ,
and  the  coupling  is  proportional  to ,  which  is
the  only  non-zero  trilinear  coupling  between  Higgs  and
gauge bosons, in addition to those in Eq. (19). The 
and  couplings are still zero, which indicates that

 cannot  connect  the  with  the  BSM  doublet-like
Higgses H, A, or .  This  case  is  similar  to  the  singlet
extension of the SM (SSM), where the singlet Higgs only
mixes with the SM Higgs h. Therefore, the STU paramet-
ers  receive  additional  contribution  via  loops  with 
vertices, with the singlet Higgs mass  entering. The S
and T parameters are given by 

S II = S 0+∆S II, TII = T0+∆TII, (25)

 

∆S II =
1

24π
s2
αhS

î
ln

Ç
m2

hS

m2
h125

å
+ Ĝ(m2

hS
,m2

Z)

− Ĝ(m2
h125
,m2

Z)
ó
, (26)

 

∆TII =
1

16πs2
Wm2

W
3s2
αhS

î
F(m2

Z ,m
2
hS

)−F(m2
W ,m

2
hS

)

−F(m2
Z ,m

2
h125

)+F(m2
W ,m

2
h125

)
ó
. (27)

ĜThe expression for the function  can be found in Eq.
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∆TII ∆S II s2
αhS

mhS = mh125 ∆S II

∆TII

mhS

mhS > (<)
H± T0 S 0

(A6). Note that  and  are proportional to , and
both  terms  vanish  when .  is,  in  general,
suppressed, whereas  could receive a significant con-
tribution when  is away from 125 GeV, which is neg-
ative  (positive)  for  125  GeV.  Meanwhile,  the
masses of H, A, or  can still contribute via  and .

mhS αhS

∆mH = ∆mA ∆mH =

∆mA = 0 αhS mhS = mh ≈
125 αhS mhS

|αhS | ≲ 0.7 mhS = 10
|αhS | ≲ 0.2 mhS = 1

In the left panel of Fig. 5, we show the 95% C.L. al-
lowed region from the STU constraints in the  vs. 
plane  for  different  values  of .  For 

 (blue), all values of  are allowed for 
 GeV.  The  allowed  region  for  reduces  for 

away  from  125  GeV:  for  light  GeV
and  for  TeV.

∆mH = ∆mA = 50
mhS = 125

T0 ∆TII mhS > 125
∆mH = ∆mA = 100 T0

mhS > 240
0.5 < |αhS | < π/2

For  GeV (orange), the 95% C.L. al-
lowed region shifted to  the  right  of  GeV, ow-
ing  to  the  opposite  signs  of  and  for 
GeV.  For  GeV (green),  is  so  large
that  only  two  thin  branches  in  GeV  and

 are allowed.

mhS ∆mH,A

αhS = 0 π/4 π/2 αhS = 0
|∆mH | = |∆mA| ≲

mhS αhS |∆mH,A|
mhS < 125 mhS > 125

mhS = 125 ∆TII

∆S II mhS = 125
αhS

∆mH = ∆mA

S 0

∆mH,A ∆S II mhS > mh125

S 0 ∆mH,A

∆mH,A

∆mH,A > 0

In  the  right  panel  of Fig.  5,  we  show  the  95%  C.L.
STU allowed  region  in  the  vs.  plane  for

 (blue), (orange), and  (green). For ,
the  bound  of  80  GeV  is  independent  of

.  For  non-zero ,  the  allowed  value  in  re-
duces  for  GeV  but  increases  for 
GeV. Note that all curves cross at  GeV, as 
and  vanish at  GeV regardless of the value
of . There is a slight asymmetry between the positive
and  negative  values  of .  This  is  because  the

 observable  is  not  symmetric  between  positive  and
negative .  is  always  positive  for ,
whereas the sign of  flips for different signs of .
Therefore,  the S observable  is  larger  for  positive 
and the  constraint  would be stronger,  which leads  to  the
allowed region  for  being  slightly  smaller  than
that in the negative mass difference case. 

αHS , 0D.    Case-III: 
αHS , 0 cβ−α = αhS =

αAS = 0 hS

Case-III  corresponds  to  and 
,  when  mixes  with  the  doublet-like  CP-even

Higgs H.  The  non-zero  trilinear  Higgs  to  gauge-boson
couplings include 

cAhS Z , chS H±W∓ , (28)

hS VVin addition to those in Eq. (19). However, the  coup-
ling remains zero in this case. While the additional contri-
bution  to  the S observable  is  small,  the T observable
could receive significant contributions: 

T =
1

16πs2
Wm2

W
[c2
αHS

F(m2
H± ,m

2
H)+ s2

αHS
F(m2

H± ,m
2
hS

)]

+F(m2
H± ,m

2
A)− [c2

αHS
F(m2

A,m
2
H)+ s2

αHS
F(m2

A,m
2
hS

)].

(29)
 

=T0+∆TIII, (30)

 

∆TIII =
s2
αHS

16πs2
Wm2

W
[F(m2

H± ,m
2
hS

)−F(m2
A,m

2
hS

)

−F(m2
H± ,m

2
H)+F(m2

A,m
2
H)]. (31)

∆mH,A ∆mhS = mhS −mH±In addition to ,  enters.
There  is  a  numerical  approximation  for  the F func-

tion in Eq. (A4): 

c2
α[F(J2, I2)−F(K2, I2)]+ s2

α[F(J2,L2)−F(K2,L2)]

≈F(J2, [c2
αI+ s2

αL]2)−F(K2, [c2
αI+ s2

αL]2). (32)

 

mhS αhS ∆mA mhS αhS

∆mA ∆mA = ∆mH = 0
mhS ∆mH,A αhS αhS = 0 π/4 π/2

mH± = 800 cβ−α = αHS = αAS = 0

Fig. 5.    (color online) 95% C.L. STU constraints on the parameter space of , , and . The left panel indicates  vs. 
with varying . The blue, orange, and green regions indicate , 50, 100 GeV, respectively. The right panel indicates

 vs.  with varying . The blue, orange, and green regions indicate , , and , respectively. For both panels, we
set  GeV and .
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Therefore, the T observable can be approximated as 

T ≈ 1
16πs2

Wm2
W

[F(m2
H± , (c

2
αHS

mH + s2
αHS

mhS )2)

−F(m2
A, (c

2
αHS

mH + s2
αHS

mhS )2)+F(m2
H± ,m

2
A)] (33)

which vanishes for 

c2
αHS

mH + s2
αHS

mhS = mH± , or mA = mH± . (34)

∆mH ∆mA

αHS = 0 αHS = π/4 ∆mhS = 0

Figure 6 presents the 95% STU allowed region in the
 vs.  plane for Case-III. The region enclosed by

the  dark  blue  curves  corresponds  to  the  baseline  Case-0
when .  For  and  (region en-

H±

c2
αHS
= 1/2 hS

closed by the light dotted blue lines), the 95% C.L. STU
allowed region would be slightly enlarged compared with
that in Case-0, as the mass-splitting effect of H with 
is  suppressed  by ,  whereas  has  no  mass
splitting with the charged Higgs, as shown in Eq. (34).

∆mhS = ±400
αHS = π/4

∆mH

∆mH ≈ ∓400

∆mA = 0
∆mH ∆mhS αHS

When  the  singlet-like  Higgs  mass  deviates  from  the
charged Higgs mass, for instance,  GeV with

, as shown by the orange and green regions, the
center of the allowed region in  shifts to the region of

 GeV to satisfy the mass relation in Eq. (34)
to suppress the contributions to the T parameter. Note that

 is  still  allowed,  regardless  of  the  choices  of
, , and .

∆mH ∆mhS

In the left panel of Fig. 7, we show the 95% C.L. STU
allowed region in the  vs.  plane in Case-III for

 

∆mH ∆mA cβ−α = αhS = αAS = 0 mH±

∆mhS = 0 αHS = 0 π/4
∆mhS = ± αHS = π/4

Fig. 6.    (color online) 95% C.L. STU allowed region in  vs.  in Case-III with .  is set to be 800 GeV.
The regions enclosed by the dark solid blue and light dashed blue curves indicate  and  and , respectively. The or-
ange and green regions indicate  400 GeV, respectively, and .

 

∆mH ∆mhS ∆mH αHS

cβ−α = αhS = αAS = 0 αHS π/6 π/4 ∆mhS

±50 ±50 mH± ∆mA

Fig. 7.    (color online) 95% C.L. STU allowed region in  vs.  plane (left panel) and  vs.  plane (right panel) in Case-
III with . In the left panel,  is varied to be 0 (blue),  (orange), and  (green). In the right panel,  is var-
ied to be  GeV (solid and dashed blue) and  GeV (solid and dashed red).  is set to be 800 GeV, and  is set to be 200
GeV.
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mH± = 800 ∆mA = 200
αHS = 0 π/6 π/4

c2
αHS
∆mH =

−s2
αHS
∆mhS

∆mH ∆mhS

∆mA

 GeV  and  GeV,  with  varying
 (blue),  (orange),  and  (green).  The

dashed lines show the approximate relation of 
 based on Eq. (34). The approximation is valid

for  and  around  a  few  hundred  GeV.  As  the
mass  splitting  increases,  the STU bands  would
shrink and be closer to the dashed lines.

∆mH αHS

mH± = 800 ∆mA = 200
∆mhS = ±50

αHS

∆mH

In  the  right  panel  of Fig.  7,  we  show  the  95%  C.L.
STU allowed region in the  vs.  plane in Case-III
for  GeV  and ,  with  varying

 GeV (blue) and 100 GeV (red). Note that the
allowed  regions  are  symmetric  in  and  only  have  a
slight variation with respect to the sign of . 

αAS , 0E.    Case-IV: 
αAS , 0 cβ−α = αhS = αHS = 0In  Case-IV,  (  and ),  the

CP-odd  sector  has  singlet  admixture,  and  the  CP-even
sector is  the same as that  in Case-0.  The non-zero trilin-
ear Higgs to gauge-boson couplings include 

cAS HZ , cAS H±W∓ , (35)

αAS AH±W∓ cαAS AS HZ
AS H±W∓ sαAS

mAS hS

in addition to those in Eq. (19). Consequently, the coup-
lings  involving  CP-odd  Higgses  are  parameterized  by

, i.e., AHZ and  depend  on ,  and 
and  depend on .  The singlet  CP-odd Higgs
mass  enters,  whereas  the  CP-even  is  completely
decoupled. In particular, the contribution to the T observ-
able is given by 

T =
1

16πs2
Wm2

W
[c2
αAS

F(m2
H± ,m

2
A)+ s2

αAS
F(m2

H± ,m
2
AS

)]

+F(m2
H± ,m

2
H)− [c2

αAS
F(m2

H ,m
2
A)+ s2

αAS
F(m2

H ,m
2
AS

)],

(36)
 

=T0+∆TIV (37)

 

∆TIV =
s2
αAS

16πs2
Wm2

W
[F(m2

H± ,m
2
AS

)−F(m2
H ,m

2
AS

)

−F(m2
H± ,m

2
A)+F(m2

A,m
2
H)]. (38)

hS AS

Comparing  with  Eqs.  (29)  and  (31),  we  observe  that
Case-IV is similar to Case-III, with the substitution of H
and  with A and , as well as the corresponding mass
parameters and  mixing  angles.  The  approximate  expres-
sion for T is 

T ≈ 1
16πs2

Wm2
W

[F(m2
H± , (c

2
αAS

mA+ s2
αAS

mAS )2)

−F(m2
H , (c

2
αAS

mA+ s2
αAS

mAS )2)+F(m2
H± ,m

2
H)], (39)

which  leads  to  a  similar  approximate  mass  relation  that
satisfies the STU constraints: 

c2
αAS

mA+ s2
αAS

mAS = mH± , or mH = mH± . (40)

∆mH ∆mA

∆mAS ∆mA ∆mA αAS

A↔ H

The 95% C.L. STU allowed regions in  vs. ,
 vs. ,  and  vs.  are  similar  to  those

presented in Figs. 6−7, with the switching of .
∆mH ∆mA

AH±W∓

HH±W∓

hS αHS

AS AS αAS

∆mhS ∆mAS αHS αAS

In  general,  the  mass  splittings  of  and  can
contribute the STU observables via the AHZ, , and

 loops.  In  the  2HDM+S,  the  singlet  CP-even
Higgs  can  mix  with H via  the  mixing ,  and  the
singlet  CP-odd  Higgs  can  mix  with  via .
Therefore,  and  as well as  and  enter.
The STU constraints  can be still  fulfilled when the mass
relations in Eqs. (34) or (40) are satisfied. 

V.  STU CONSTRAINTS BEYOND THE ALIGN-
MENT LIMIT

For Case-I, we consider the non-alignment limit with
all the single mixing angles set to be zero. For Cases-II −
IV, we focus on the scenario with only one mixing angle
set to be non-zero under the alignment limit.  In this sec-
tion,  we consider  the  cases  with  a  non-zero singlet  mix-
ing angle beyond the alignment limit.

cβ−α
h125 αhS

mhS

cβ−α αhS αhS = 0
|cβ−α|
mhS

|cβ−α|
αhS = π/4 π/2

hS VV
∆TI |cβ−α|

We  first  explore  the  interplay  between  with  the
singlet−  mixing .  In  the  left  plot  of Fig.  8,  we
show  the  95%  C.L. STU allowed  region  in  the  vs.

 plane  for  various .  For  (region  enclosed
by  the  solid  blue  curve),  is  constrained  to  be  less
than 0.275, independent of . However, the singlet ad-
mixture can enlarge the allowed region in , as shown
by  the  two  elliptical  rings  for  and .  The

 interaction can compensate for  the contribution of
 in Eq. (24) for larger .

mhS αhS

cβ−α |cβ−α|
mhS > 125 αhS

mhS < 125 αhS

|cβ−α| αhS = 0

In  the  right  plot  of Fig.  8,  we  present  the  95%  C.L.
STU allowed region in the  vs.  plane for various

. For increasing , the allowed region shifts to the
left.  For  GeV,  the  allowed  range  of  re-
duces,  whereas  for  GeV,  larger  values  of 
are allowed. For  slightly above 0.275,  is no
longer allowed, and two branches appear.

cβ−α
αHS

∆mH cβ−α αHS = 0 π/4
π/2

αHS cβ−α
∆mH < 0 ∆mH > 0

cHVV = cβ−αcαHS chVV = sβ−α chS VV = −cβ−αsαHS

αHS

hS VV
cβ−α hS VV

mH < mhS

mH > mhS mH = mhS =

We  explore  the  interplay  between  and  singlet-
double  CP-even Higgs H mixing  in Fig.  9.  The left
panel  shows  the  95%  C.L. STU allowed  region  in  the

 vs.  plane for  (blue),  (orange), and
 (green).  The  blue  line  in  the  left  panel  of Fig.  9 is

consistent  with  the  blue  curve  in  the  left  panel  of Fig.  4
(Case-I).  For  larger ,  the  allowed  range  of 
shrinks  for  but  expands  for .  In  this
case, , ,  and .
As  increases, the HVV contribution to the T observ-
able decreases, whereas the  contribution increases.
Therefore,  the  allowed  region  shrinks  in  the 
dominate  region  ( )  and  enlarges  in  the HVV
dominate region ( ).  When 800 GeV,
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hS VV S TU
αHS

∆mH = 0 αHS = π/2

|cβ−α| < 0.275
mH hS

αHS → π/2−αHS cβ−α ∆mhS

αHS → π/2−αHS

the  term  plays  the  same  role  as HVV.  The 
constraints  of  this  point  are  independent  of  and  all
curves  cross  at .  For , H becomes  the
pure  singlet  Higgs  and  does  not  contribute  to  the STU
parameters.  Therefore,  the STU limit  of  is
independent of . As the roles of H and  switch when

, the parameter space of  vs.  is
the  same  as  that  of  the  left  panel  of Fig.  9 with

.
∆mH αHS

|cβ−α|
cβ−α = 0

αHS ∆mH

|cβ−α| |cβ−α| = 0.375
∆mH < −250 |αHS | < 1

|cβ−α| = 0.375 mH

αHS ∆mhS

The  right  panel  of Fig.  9 presents  the  vs. 
plane  for =0  (blue),  0.25  (orange),  and  0.375
(green). For , almost the entire region of the para-
meter  space  is  allowed,  except  for  a  small  open  region
with relatively small  and large . The allowed re-
gion  reduces  when  increases.  For ,
only a small  region with  GeV and 
is allowed. This is due to the increased contribution from
the HVV term  at  larger .  Only  when  is
lighter  and  close  to  125  GeV  would  the HVV contribu-
tion  be  small  enough  to  be  allowed.  Similar  to  the  left
panel, the parameter space of  vs.  is the same as

αHS → π/2−αHSthat of the right panel of Fig. 9 with .
cβ−α

αAS

∆mA

cβ−α αHS π/4 π/2
αAS = 0

αAS

cβ−α mA > mAS mA < mAS

AHZ
AhZ cαAS AS hZ

sαAS

AHZ AhZ
mA > mAS AS

αAS = π/2 AS hZ

cβ−α
mA AS αAS → π/
2−αAS cβ−α ∆mAS

αAS → π/2−αAS

We  explore  the  interplay  between  and  singlet-
double  CP-odd  Higgs A mixing  in Fig.  10.  The  left
panel  presents  the  95%  C.L.  allowed  region  in  vs.

 for =0 (blue),  (orange), and  (green). The
blue region in the left panel of Fig. 10 for  is con-
sistent  with  the  blue  region  in  the  right  panel  of Fig.  4.
For  larger ,  the  allowed  regions  shift  to  the  left,
whereas  the  bounds at  both  and 
become larger, owing to the suppression of both the 
and  terms  by .  However,  the  term is  en-
hanced by , which compensates for the suppression of

 and . Therefore, the STU limit is relaxed faster
at  where  is less dominant in this region. For

, only the  contribution is left, and the con-
tribution from A is decoupled. The 95% C.L. allowed re-
gion  for  the  limit  is  a  constant  and  independent  of

.  As  the  roles  of A and  switch  when 
, the parameter space of  vs.  is the same

as that in the left panel of Fig. 10 with .
The right  panel  of Fig.  10 presents the  95% C.L.  al-

 

mhS cβ−α αhS = 0 π/4 π/2
mhS αhS cβ−α = 0 mH± = mH = mA = 800

αAS = αHS = 0

Fig. 8.    (color online) 95% C.L. STU allowed region in the  vs.  plane (left panel) for  (blue),  (orange), and 
(green) and the  vs.  plane (right panel) for  (blue), 0.25 (orange), and 0.375 (green). We set  GeV
and .

 

∆mH cβ−α αHS π/4 π/2
∆mH αHS |cβ−α | mH± = mA = mhS =

mAS = 800 αAS = αhS = 0

Fig. 9.    (color online) 95% C.L. STU allowed region in the  vs.  plane (left panel) for =0 (blue),  (orange), and 
(green)  and  the  vs.  plane  (right  panel)  for =0  (blue),  0.25  (orange),  and  0.375  (green).  We  set 

 GeV and .
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∆mA αAS |cβ−α|

(mA,αAS ) (mH ,

αHS ) cβ−α = 0
cβ−α , 0

AhZ AHZ
mA mH

mAS = mH

αAS ∆mA AS

αAS ∆mAS

αAS →
π/2−αAS

lowed region in  vs.  for =0 (blue), 0.25 (or-
ange), and 0.375 (green). The blue line indicates the same
behavior  of  the STU dependence  on  as 

 for .  However,  these  two cases  differ  when
singlet  admixture  enters  for .  The  CP-odd  Higgs
A enters  via  and s,  where  these  contributions
are suppressed when  is close to . In the case where

, the allowed regions that only appear in the re-
gion of large  are non-zero , as  in this area is
already  dominated  by  the  doublet  properties.  Similar  to
the left panel, the parameter space of  vs.  is the
same  as  that  in  the  right  panel  of Fig.  10 with 

. 

VI.  INTERPLAY OF ELECTROWEAK AND
HIGGS PRECISION MEASUREMENTS

The  precision  measurements  of  the  couplings  of  the

cβ−α h125 αhS tanβ
HiggsTools

cβ−α αhS mhS

tanβ

mhS = 125 cβ−α
αhS hS VV hVV

mh = mhS αhS

mhS = 50
cβ−α αhS , 0

∆TI hS VV

125 GeV Higgs at the LHC also place strong constraints
on the parameter space of the 2HDM+S, in particular, on

,  the  singlet-  mixing ,  and .  We  perform
the  fit  for  125  GeV  Higgs  properties  with 
[31−35].  In Fig.  11,  we  present  both  the  95% C.L. STU
allowed region in  the  vs.  plane  for  various 
(regions enclosed  by  solid  curves)  and  the  95% C.L.  al-
lowed region by 125 GeV Higgs precision measurements
for  various  (region  enclosed  by  dashed  curves)  for
Type-I (left panel) and Type-II (right panel). As the STU
constraints  only  depend on  the  couplings  of  the  Higgses
with  the  gauge  bosons,  which  is  the  same  for  different
types  of  2HDM,  the  solid  curves  are  the  same  at  both
panels.  For  GeV,  the  allowed  range  in  is
independent of . This is because  and  con-
tribute the same for , and  is not constrained
as  shown in  the  left  plot  of Fig.  5.  For  GeV,  a
larger region of  can be accommodated for , as
a larger  can be compensated for by  with light-

 

∆mA cβ−α αHS π/4 π/2
∆mA αAS |cβ−α | mH± = mH = mhS = mAS = 800
αhS = αHS = 0

Fig. 10.    95% C.L. STU allowed region in the  vs.  plane (left panel) for =0 (blue),  (orange), and  (green) and the
 vs.  plane  (right  panel)  for =0  (blue),  0.25  (orange),  and  0.375  (green).  We  set  GeV  and

.

 

cβ−α αhS mhS =

tanβ =
mA = mH = mH± = 800 αHS = αAS = 0

Fig. 11.    Parameter space of  vs.  for 50 GeV (dark blue), 125 GeV (cyan), 250 GeV (light blue), and 500 GeV (green)
and 0.5 (red), 1 (orange), 5 (magenta), and 50 (purple) under electroweak precision measurements (solid curves) and Higgs preci-
sion measurements (dashed curves). The other Higgs masses are  GeV, and . The left panel indicates
the type-I 2HDM+S, and the right panel indicates the type-II 2HDM+S.
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mhS mhS > 125
αhS ∆TI hS VV

er .  In  contrast,  for  GeV, the  allowed  re-
gion in  shrinks, where  and  have the same
sign in  this  mass  region,  which  leads  to  tighter  con-
straints.

cβ−α
tanβ tanβ ≳ 5

cβ−α
cβ−α

αhS mhS ≲ 500
tanβ ∼ 50 cβ−α

αhS ∼ 0 |αhS |
h125

αhS

mhS > 500

For  the  Higgs  precision  on  the  Type-I  2HDM+S  in
the left panel, the allowed range of  becomes weaker
for  larger .  For ,  the  electroweak  precision
measurements provide a stronger constraint on  in the
negative  region, whereas  the  Higgs  precision meas-
urements  constrain  the  value  of  better  for 
GeV.  For ,  the STU constraint  on  positive 
can be stronger than the Higgs precision measurement at

.  Thus,  in  the  Type-I model  would  be  con-
strained to be less than 0.3 by the  coupling measure-
ments, where the STU can provide a stronger  limit for

 GeV.

cβ−α
cβ−α ∼ 0

h125

tanβ ∼ 1 tanβ
|αhS |

tanβ

αhS mhS > 250

For  the  Higgs  precision  on  the  Type-II  2HDM+S  in
the right  panel,  the allowed region in  is  constrained
to be much tighter, to only a thin region around .
The constraints from the  coupling measurements are
the weakest  at  and become stronger  as  in-
creases or decreases.  is constrained to be approxim-
ately 0.4,  which is less dependent on the values of .
The  electroweak precision  measurements  provide  a  tight
bound on the range of  for  GeV. A combin-
ation of the electroweak precision measurements and the
Higgs  precision  measurements  could  help  us  narrow
down the parameter space of the 2HDM+S. 

VII.  CONCLUSIONS

mH mhS mA mAS mH±

cβ−α αhS αHS αS

cβ−α = 0

We studied  the  implications  of  the  oblique  paramet-
ers, in particular, the T parameter, on the parameter space
of the 2HDM+S model. Nine model parameters enter, in-
cluding five masses , , , , and  and four
mixing angles , , ,  and .  To systematically
study the impact of each mixing angle, we identified five
benchmark  scenarios,  Case-0  with  and  all  the
singlet mixing angles being 0 (the 2HDM alignment lim-
it), and Cases-I to IV with only one of the mixing angles
being  non-zero.  We  studied  the  95%  C.L. STU allowed
region in the relevant parameter spaces. We observed that
 

● Case-0

∆mH = 0
∆mA = 0
∆mH/A ≲ mH± = 800 ∆mA,H = 0

mH±

Other than  the  well  known  conclusion  that  the  elec-
troweak precision constraints are satisfied for  or

,  there  is  an  upper  limit  on  the  mass  splitting  of
 900  GeV  for  GeV  and ,

coming from the S parameter constraint. This upper limit
also varies with .
 

cβ−α , 0● Case-I with 
cβ−α mH = 125

∆mA = 0 mH = mH± ∆mA ∼ −30
∆mH − cβ−α ∆mA− cβ−α

The  constraint  on  is  weak  for  GeV,
, or  and  GeV. The paramet-

er  space  in  or  is significantly  re-

∆mA ∆mHduced for  or  away from 0.
 

αhS , 0● Case-II with 
αhS mhS = 125 ∆mH,A =

mhS |αhS |
∆mA,H , 0

 is unconstrained for  GeV and 
0.  The  allowed  region  shifts  to  larger  and  for

.
 

αHS , 0● Case-III with 
c2
αHS

mH + s2
αHS

mhS =

mH± mA = mH±

The STU constraint can be satisfied for 
 or .

 
αAS , 0● Case-IV with 

c2
αAS

mA+ s2
αAS

mAS =

mH± mH = mH±

The STU constraint can be satisfied for 
 or .

 
cβ−α

cβ−α
|cβ−α|

We further  explored  Cases-II−IV with  non-zero 
and observed that the singlet extension could compensate
for the  contribution and extend the allowed paramet-
er space. However, a larger  typically leads to more
constrained mass vs. mixing angle parameter space.

αS mhS > 500
cβ−α tanβ > 5

αhS

mhS > 250
cβ−α tanβ

We  also  studied  the  complementarity  between  the
electroweak precision analyses and Higgs coupling meas-
urements. We observed that,  for the Type-I scenario, the
electroweak  precision  measurements  provide  stronger
constraints on  for  GeV, whereas the Higgs
coupling measurements constrain  better for .
For the Type-II scenario, the electroweak precision meas-
urements  provide  a  tight  bound  on  the  range  of  for

 GeV, whereas  the  Higgs  coupling  measure-
ments constrain  better for all values of .

In summary, the singlet extension of the 2HDM opens
up  the  allowed  parameter  space  when  constraints  from
the  electroweak  precision  measurements  are  considered.
It  also  provides  a  complementary  reach  when  combined
with Higgs precision measurements. While our study ex-
amined benchmark  scenarios  with  only  one  singlet  mix-
ing angle being nonzero, it identified the main features of
each  mixing  case  and  provided  a  more  comprehensive
understanding in the most general mixing cases. Note that
we  adopted  the  set  of  the  model  parameters  including
physical Higgs  masses  and  mixing  angles.  When  study-
ing a  particular  2HDM+S  scenario  with  a  specific  sym-
metry assumption of the Higgs potential, theoretical con-
siderations  might  restrict  the  range  of  the  mixing  angles
and mass  differences.  Our  analyses  were  performed in  a
model  independent  way  so  that  it  is  straightforward  to
map our results to a particular 2HDM+S model with a re-
stricted range of mixing angles and mass differences. 

APPENDIX A

The STU observables are defined by 

α(mZ)T =
ΠWW(0)

m2
W
− ΠZZ(0)

m2
Z
, (A1)
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α(mZ)
4s2

Wc2
W

S =
ΠZZ(m2

Z)−ΠZZ(0)
m2

Z
− c2

W − s2
W

sWcW

ΠZγ(m2
Z)

m2
Z

− Πγγ(m
2
Z)

m2
Z
, (A2)

 

α(mZ)
4s2

W
(S +U) =

ΠWW(m2
W)−ΠWW(0)
m2

W
− cW

sW

ΠZγ(m2
Z)

m2
Z

− Πγγ(m
2
Z)

m2
Z
, (A3)

Ĝwhere the F, G, and  functions are defined as [22] 

F(I, J) =


I+ J

2
− IJ

I− J
ln

I
J

for I , J,

0 for I = J.
(A4)

 

G(I, J,Q) = −16
3
+

5(I+ J)
Q

− 2(I− J)2

Q2

 

+
r

Q3
f (I+ J−Q,Q2−2Q(I+ J)+ (I− J)2)

+
3
Q

ï
I2+ J2

I− J
− I2− J2

Q
+

(I− J)3

3Q2

ò
ln

I
J
, (A5)

 

Ĝ(I,Q) = − 79
3
+9

I
Q
−2

I2

Q2

+

Å
12−4

I
Q
+

I2

Q2

ã
f (I, I2−4IQ)

Q

+

Å
−10+18

I
Q
−6

I2

Q2
+

I3

Q3
−9

I+Q
I−Q

ã
ln

I
Q
.

(A6)

with
 

f (r, t) =



√
r ln
∣∣∣ t− √r
t+
√

r

∣∣∣ for r > 0,

0 for r = 0,

2
√
−r arctan

√
−r
t

for r < 0.

(A7)
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