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Abstract: In this work, we establish the corrected first law of thermodynamics for dynamical regular black holes

on both the event horizon and apparent horizon. We find that the temperature of dynamical regular black holes de-

rived from the traditional first law differs from that obtained through other approaches. This indicates that, similar to

static cases, the first law of thermodynamics requires correction. We then derive the corrected first law of thermody-
namics from the Einstein field equations. Our analysis reveals that the corrected factor originates from the fact that
the 7)) component of the energy-momentum tensor depends on the black hole mass. This dependence implies that

the mass of a regular black hole can no longer be directly identified as the internal energy, leading to the corrections

of the first law of thermodynamics.
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I. INTRODUCTION

In 1973, Bekenstein first noticed the striking thermo-
dynamic analogy of black holes. He then pioneered the
concept of black hole entropy as a measure of the inform-
ation inside a black hole and pointed out that the black
hole entropy is proportional to the horizon area: S'= A/4
[1]. Subsequently, Hawking used  the ' semi-classical
quantum field theory to prove that black holes indeed
possess a temperature: T = «/(27), where « is the surface
gravity [2]. The discovery of Hawking radiation laid a
solid foundation for the four laws of black hole thermo-
dynamics. In particular, for a Schwarzschild black hole,
the first law of thermodynamics can be written as

dM =TdS, (1

where M denotes the mass of the black hole. Studies on
other black holes such as Reissner-Nordstrém black hole
and the Kerr-Newmann black hole revealed that they also
satisfy the first law of thermodynamics.

However, when applying the first law of thermody-
namics to calculate the entropy of regular black holes,
one does not obtain an entropy proportional to the hori-
zon area [3]. These black holes are characterized by hav-
ing a regular core instead of a space-time singularity.
Common examples of regular black holes include the
Bardeen black hole, the Hayward black hole, the non-
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commutative black hole, and the vacuum non-singular
black hole, among others. [4] and references therein
provide a comprehensive overview of the thermodynam-
ics of regular black holes. In [3], the authors pointed out
that the reason of regular black holes do not satisfy the
first law of thermodynamics is that the black hole mass
cannot be regarded as internal energy. Based on this, the
authors derived a corrected version of the first law of
thermodynamics. By utilizing the corrected first law of
thermodynamics, one can obtain an entropy that satisfies
the Bekenstein-Hawking area law in regular black holes.
In subsequent studies on the thermodynamics of regular
black holes, the corrected first law of thermodynamics
has been widely applied to the static black holes [5-14].
These examples include common regular black holes
such as the Bardeen black hole, Hayward black hole, va-
cuum nonsingular black hole, and noncommutative black
hole. In addition to these, we also include recently pro-
posed nonsingular black holes. The spacetimes of these
black holes are all characterized by the absence of singu-
larities.

We know that black holes are all evolving, so it is ne-
cessary to investigate whether the first law of thermody-
namics for dynamical regular black hole also requires
corrected. However, for dynamical black holes, the ap-
parent horizon and the event horizon do not coincide,
leading to different viewpoints on which horizon the ther-
modynamics should be based. For example, in [15-17],
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the authors studies the entropy of a dynamical black hole
using a thin-film model. By constructing the thin film
outside the event horizon, they obtained an entropy pro-
portional to the area of the event horizon. Similarly, [18-
20] investigated Hawking radiation from the event hori-
zon. On the other hand, [21] suggest that thermodynam-
ics should be established on the apparent horizon, as it
serves as the boundary of negative energy states. Consid-
ering the collapse of a spherical shell, Hiscock proposed
that one-quarter of the apparent horizon area is taken as
the entropy of the black hole [22]. In [23] and [24], the
authors demonstrated that the first law of thermodynam-
ics can be successfully built on the apparent horizon.
They then treated the event horizon as a time-dependent
perturbative hyper-surface of the apparent horizon, and
also successfully established thermodynamics on the
event horizon. Therefore, this paper will examine the cor-
rected first law of thermodynamics on both horizons.

For the calculation of the temperature at the event ho-
rizon, we will use the conformal flat method [25,26]. This
is because, for a dynamical black hole space-time, there
are no Killing vectors, and hence, it is difficult to directly
calculate the temperature at the event horizon using the
surface gravity method. In addition to the conformal flat
method, another approach to calculating the temperature
of a dynamical black hole is the radiation back-reaction
method [18]. This method first calculates the renormal-
ized energy-momentum tensor’s expectation value (7,;)
in the Unruh vacuum state, then examines the ingoing
negative flux into the black hole, and finally determines
the radiation temperature. However, this approach for
studying thermal radiation from dynamical black holes is
only applicable to asymptotical flat, spherically symmet-
ric black holes and yields results with limited accuracy.
Subsequently, Zhao et al. proposed the conformal flat ap-
proach, which can precisely determine the temperature
and thermal spectrum of an evaporating black hole [25].
Therefore, in this study, we employ this approach to in-
vestigate the temperature at the event horizon for a gener-
al spherically symmetric dynamical regular black hole.
For the apparent horizon, its surface gravity can be

24aM? (—r3 +4aM)
R =

288a’M* (5)’6 —4ar*M + 8a'2M2)

defined using the Kodama vector [27]. Therefore, we will
directly use the surface gravity method to calculate the
temperature associated to the apparent horizon.

The structure of this paper is as follows: In Sec.2, we
briefly introduce the dynamical regular black holes used
in this work and demonstrate their singularity-free nature
by calculating their Kretschmann scalar; In Sec.3, we will
calculate the special “surfaces” for a general spherically
symmetric dynamical regular black hole; In Sec.4 and 5,
we derive the corrected first law of thermodynamics on
the event horizon and the apparent horizon, respectively;
Finally, we summarize the main conclusions of this pa-
per.

II. INTRODUCTION TO TWO COMMON TYPES
OF DYNAMICAL REGULAR BLACK HOLES

Inthis section, we will briefly introduce the two dy-
namical regular black holes used as specific examples in
this paper, particularly by calculating their Kretschmann
scalars to clearly demonstrate that they do not possess
curvature singularities at the origin. The first example is
the dynamical Hayward black hole, whose line element is
given by [28]

2M (v) r?

ds?=—|1-—-
s r+2aM(v)

dv? +2dvdr + r*d&? + r’sin*6dg?,
2)

where v is the advanced Eddington coordinate and «
characterize quantum gravity effects having the order of
squared Planck length. In the following, for brevity, we
sometimes abbreviate M(v) as M. The line element (2) is
a Vaidya-type generalization of the Hayward black hole,
by using the advanced Eddington coordinate. It can also
be derived from the Vaidya black hole with an effective
Newton constant G’ =G/ (1+ap?), which is inspired by
the generalized uncertainty principle [29]. After careful
calculation, the representative geometric invariants are
given by

. R,RY =
(P +2aM)’ "

VIO _
R,uvr(rRﬂ -

(3 +2aM)°

4M [P +8(=10+ @) &2 M* - 8a (=2 +3a) M*r* =4 (2 +3a) Mr]

: 3.1)

(P +2aM)*

Here, R,,.»R"™ is also known as the Kretschmann
scalar K, is used to determine the existence of curvature
singularities. It is evidence that the present of « ensures

: (3.2)

[
the absence of a singularity at the origin of the dynamical
Hayward black hole. Setting « =0, Eq. (3.2) reduces to
the Kretschmann scalar of the Vaidya black hole
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4M (8M —r*)
—

; “)

K Vaidya =

which diverges at the origin. In [30], a dynamical exten-
sion of the non-commutative Schwarzschild black hole
was proposed, given by

o )
ds” = {1 var T\ ag) |

+2dvdr + r*d6” + r’sin*0dy?, 5)

where the lower incomplete gamma function is defined

by
2 2/ 40
)= [en o
0

Here, ¢ is the non-commutative parameter with di-
mensions of Planck length squared, representing the
smeared structure of space. In non-commutative space,
geometric points that describe positions are replaced by
regions with a minimum width on the order of the Planck
length. Therefore, the method of defining point mass
density using the Dirac delta function is no longer applic-
able; instead, a Gaussian distribution is used. The line
element (5) gradually approaches that.of a Vaidya black
hole as r increase. For the dynamical non-commutative
black hole, we can also calculate the geometric invari-
ants, which turn out to be

R=— e 419M(r - 89)
T 2mr
R R — e"WM2 (r —8r219+32192) 71
v - 87_”95 > ( N )
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1500 — o=0.1
o
2 1000
500
0
0.0 0.5 1.0 1.5 2.0
r
Fig. 1.

ative black hole. Here, we set M (v) = 1.
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For small r, using the definition of the gamma func-
tion, we have

2] 4 3/2
7(3,r2)z// M2dr = Z(r ) - @
2 49 0 449 12932

therefore, the Kretschmann scalar is finite at the origin.
When r — 0, we have

(7.2)

ooy 2M (10M =3 \/m9¥/?
lim (RuvrrR™) = ( 979’ )’

)

which shows that the non-commutative factor ¢ ensures
the absence of a curvature singularity. Additionally, when
¥ — 0, we can similarly obtain the Kretschmann scalar
for the Vaidya black hole. In Fig.1, we have plotted the
relationship between the Kretschmann scalar and r for
two types of dynamical black holes. It can be seen that
there is no curvature singularity at the origin in both
cases.

III. HORIZONS OF A SPHERICALLY SYMMET-
RIC DYNAMICAL BLACK HOLE

In order to calculate the horizon radius of a general
spherically symmetric dynamical black hole, we assume
its line element to be

700/

500 — 0=0.1

00 05 10 15 2.0

Iz

The Kretschmann scalar as a function of r: (a) for the dynamical Hayward black hole, and (b) for the dynamical non-commut-
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§? = —f(v,)dV? + 2dvdr + r*d6® + rsin*0d¢?, (10)

where f(v,r)=1-2m(,r)/r. The determinant and non-
vanishing contravariant components of the metric are giv-
en by, respectively,

g=-r'sin®0, g =g"=1, g =f@r),
1 1
%= — W= 11
& 2 8 r2sin’@ (D

The line element (10) can also be rewritten as
ds® = hydx®dx? + r*dQ?, with x* = (v,r). In general, a dy-
namical black hole is characterized by different special
“surfaces”: the time-like limit surface, the trapped hori-
zon, the apparent horizon and the event horizon. The
definition of the time-like limit surface of a dynamical
black hole is the same as that in a stationary black hole:
gw =0, therefore, the radius of the time-like limit surface
satisfies f(v,rris) =0. According to the definition of the
trapped horizon: h*d,rd,r = 0, we can obtain that the ra-
dius of the trapped horizon also satisfies f(v,rrg)=0
The apparent horizon is the outermost marginally trapped
surface and is defined as ® = —x =0, where @ is the
expansion of a congruence of null geodesics and
k =1,,n"I” reduces to the surface gravity in the stationary
case. Additionally, »* and /¥ are null tetrads. For the
spherically symmetric dynamical black hole described by
line element (10), we calculate the radius of its apparent
horizon in the Appendix. Here, we directly use the result.
The radius satisfies f(v,ray) =0, that is ryy = m(v,rap).
We can see that for an arbitrary spherically symmetric
dynamical black hole, the trapped horizon and the appar-
ent horizon coincide. Therefore, in this paper, we denote
their radius uniformly as r,5. Next, we proceed to calcu-
late the radius of the event horizon. The event horizon is
defined as a special hyper-surface where the norm of the
normal vector is zero (while the normal vector itself is
non-zero). It also referred to as a null hyper-surface, and
this hyper-surface preserves the symmetries of the space-
time. For the spherically symmetric space-time described
by (10), the event horizon can be assumed to be of the
form F(v,r), with the normal vector defined as
n, = 0,F (v,r). From the condition that the normal vector
is null, we arrive at

OF OF
OxH ﬁxv B

B v 2T
nn' =g

(12)

Using the null surface equation F (v,r) = 0, we have

dr BF oF

. 13
dv[)r o =0 (13)

Substituting Eq. (13) into Eq. (12), we find that the
event horizon radius ry satisfies

f,rg)=2ig =0. (14)

In this paper, we donate the event horizon radius as
ry. Since iy is a small quantity, it is easy to see that the
event horizon and the apparent horizon are very close to
each other.

IV. THERMODYNAMICS ON THE
EVENT HORIZON

A. Temperature

In this section, we will use the so-called conformal
flat approach to calculate the temperature of dynamical
regular black holes. The core idea of this approach is that,
in a general static or stationary space-time, one can em-
ploy the tortoise coordinate transformation to render the
space-time explicitly conformal to Minkowski space near
the horizon. As a result, the dynamical equations describ-
ing particles can be reduced to their traditional form near
the horizon. Subsequently, Zhao et al. applied the con-
formal flat approach to a dynamical black hole to calcu-
late the temperature, yielding a more accurate result than
the widely used radiation back-reaction method [25].

We start with the Klein-Gordon equation describing
the motion of a scalar field with mass m,

1
——08, (V=gg" o) —mgy = 0. (15)
\/?g M ( \/_ ) 0

Combining with the line element (10), the Klein-Gor-
don equation can be explicitly written as

Py Oy 20y (Zf ,>5t//
ﬁ+26v6r+r6v+ 7+f or

L[ aw) I azw} )
no—s — | —miy=0. (16
TR {sm9 40 ( 90/ sin’6 0p? "ot (16)

In the dynamical regular black hole space-time, we
separate the variables of the wave function as follows

1
w:;R(V’r)Ylm(g"p)' (17)

Substituting the separated wave function ¢ into Eq.
(16), we obtain the radical and angular components of the
field equations as follows
02R 62R R _[f

6r2 c')v@r f o Lr

1
i,

f gRZOa

(18.1)
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02
— =1+ Y, =0.
sin%g d¢* (+DY,

{L£<s'n9£)+
sinf 96 ! 00
(18.2)

Here, [ is the angular quantum number of the particle.
As the angular equation is not relevant to our discussion,
the following analysis will focus on the radial part. Next,
consider the following coordinate transformation

1
" 2k(vp)

r—ry(v)
ra (Vo)

5 Ve =V—1Vp, (19)

Iy

where v, represents the moment of a particle when it es-
capes from the horizon, and«(vy) is a function yet to be
determined. Both r(vy) and «(vy) represent the values of
the corresponding quantities at the moment the particle
leaves the horizon. Therefore, they can be treated as con-
stants under the coordinate transformation. Differentiat-
ing Eq. (19), we obtain

1 I
= dr - dv,
2k(r—rg) d 2k(r—ry) Y

dv, =dv.

dr,

(20)

Then, the transformation of the differential operator
under the tortoise coordinate transformation can be fur-
ther obtained as

a1 89 9w 4
I 2k(r—ry)0r. v~ dv. 2k(r—ry) Or.
iz_{Lriz 4
o2 L2k(r—ry)l 0rr  2k(r—ry)* or.’
& 1 & Fy 0

0rdv ~ 2k(r—ry) 0r.0v.  [2k(r—ry)]’ 02
iy 0
s 21
2k(r—ry)* Or, @D
With the transformation of the differential operator in

hand, the radial equation of motion for the particle can be
rewritten as

T2 TR (S22 )R DR
2k(r—ry) 012 r—ry or.  Or.dv,
=2k(r—rp) [L + l(l-; D +m4 R=0. (22)
r r

According to the spirit of the conformal flat approach,
the coefficient of 9°R/dr? should be equal to 1 near the
event horizon at the moment v, when the particle escapes
from the event horizon. At the same time, it is noted that

lim [f(v,r)=2¢y] =0, (23)

r—=re(vo)
V=V

where we have used the relation satisfied by the horizon
radius, Eq. (14). Therefore, we can apply L’Hdpital’s rule
to evaluate the coefficient of 8°R/ dr?

|: f(V, r) - 2}"[.] :| |:
— | = 1m
r—rp(v) L2k (vo) (r—rg) r—rg(vo)
VoV VoV

J w,r)
2k (vo)

} =1. (24

Using the above expression, we can finally determine
k(v) at any given advanced Eddington time

1
k() = Ef, v,ry). (25)

Meanwhile, using L’Hépital’s role, we can also prove
that

lim [ (v,r).
r—rp(vo)
Vo

lim { (26)
il

_f(v,r)—ZiH} __

r—ryg

As a result, the coefficient of dR/dr, vanishes in the
above limit. It is not difficult to show that the coefficient
of R also break down near the horizon. Therefore, the ra-
dial equation of motion reduces to the traditional form

R

2
or?

R
=0. 27
ov,or, 27

The two linearly independent solutions of Eq. (27) are

in _ _—lwvs out __ _—iwv,+2iwr,
R} =¢"", R"=e .

(28)

Following the approach of Damour and Ruffini [31]
and Sannan [32], we can obtain the spectral distribution
of the outgoing wave

Lo
ST @
with
K
Ty=—. 30
h=5 (30)
Here, “+” corresponds to fermions and “—” represent

the bosons, T',, is the transmission coefficient cause by
gravitational field barrier outside the horizon. From Eq.
(29) and Eq. (30), we can see that « should be identified
as the surface gravity at the horizon. Substituting Eq. (25)
into Eq. (30), we can obtain the temperature at the event
horizon as
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Kk ff,rg)  1-2ig m (v,rg)

T = — =
B~ on 4r drry 2nry

1)

Next, we will specifically calculate the temperature at
the event horizon of the two dynamically regular black
holes introduced in Sec.2. For the dynamical Hayward
black hole, using Eq. (14), we can obtain that its event
horizon radius satisfies

2M
ré—(l_sz)r§1+2aM=0, (32)
which gives the relationship between the black hole mass

and the event horizon radius

o (A=2ipr,
S 2[r+Qiy—Dal’

(33)

Combining Eq. (31), we obtain the temperature at the
event horizon as

1-27 2 +32ip—1
Tyzziz( ) [ 3( fu—Da] (34)
b 4nry,

Similarly, the event horizon radius of the dynamical
non-commutative black hole satisfies

4M <3 r,2,> .
S (7 N VS ) 35
Vrrg  \2 a9) (33)
The temperature is given by
K 1,
TH—E_E]C v, re)
(2iy—1) 3 g3 ,1(3 ré)}
=——7 |4+ ry0 - 1. 36
oy L HY 7 TY (39 (36)

On the other hand, the corresponding temperatures of
the dynamical Hayward black hole and the dynamical
non-commutative black hole given by the first law of
black hole thermodynamics are respectively

H_BSH_ﬁSHarH
1-2i 2 +3(2iy—1
:( VH)E’H '( ' )201]”11’ 37)
4n [rH + 2y — l)a/]
. oM
Ty=—
" asy
2y —1 {3 3 (3 r@)} 72(3 rf,)
= \ﬁ 2 _4 ~N° 4 a ~° a4 a
2y U107 T a9 ) )Y 2w
(38)

The relation S 5 = 7r7, [23,24] was used in the deriva-
tion above. It is clearly seen that the temperature ob-
tained from the first law of thermodynamics is different
from that obtained using the conformal flat method. Sim-
ilar to the case of static black holes [3,5-14], this will in-
spire us to search for the corrected first law of thermody-
namics for dynamical black holes.

B. Corrected first law of thermodynamics
on event horizon

From the above calculations, we can see that, similar
to static regular black ‘holes, dynamical regular black
holes also do not satisfy the first law of thermodynamics.
In the following, we will attempt to find a corrected ver-
sion of the first law of thermodynamics. To this end, we
rewrite the relation satisfied by the event horizon as

mv, 1) = %”(1 —i). (39)

On the other hand, the Einstein filed equations corres-
ponding to line element (10) are

om(v,r)

=4nr*T". (40.1)
ov
6 b )
ImO) gy, (40.2)
or

Using Eq. (40.2), we can rewrite the temperature as

T=—"" or,T" (41)

Integrating Eq. (40.2), we can obtain

m,r)=M®W)+4n /°° rZT‘Ydr. (42)

r

At the event horizon, Eq. (42) gives

M®OW)=mW,ryg)— 471/0o rZTJdr. (43)

rH

Differentiating the above equation, on can obtain
' . © 2y
AMO) = d [7 a —2rH)} —4rd ( / . Tvdr) L4

For regular black holes, 7} is a function of M (v).
Therefore, the differential of the second term on the right-
hand side of the above equation becomes
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—4nd (/ rZder)

H

© ., aT)
:—47TT‘Yr12_1dI"H—47T {/r\H r2 aM(vV)dr:| dM(V) (45)
Therefore, we can rearrange Eq. (44) as
00 6TV
1+4 L } M
{ + n/rH r 8M(v)dr dM(v)
127y } (AH)

= 2ryT) | d| — |. 46
{ 4nry Tty 4 (46)

Combining with the temperature expression (41), the
above equation can be simplified to

[e5] BTY
[1+47r /r,, r i (‘V)dr} dM(v) = TydS 4. (47)

This is the corrected first law of thermodynamics for
the dynamical regular black hole, and its form is the same
as that in the case of a static black hole. The correction

factor in above expression is: 1+4x / r*aT) [OM(v)dr .

'H
For convenience in application, we use Eq. (42) to re-
write the corrected first law of black hole thermodynam-
ics as

om,r)
oM (v)

AMO)l,=y, = {

} dM() =TydSy.  (48)

r=ry

We can clearly see that the relationship between Ty
and Ty is given by
r=ryg

When additional variables appear in the expression
for T)(r,M(v),a,B,...), that is, in the presence of other
fields, we can readily express the modified first law of
thermodynamics as

(49)

| Om(v,r)
=1 oM )

6 >
MO = | T }dM(v)
=TydS y+0%da+dp+---.  (50)

For the dynamical Hayward black holes, the correc-
tion factor to the first law of thermodynamics can be cal-
culated as

om(,r,a)

FQ,rg,a) = M)

r=ry

- Lanj ) (r3 Tz(;;j(v) ﬂ

r=ryg

1
= — [+ @iy -Dal”. (51)
Th

The product of Ty and the correction factor
F (v,ry,a) exactly gives Tj. Similarly, for the dynamical
non-commutative black holes, its correction factor is giv-
en by

N om,r,9)
F,ry,9) = 76M(v) o

e w G5)l)

" lomey U vx "\2aw) )|

2 (3 r%,)

- ﬁ7(2’4ﬁ ' (52)
A direct calculation can also verify that:

Ty = F (v,ry,®) Ty, which demonstrates the validity of the
corrected first law of thermodynamics.

V. CORRECTED FIRST LAW OF THERMODY-
NAMICS AT APPARENT HORIZON AND
SOME REMARKS

A. Corrected first law of thermodynamics
at apparent horizon

In a dynamical spherically symmetric space-time, the
Kodama vector can be used to describe the symmetry of
the space-time. When the dynamical space-time reduces
to a static one, the Kodama vector also reduces to the
Killing vector. The Kodama vector is defined as
K= —€®V,r, where €® denotes the volume form [27].
For the metric (2), the Kodama vector is given by
K*=(0,). As the Kodama vector is divergence free
V.K® =0, there exists a conserved current J¢ = T¢K”, and

the conserved charge is E =— [ J%do,, which is equal to

the Misner-Sharp energy. Using(rthe Kodama vector, Hay-
ward defined the surface gravity on the apparent horizon

1
as k= EV“VJ. Therefore, we can directly use the surface

gravity method to calculate the temperature at the appar-
ent horizon. In combination with the line element (2), we
obtain the surface gravity associated the apparent hori-
zon as
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1 { 1 g
k= =V'V,r = 0; V=hhiior }
2 I'=TaH 2\/__/1 ( ) r=rag
1
= | = (Vo)
{2 —h ( r=raH
1
= Ef/ WV, 7am). (53)

Here, i and j run from 0 to 1. The temperature de-
rived from the surface gravity method is given by

K _f/(v’rAH)_ 1

T - - - — _m/(v7rAH)
A= on Vg 47T apy

ZﬂrAH

(54)

The last step in the above equation makes use of the
condition satisfied by the radius of the apparent horizon:
rag = 2m(v,ray). Next, we calculate the dynamical regu-
lar black holes discussed in this paper. For dynamical
Hayward black holes, the relation between M(v) and ryy is

3
Tan

MO )

(55)

Combing with Eq. (54), we obtain the temperature at
the apparent horizon as

Thny =

. (56)

Following the same approach, the temperature at the
apparent horizon for the dynamical non-commutative
black hole is given by

2 2
4-—}’3”_119_%6_%’)/_1 (E,FA—H)} .

Tau =

(57)

167T7'AH

Next, we can also use the first law of thermodynam-
ics [23,24] to obtain the temperature of the apparent hori-
zons for the two black holes, which are given by

. OM  Oray OM _ ray (ray —3@)

(58)

A 0S an B 08 an Oran - 47r(r/2“q—a)2 '
) i {3 A
Tiyy=——— 92 40
AH 32 NAran AV 2é€
3 ViH)} 72(3 712411)
_47(2’40 Y\ a9 ) (59)

It is seen that, like the case at the event horizon, the
temperatures obtained from the surface gravity and the
first law of thermodynamics at the apparent horizon are
also different. Now, we follow a similar procedure as in
the previous section to derive the corrected first law of

thermodynamics at the apparent horizon. First, using Eq.
(40.2), the temperature can be expressed as

TAH = +2rAHT‘Y. (60)
TTVAH
At the apparent horizon, Eq. (42) gives
M©O) =m©,ray)—4n / TV dr. (61)

Substituting m (v, ray) = rap/2 and differentiating Eq.
(61), we obtain

AM(v) =d (%rAH) —4nd ( / rZT;’dr) . (62)
Eq. (62) finally gives the following result
® ., o) }
2 v
{1 +47r/MH r 76M(v)dr dM(v)
={ +2rAHTV} d(Aﬂ>. (63)
471rAH v 4

Combining with the temperature expression (60), Eq.
(63) can be simplified to

<, oTY
{1 +4ﬂ/rAH r 6M(Vv) dr} AM®©) = TydS an. (64)

Using Eq. (42), we finally obtain the corrected first
law of thermodynamics at the apparent horizon as

om(v,r)
oM (v)

AMO)|y,, = {

:| dM(V) = TAHdSAH- (65)

r=ran

When other fields are present, Eq. (65) can be gener-
alized as

om(v,r)
oM (v)

AMO)|y,, =

} dM(v)
I=rAH
= TapdS oy + 0% yda + 5 dB+--- . (66)

At the apparent horizon, T,y and T, are also related
by the corrected factor

om(v,r)
oM (v)

TAH = { (67)

TAH.
r=raH

For the dynamical Hayward black hole and the dy-
namical non-commutative black hole, the correction
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factors are given by, respectively

om(v,r,a)

FO,ryg, @) = M)

{(Mj ) ( r 4]‘-/[2((3\;(\/) )}

1
rT(riH_“)z’

I=rAH

(68)

om®v,r,9)
oM©v) |,

- {azvf(v) {ZM\/‘S)Y (%%)H

_ 2 (%iﬂ)
S VR \2 )

F(V’rAHsﬁ) =

r=ran

(69)

The product of T,y and the correction factor exactly
gives T.y, which satisfies Eq. (67). This verifies the
validity of the corrected first law of thermodynamics at
the apparent horizon.

B. Some remarks

In this subsection, we provide some discussion re-
garding the corrected first law of thermodynamics. From
the differential form of the field equation (40.2) or'its in-
tegral form Eq. (42), it is not difficult to find that the
m(v,r) appearing in the correction factor is given by

m,r) = —47r/ PTdr. (70)
0

Its form suggests that it is likely related to the energy
enclosed within a sphere of radius r. In fact, we can veri-
fy that the Misner-Sharp energy within a sphere of radius
of r is exactly equal to m(v,r). This can be verified using
the definition of Misner-Sharp energy

Eys (v,r) = (1 —hahéarébr) = [1 —f(v,r)] =m,r).

(71)
Therefore, the corrected first law of thermodynamics

for spherically symmetric dynamical regular black hole
can be written as

N~
N~

(9EMS (V, r)
oM (v)

} dM(v)

r=raH

=T dS ry + Py + Dy ydB+ -+ .

"AH

(72)

"AH

For static spherically symmetric black holes, the cor-
rection factor can also be expressed in the same form.

Here, the reason we choose the Misner-Sharp energy is
that it is a conserved charge associated with the Kodama
vector. However, a more physically intuitive explanation
for why the corrected factor of spherically symmetric reg-
ular black holes is related to the Misner-Sharp energy still
remains to be explored.

Additionally, by examining the forms of Egs. (50)
and (66), we can see that in general dM(v) is not an ex-
act differential form. Only when 97 / 0M (v) =0, that is,
when dM(v) = dM.(v), does it become an exact differen-
tial form. In this way, the corrected first law of thermody-
namics reduces to the traditional first law of thermody-
namics for the singular-black holes.

Another issue worth discussing is that, since we can
successfully establish a corrected first law of thermody-
namics on both the event horizon and the apparent hori-
zon, which one should be considered more fundamental?
It is noticed that, Refs. [23,24] treat the event horizon as a
time-dependent perturbation of the apparent horizon, and
show that thermodynamics can also be established on the
event horizon. Therefore, the authors conclude that the
thermodynamics associated with the apparent horizon
should be regarded as more fundamental. However, if we
think in reverse, the apparent horizon can also be viewed
as a time-dependent perturbation of the event horizon.
Hence, the explanation given in [23,24] is more of a
mathematical interpretation. However, regarding this is-
sue, we believe that the following two points may be par-
ticularly important. The first concerns the definition of
the event horizon itself, which can only be defined in
asymptotically flat space-times. However, the universe
may not be asymptotically flat, so the existence of an
event horizon is questionable. Even if the universe were
asymptotically flat, an observer with a finite lifespan
would not be able to verify such a global property [33].
The second point is related to Ref. [21], in which the au-
thor considered the collapse process of a spherical shell
and suggested that the Hawking effect is associated with
the apparent horizon rather than the event horizon. The
reason was that the apparent horizon constitutes the
boundary of the ergoregion, and if Hawking radiation ori-
ginates from regions near the ergoregion, then the appar-
ent horizon is associated with Hawking radiation. Anoth-
er conclusion reached in [21] is even more significant:
Hawking radiation survives even in the absence of an
event horizon. Therefore, in this paper, we are more in-
clined to believe that the corrected first law of thermody-
namics on the apparent horizon is more fundamental.

VI. SUMMARY

Inspired by the corrected first law of thermodynam-
ics for static spherically symmetric regular black holes,
we investigate the corrected first law of thermodynamics
for dynamical regular black holes. First, we calculate the
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apparent horizon radius and the event horizon radius for
an arbitrary spherically symmetric dynamical regular
black hole, and find that they are very close to each other.
Then, for the event horizon and the apparent horizon, we
obtain the corresponding temperatures using the conform-
al flat method and the surface gravity method, respect-
ively. However, the temperature derived from the first
law of thermodynamics differs from those obtained by
the two methods mentioned above. This indicates that,
similar to the static case, the first law of thermodynamics
also needs to be corrected for dynamical regular black
holes. Following the idea in [23,24], that thermodynam-
ics can be built on both horizons, we successfully estab-
lish the corrected first law of thermodynamics on both
horizons using the Einstein field equations. Moreover, we
find that they share the same form. Finally, we find that
for both spherically symmetric dynamical and static regu-
lar black holes, the correction factor is related to the de-
rivative of the Misner-Sharp energy with respect to the
mass M (v) . The deeper physical meaning behind this re-
lation requires further investigation.

APPENDIX

In this appendix, we explicitly calculate the apparent
horizon radius for the dynamical black holedescribed by
the line element (10). First, for computational conveni-
ence, we rewrite it in a metric signature of (+, —, —,—) as

ds* = f(, r)dv2 —2dvdr—r*d¢®* - rzsin29d¢,02. (A1)

The determinant and non-vanishing contravariant
components of the metric are given by, respectively,

g=-r'sin’0, g =g"=-1, g =-f(r),
1 1
W=, g A2
& A r2sin’0 (A2)

From line element (A.1), we can obtain the non-van-
ishing components of the affine connections as

1 : .
r), = Ef’,l"‘% =-nl,, = —rsin’6,

1 1 .
rr er - __ /’l—*r =_(=f+ ’ ,
vr rv 2f vy 2 ( f ff)
Tjo ==/ 1Ty, ==frsin’s,

1
er:FZr: FG =

Tl = —sinfcos0,

(A3)

1
¥, =T¢ = -, I, =T}, =cotd.
r

Next, we choose the following null tetrad

li= (%7‘1,0’0) >, =(1,0,0,0),

r

m (0,0,1,isin@),
/)
,
m, = ——=(0,0,1,—isin@), A4
W= (A4)
and their contrayariant forms are given by
wl (d "
M= 1,5,0,0 , n"=(0,-1,0,0),
5 (00-1-55)
J = — 070’_19_.7 )
& \2r sinf
= (o 0,1 L) (A5)
CA2r N7 Using)

One can verify that they satisfy the condition of the
null tetrad frame

nnt =L F =mm" = m,m" =0,
By il —
n ' = —-m,m* =1,

(A6)

Mo o ol TR TR
nm' =n,m" =lm" =Lm" =0.

Using the components of the affine connection and
the null tetrads, we can calculate %, and « as follows

.19
Bo=1+T8 7 = =T (V=g
Lo —n 0 | +2S
- = g () | =
(A7)
k= (Ly =T, 1) W'l = 1,0l =T, Ln"I”
= (l,.,vn’lv +l,,,n’l’) —F:l,l,n’l" = f? (A8)

Therefore, we can obtain ® =k —«x= f(v,r)/r. Set-
ting ® =0, we finally obtain that the radius of the appar-
ent horizon satisfies f (v,ryy) =0.
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