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Abstract: We  study  the  pole  trajectory  of  the  recently  established  subthreshold  negative-parity  nucleon  pole,
namely the , with varying pion masses, in the scheme of linear σ model with nucleons using the  unitar-
ization method. We find that as the pion mass increases, the pole moves toward the real axis. For larger pion masses,
at tree level, the pole falls to a specific point on u-channel cut and crosses to the adjacent Riemann sheet defined by
the logarithmic u channel cut. At one-loop level, the pole does not meet the u-cut up to GeV. We also re-
examined the σ pole trajectory and find it in good agreement with Roy equation analysis result.
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I.  INTRODUCTION

JPC = 1/2− N∗(920)
S 11 πN

πN

N/D

√
s = (918±3)− i(163±9)MeV

(913.9±1.6)− i(168.9±3.1)MeV

A  subthreshold  pole  with  quantum  number
,  named ,  has  been  established  in  the

 channel of  scatterings. It has been firstly sugges-
ted  in  analyzing  scattering  data  [1, 2]  using  the
product  representation  for  partial  wave  amplitudes
(PWAs)  [3−5],  which  comes  from  the  correct  treatment
of the left  hand cuts and unitarization [6, 7].  The pole is
also  confirmed  using  naive K-matrix  approach  [8]  and

 method  [9].  Its  existence  is  firmly  established  in  a
Roy-Steiner equation analysis in Ref. [10], with the pole
location , and  is  recon-
firmed in Ref. [11] at . Its
properties  in turn naturally become a subject  of  research
interest as much is left to be desired.

πN

One  might  wonder  why  this  state  has  a  mass  below
the threshold  but  can still  exhibit  a  large  decay width  to

.  One  could  try  to  understand  this  problem from two
perspectives.  The  first  perspective  involves  recognizing
that  the  usual  concept  of  particle  decay —where  one
particle  decays  into  two  or  more  particles —is  defined
only within the framework of perturbation theory. Strictly
speaking, unstable particles cannot appear as in- and out-
states  of  the S matrix;  they can only be defined as  poles
on the  second  Riemann  sheet  of  the  analytically  contin-

N∗(920)

πN

ued S matrix.  These  states  exist  solely  as  intermediate
states  in  scattering  processes.  When  a  pole  lies  near  the
physical region, i.e. being a narrow resonance with a long
lifetime, the  imaginary  part  of  the  pole  position  approx-
imately coincides with half of the decay width of the state
calculated  in  perturbation  theory.  For  poles  far  from the
physical region, such as those associated with the σ and κ
resonances,  they  can  only  be  interpreted  as  intermediate
states  represented  by  poles  of  the S matrix.  These  states
may  induce  moderate  changes  in  phase  shifts,  which  is
why their  existence has been a topic of  extensive debate
in the past. The second perspective is from the usual un-
derstanding that  the  invariant  mass  of  an  unstable  inter-
mediate state does not have a fixed value but instead ex-
hibit a mass distribution. A state with a large width has a
very broad invariant mass spectrum, with its central value
roughly corresponding to the pole mass. This means that
there  is  a  greater  probability  for  such  a  state  to  have  an
invariant  mass  far  from  this  central  value  compared  to
narrow  resonances.  In  the  case  of ,  even  though
the  central  value  of  its  mass  distribution  lies  below  the
decay  threshold,  there  remains  some  possibility  for  it  to
have an invariant mass above the threshold, allowing it to
decay into .

N∗(920)
Nγ Nπ

The  early  work  on  the  properties  of  is  its
coupling to  and  [12]. It is found that its coupling
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to  is considerably larger than that of , while
its  coupling  to  is  comparable  to  that  of .
Here in this paper we will focus on the  pole tra-
jectory with varying pion masses.

mπ

O(N)

In  the  literature,  the σ pole  trajectory  with  varying π
masses has been a rather hot topic for discussions, see for
example  Refs.  [13, 14] and  references  therein.  Remark-
ably a model independent Roy equation analysis has been
carried out to thoroughly solve the issue [15].  The study
of  the σ pole  trajectory  with  varying  is  important,
since it opens a new window in exploring non-perturbat-
ive  strong  interaction  physics  provided  by  lattice  QCD
calculations. An alternative study based on  linear σ
model  [16, 17]  finds  similar  results  comparing  with  that
of Ref.  [15],  hence providing further evidence that  the σ
meson  may  be  more  reasonably  described  as “element-
ary”,  in the sense that  it  is,  the same as pions,  described
by  an  explicit  field  degree  of  freedom  in  the  effective
chiral  lagrangian1). Inspired by this,  we in  this  paper  ad-
opt the effective lagrangian with a linearly realized chiral
symmetry.  To be  specific  we use  the  renormalizable  toy
linear σ model  with  nucleon  fields,  though  it  is  known
that renormalizability condition is not at all a physical re-
quirement when describing low energy hadron physics. In
short, we use linear σ model rather than the χPT lagrangi-
an, mainly for theoretical considerations2), though we be-
lieve the two give more or less the same results at qualit-
ative level.

N∗(920)

In  the  following  we  begin  by  a  brief  introduction  of
the linear σ model with nucleons in Sec. II, and calculate
the σ pole  trajectory  using  [1,1]  Padé  approximation  in
Sec. III. As it is verified that the unitarity approximation
does  give  a  similar σ pole  trajectory  as  comparing  with
that of Ref. [15], it is satisfactory to use the same approx-
imation method to further explore the  trajectory,
which will  also  be  discussed  in  Sec.  III.  Sec.  IV  is  de-
voted to discussions and conclusions. 

II.  A BRIEF REVIEW OF LINEAR σ MODEL

The linear σ model [21] (LSM) lagrangian with a nuc-
leon field can be written as follows: 

L = Ψ̄0iγµ∂µΨ0−g0Ψ̄0
(
σ0+iγ5τ⃗ ·π0

)
Ψ

+
1
2
(
∂µσ0∂

µσ0+∂µπ0 ·∂µπ0
)

− µ
2
0

2
(
σ2

0+π
2
0

)
− λ0

4!
(
σ2

0+π
2
0

)2
+Cσ0 , (1)

Ψ0

π0,σ0,µ0,g0,λ0

where  is  the  isospin  doublet  denoting  bare  nucleon
fields,  and  are  bare π meson  triplet, σ

field, a mass parameter, and couplings, respectively. The
renormalized quantities are related to bare ones through: 

ψ0 =
√

Zψψ ,

(σ0,π0) =
√

Zϕ(σ,π) ,

µ2
0 =

1
Zϕ

(
µ2+δµ2

)
,

g0 =
Zg

Zψ
√

Zϕ
g ,

λ0 =
Zλ
Z2
ϕ

λ .

(2)

⟨σ⟩ = v , 0

πi, i = 1,2,3 Cσ0

σ→ σ+ v ⟨σ⟩ = 0

Spontaneous  chiral  symmetry  breaking  (χSB)  occurs
when  the σ vacuum  expectation  value  (vev) ,
generating  three  zero-mass  Goldstone  bosons:

 in  the  absence  of  explicit χSB  term .
To  perform  a  perturbative  calculation,  one  shifts

 such that  and gets, 

L = ψ̄
[
i ̸ ∂−mN −g (σ+ iπ ·τγ5)

]
ψ

+ ψ̄
[
−δmN −δg (σ+ iπ ·τγ5)+ i

(
Zψ−1

)
̸ ∂
]
ψ

+
1
2

î(
∂µσ

)2
+
(
∂µπ

)2−m2
σσ

2−m2
ππ

2

+(Zϕ−1)
Ä(
∂µσ

)2
+
(
∂µπ

)2ä−δm2
ππ

2−δm2
σσ

2
ó

− λ

4!
[
σ4+π4+4vσ(σ2+π2)+2σ2π2

]
− λ

4!
(Zλ−1)

[
σ4+π4+4vσ(σ2+π2)+2σ2π2

]
−σ

[
v(m2

π+δm
2
π)−C

√
Zϕ
]
, (3)

with 

mN = gv, m2
σ = µ

2+
1
2
λv2, m2

π = µ
2+

1
6
λv2, (4)

and the renormalization constants are defined as 

δmN = mN(Zg−1) ,

δg = g(Zg−1) ,

δm2
π = δµ

2+
1
6

(Zλ−1)λv2 ,

δm2
σ ≡ δµ2+

1
2

(Zλ−1)λv2 .

(5)

mπ

mσ

From Eq.  (4)  we obtain  the  relation between  and
: 
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Nc1) Early studies using large  (number of colors) arguments also support such a suggestion [18−20].
O(4)2) For example, at high temperatures, it is easy to restore the  symmetry using linear σ model. On the contrary, in the χPT framework, such a restoration is still

absent [16, 17].
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m2
σ = m2

π+
1
3
λv2 . (6)

ZλThis relation holds if the renormalization constant 
is chosen as 

Zλ = 1− 3(δm2
π−δm2

σ)
λv2

. (7)

The  other  renormalization  constants  are  determined
by the following conditions, as done in Ref. [22]:

δm2
π Zϕ

∆π(s)
● To determine  and , we demand that the full π

propagator  satisfies 

i∆−1
π (m2

π) = 0 ,

i
d∆−1

π (s)
ds

∣∣∣∣
s=m2

π

= 1 . (8)

δm2
σ

i∆−1
σ (s) s→ m2

σ

●  can be determined by requiring the real part of
the inverse σ propagator, , to vanish when ,
i.e., 

Re[i∆−1
σ (m2

σ)] = 0 . (9)

mσ

mσ > 2mπ i∆−1
σ (m2

σ)
mπ

mσ < 2mπ i∆−1
σ (m2

σ)
mσ

Notice that the parameter  can not be identified as
the σ pole  mass  when  since  is com-
plex in  this  situation.  On the other  hand,  if  increases
to be large enough such that , then  be-
comes real and  is just the pole mass.

Zψ Zg

∆N (̸ p)
●  and  are determined by forcing the full nucle-

on propagator  behaving like: 

i∆−1
N (mN) = 0 ,

i
d∆−1

N ( ̸ p)
d ̸ p

∣∣
̸p=mN
= 1 . (10)

The results for the renormalization constants and counter
terms under these renormalization conditions are listed in
Appendix A.

mσ mπ

mN

In  LSM,  there  are  four  free  parameters  and  they  can
be chosen as λ, , , g. From Eqs. (6) and (4), the vev
v and the nucleon mass  are expressed by: 

v2 =
3(m2

σ−m2
π)

λ
, mN = gv. (11)

mπ = 0.138GeV,mN = 0.938GeV
fπ

In the physical situation, ,
and v is  identical  to  the  pion  decay  constant  at  tree

0.093GeV
g ≃ 10 C

√
Zϕ = fπm2

π

fπ

level,  whose  experimental  value  is  so  that
. From PCAC, one also obtains , and

the pion decay constant  are related to v by [23]: 

v = fπm2
πi∆π(0) . (12)

At the one-loop level, this equation reads: 

λ2v2

144π2

î(
B0(m2

π,m
2
π,m

2
σ)−B0(0,m2

π,m
2
σ)
)
/

m2
π−B′0(m2

π,m
2
π,m

2
σ)
ó

− g2m2
π

4π2
B′0(m2

π,m
2
N ,m

2
N) =

fπ
v
−1 . (13)

fπ

Numerical tests reveal that the left hand side of this equa-
tion  has  a  negligible  effect  within  the  parameter  regime
used  in  our  following  calculations  [22].  Therefore,  is
still  approximately  equal  to  the  vev v at  the  one-loop
level1).

ΛQCD

(g,mN ,mσ,mπ)
mπ

mπ mπ

mπ

mπ

mπ

mπ fπ

fπ mπ

mπ

fπ

Since our  purpose of  using the LSM is  to  approxim-
ate QCD which has only two free parameters, i.e., gauge
coupling or  and the quark mass, whereas LSM has
four — , this leaves some room for manipu-
lation of  dependence of parameters. In principle, only
two  parameters  are  independent  for  LSM  to  serve  as  a
low-energy  effective  field  theory  of  QCD.  Since  we  are
considering the  dependence, we can choose  as one
independent parameter and select another parameter to be
independent of , leaving the other two parameters de-
pendent on .  Given the fact that χPT encodes the cor-
rect  dependence from QCD, it can be used to provide
the missing  dependence in LSM. Since  appears in
both  theory,  we  make  use  of χPT results  to  fix  the  de-
pendence of  on 2),  which has been calculated up to
NNLO in Refs. [24, 25]. Rewriting in terms of F and ,

 is expressed as [24, 25] 

fπ = F
ï

1+F4
m2
π

16π2F2
+F6

Å
m2
π

16π2F2

ã2ò
,

F4 = 16π2lr
4− log

m2
π

µ2
,

F6 =
(
16π2

)2
rr

F −16π2
Å

lr
2+

1
2

lr
1+32π2lr

3lr
4

ã
− 13

192

+

Å
16π2(7lr

1+4lr
2− lr

4)+
29
12

ã
log

m2
π

µ2
− 3

4
log2 m2

π

µ2
, (14)

where these low energy constants (LECs) are obtained in
Ref. [26] by a full analysis on lattice data. In the follow-

On the pole trajectory of the subthreshold negative parity nucleon with varying pion masses Chin. Phys. C 50, (2026)

v = fπ mπ

mπ

1) We also tested fixing  at the physical value without  dependence and found that this did not modify the pole trajectories too much. Thus, the pole traject-
ories are in fact quite insensitive to the  dependence of v.

2) This may be somewhat equivalent to adding some high order contributions in LSM lagrangian.
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mπ

mπ mN

mN mπ O(p5)

mπ

mσ mπ

ππ
πN

ing calculations, we impose this condition to constrain the
 dependence  of v by using  Eq.  (12).  Another  con-

straint from χPT is the  dependence of . We require
the dependence of  on  to match the  result of
baryon χPT  [27].  From  the  second  equation  in  (11),  the

 dependence  of g is  also  fixed.  With  one  remaining
free parameter,  from  the  first  equation  in  (11),  we  con-
sider  two  alternative  simple  assumptions  to  proceed:  to
fix  such that λ is dependent on  or vice versa. Since
these two choices  produce similar  qualitative  results,  we
choose  the  first  one  in  discussing  the  scatterings  and
only  provide  the  results  in  scatterings  for  both
choices. 

N∗(920)

III.  THE TRAJECTORIES OF THE σ POLE AND
THE  POLE

N∗(920)

N∗(920)

This section is devoted to the study of the σ pole and
the  pole  dependence  on  varying  pion  masses.
This analysis is meaningful in understanding the non-per-
turbative aspects  of  low  energy  strong  interaction  phys-
ics, especially  in  the  era  when  lattice  QCD  studies  be-
come more and more prosperous1).  For the former,  the σ
pole  trajectory  is  well  understood  [15, 29] while  know-
ledge of  trajectory is absent yet, from either lat-
tice QCD or analytical studies.

O(N)

We will study the two trajectories based on the renor-
malizable linear σ model with nucleons. The reason why
we choose such a model is already discussed in the intro-
duction. We in the following firstly re-analyze the σ pole
trajectory  using  [1,1]  Padé  approximation2).  It  will  be
found that the trajectory obtained is in rather good agree-
ment with that of Roy equation analyses and  model
results qualitatively. This is because, unlike the unitariza-
tion using χPT amplitude, the t and u-channel σ exchange
is  taken  into  account  here,  which  is  the  requirement  of
crossing symmetry. 

I, J = 0,0 ππA.    The σ pole location in the  channel  scat-
tering amplitude

ππ

Basically there can be two ways to extract the σ pole
location: one is from the σ propagator, another is from the
unitarized  scattering amplitude. They are not equival-
ent  under  the  approximations  being  used,  however.  The
propagator is obtained by using a Dyson resummation of
self  energy  bubble  chain,  and  is  essentially  a  one  loop
calculation,  whereas the pole in the unitarized amplitude
contains  more  complete  dynamical  input3).  Therefore  we
adopt the  scattering  amplitude  to  extract  the  pole  loca-

tions.
ππThe  elastic scattering amplitude is written as: 

Tαβγδ(s, t,u) = A(s, t,u)δαβδγδ+B(s, t,u)δαγδβδ+C(s, t,u)δαδδγβ
(15)

α,β,γ s, t

s+u+ t = 4m2
π A(s, t,u),B(s, t,u) C(s, t,u)

I = 0
T 0(s, t,u)

where  and δ are isospin indexes and  and u are
Mandelstam  variables  subject  to  the  constraints

.  and  are  Lorentz
invariant  amplitudes.  The  total  isospin  amplitude

 can be derived as 

T 0(s, t,u) = 3A(s, t,u)+B(s, t,u)+C(s, t,u) . (16)

Partial wave amplitude(PWA) is defined as 

T I
J(s) =

1
32π(s−4m2

π)

∫ 0

4m2
π−s

dtPJ

Å
1+

2t
s−4

ã
T I(s, t,u) ,

(17)

PJwhere  is the Legendre polynomial. The elastic unitar-
ity reads: 

ImT I
J(s) = ρ(s,mπ,mπ)|T I

J(s)|2, s > 4m2
π , (18)

with 

ρ(s,m1,m2) =
√

(s− (m1+m2)2)(s− (m1−m2)2)
s

. (19)

ππ

The  PWA  has  been  calculated  up  to  one-loop  level
within  LSM  neglecting  nucleon  contributions.  At  tree
level,  the  Feynman  diagrams  contributing  to  scatter-
ing amplitudes are presented in Fig. 1.

A(s, t,u)The corresponding invariant amplitude  reads: 

A(s, t,u) = − λ2v2

9(s−m2
σ)
− λ

3
. (20)

B(s, t,u) C(s, t,u)
A(s, t,u)

The invariant amplitudes  and  are re-
lated to  via crossing symmetry: 

A(s, t,u) = B(t, s,u) =C(u, t, s) . (21)

From perturbative unitarity in LSM we have: 

Qu-Zhi Li, Zhiguang Xiao, Han-Qing Zheng Chin. Phys. C 50, (2026)

1) For a recent review to the related subjects, one is referred to Ref. [28].
2) It is not at all obvious that Padé approximation leads to a satisfied solution since it may be spoiled by spurious poles [30]. But in linear σ model it works rather

good, since crossing symmetry is preserved at least partially.
3) To be more specific, at one loop, the self energy on the second sheet contains the pseudo-threshold but not the dynamical left hand cut (the crossed channel σ ex-

changes), which is presented anyway in unitarized scattering amplitudes. So the two solutions cannot be the same.
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ImT 0
0l(s) = ρ(s,mπ,mπ)|T 0

0t(s)|2 , 4m2
π < s < 4m2

σ, (22)

T 0
0t(s) T 0

0l(s)where  and  denote the tree-level and the one-
loop  PWAs,  respectively.  Combining  Eq.  (16)-(17),  the
tree-level PWA is obtained: 

T 0
0t(s) =

λ

48π

Ç(
3m2

π+2m2
σ−5s

)
2
(

s−m2
σ

)
+

(m2
σ−m2

π) log
Å

s−4m2
π+m2

σ

m2
σ

ã
(

s−4m2
π

)
ê

. (23)

[1,1]

At  one-loop order,  it  is  tedious  to  present  all  Feyn-
man diagrams and their corresponding results, which ex-
ceed  50  diagrams  [31].  Therefore,  we  will  not  include
those amplitudes in this paper1).  With Eq. (22), it  is easy
to prove that the  Padé approximant 

T 0[1,1]
0 (s) =

T 0
0t(s)

1−T 0
0l(s)/T 0

0t(s)
, (24)

satisfies elastic unitarity.
The σ resonance corresponds to the pole of the PWA

on the second Riemann sheet (RSII) of complex s plane,
or the zero of partial wave S matrix: 

S (s) = 1+2iρ(s,mπ,mπ)T
0[1,1]
0 (s) , (25)

on the first Riemann sheet (RSI).
T 0[1,1]

0 (s)
T 0

0t m2
σ mσ > 2mπ

1−T 0
0l/T

0
0t

T 0
0l(s)

m2
σ

T 0[1,1]
0 (s) m2

σ mσ

According to Eq. (24), the numerator of , i.e.,
, contains a first-order pole at . When , in

the denominator , there also exists a first-order
pole  because  the  loop-level  amplitude  contains  a
second-order  pole  at  from the one-loop σ propagator
as  shown  in  the  right  diagram  of Fig.  2.  This  causes

 to  be  finite  at .  Thus,  in  this  situation  is
not the pole mass of σ and the σ pole position would lie

mπ

2mπ > mσ T 0
0l(s)

Σ(m2
σ)

m2
σ

m2
σ

on  the  second  Riemann  sheet.  On  the  contrary,  with 
growing  up  to ,  the  second-order  pole  in 
transforms to a first-order pole because the residue being
proportional to  equals zero due to the renormaliza-
tion  condition  (8).  In  this  case,  the  denominator  of  Eq.
(24) is  finite at ,  and the numerator remains a pole at

 which corresponds to the σ bound state.

mσ = 0.7GeV
(0.47− i0.16)

mσ

fπ mπ

mπ

mπ

mπ ≃ 0.32GeV

2mπ > mσ

mπ ≃ 0.22GeV

N/D O(N)
mσ/2

To  obtain  the  specific  trajectories  through  numerical
calculation, we choose a suitable  such that σ
pole  locates  at  about  GeV at  physical  pion
mass.2) Then, fixing this  parameter and taking into ac-
count the relation between  and , the trajectory of σ
pole with increasing  is depicted in Fig. 2. The σ reson-
ance falls down to real axis below the threshold from the
complex plane above the threshold, becoming two virtual
states  (VSI  and  VSII)  when  increases  from  physical
value to . One of them (VSII) runs towards
threshold and finally crosses the threshold to the real axis
below  the  threshold  on  RSI,  turning  into  a  bound  state
when . On the other hand, the other virtual state
(VSI) runs away from the threshold and collides with the
third  virtual  state  (VSIII)  which  appears  from  the  left-
hand  cut  when .  Then  these  two  virtual-
state poles turn into a pair of resonance poles on the com-
plex  plane.  The  trajectory  is  similar  to  that  of  the  Roy
equation  [15]  and  the  modified  model  [16],
but  now  the  critical  point  ( )  when σ becomes  a
bound state  can  be  determined  analytically  from the  ex-
pression  of  Padé  amplitude.  Note  that  appearance  of
VSIII  is  a  result  of  the σ exchange in  the  crossed  chan-
nels  which  is  the  requirement  of  crossing  symmetry.
However, this effect is not taken into account in the unit-
arized χPT calculations and thus there is no such a virtual
state found there [13].

N∗(920)

Having examined that the σ pole trajectory can be sat-
isfactorily  reproduced  in  the  scheme  of  linear σ model
with Padé unitarization, we are confident to step forward
by  studying  the  pole  trajectory  in  the  linear σ
model with nucleon field, in the next subsection. 

 

Fig. 1.    The tree-level Feynman diagrams contributing to ππ scatterings.

On the pole trajectory of the subthreshold negative parity nucleon with varying pion masses Chin. Phys. C 50, (2026)

1) The numerical code is available upon request.
mσ = 0.8−0.9GeV

mπ = 0.4−0.45GeV
mπ < 0.391GeV

2) This width is slightly lower than that given by PDG. In order to get a larger width, one can tune . But this choice is not satisfactory in another
aspect:  The σ only  turns  into  a  bound state  when ,  which  is  somewhat  larger  than  the  result  of  Ref.  [15],  where  the  bound state  appears  when

 (see Fig. 2). Since in the present paper our purpose is only to obtain a qualitative picture of the pole trajectory, slightly different choices would not
modify the main result of our paper.
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S 11 πNB.     channel of  scattering amplitude
πa(p)+Ni(q)→ πa′ (p′)+N f (q′)For  the  process ,  the

isospin amplitude can be decomposed as: 

T = χ†f

Å
δaa′T++

1
2
[
τa′ , τa

]
T−
ã
χi , (26)

τa a = 1,2,3 χi χ f

I = 1/2,3/2

where  ( )  are Pauli  matrices,  and  ( ) cor-
responds to the isospin wave function of the initial (final)
nucleon  state.  The  amplitudes  with  isospins 
can be written as 

T I=1/2 = T++2T− ,

T I=3/2 = T+−T− . (27)

I = 1/2,3/2
Taking  into  account  of  the  Lorentz  structure,  for  an
isospin indices , the amplitude can be repres-
ented as 

T I = ū(s′) (q′)
ï

AI(s, t)+
1
2

( ̸ p+ ̸ p′) BI(s, t)
ò

u(s)(q), (28)

(s), (s′)

s = (p+q)2, t = (p− p′)2,u = (p−q′)2

s+ t+u = 2m2
N +2m2

π

T (L2I2J)

with  the  superscripts  denoting the  spins  of  Dirac
spinors  and  three  Mandelstam  variables

 obeying the  con-
straint . The channel with orbit angu-
lar  momentum L,  total  angular  momentum J and  total
isospin I denoted as  is defined as: 

T I,J
± = T (L2I2J) = T I,J

++(s)±T I,J
+−(s), L = J∓ 1

2
, (29)

where  the  definition  of  partial  wave  helicity  amplitudes
are written as: 

T I,J
++ = 2mN AI,J

C (s)+
(

s−m2
π−m2

N

)
BI,J

C (s)
 

T I,J
+− = −

1√
s

î(
s−m2

π+m2
N

)
AI,J

S (s)

+mN
(

s+m2
π−m2

N

)
BI,J

S (s)
ó

(30)

with 

F I,J
C/S (s) =

1
32π

∫ 1

−1
dzsF I(s, t)

[
PJ+1/2 (zs)±PJ−1/2 (zs)

]
,

F = A,B (31)

zs = cosθ
T I,J
±

 with θ the  scattering  angle  in  center  of  mass
frame (CM). The PWAs  satisfy unitarity condition:
 

ImT I,J
± (s) = ρ(s,mπ,mN)|T I,J

± (s)|2, s > sR = (mπ+mN)2 .

(32)

πNThe  full  tree-level  amplitudes  of  scatterings  in
LSM are given by three diagrams as depicted in Fig. 3.

A1/2(s, t,u)
B1/2(s, t,u)

Contributions  to  invariant  amplitudes  and
 at tree level read 

A1/2(s, t,u) = − gλv
3(t−m2

σ)
,

B1/2(s, t,u) = −g2
Å

3
s−m2

N
+

1
u−m2

N

ã
. (33)

A1/2,1/2
C/S B1/2,1/2

C/S

According  to  Eq.  (31),  after  partial-wave  projection,
the expressions of  and  are listed as follows,
 

A1/2,1/2
C (s) = − gλv

96πk2

Å
1− (m2

σ+4k2)I(s)
4k2

ã
, (34)

 

A1/2,1/2
S (s) = − gλv

96πk2

Å
1− m2

σI(s)
4k2

ã
, (35)

 

 

mπ

ππ

Fig. 2.    (color online) The trajectory of σ resonance with  variation. The vertical dashed line denotes the physical threshold. Right:
the contribution of σ self-energy correction to  amplitude.

Qu-Zhi Li, Zhiguang Xiao, Han-Qing Zheng Chin. Phys. C 50, (2026)
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B1/2,1/2
C (s)=

g2

32π

Ü
− 6

s−m2
N
+

1
k2

m2
N(s−cL) ln

Å
s(s− cR)

m2
N(s−cL)

ã
4sk4

ê
,

(36)

 

B1/2,1/2
S (s)=

g2

32π

Ü
6

s−m2
N
+

1
k2
−

(s− cR) ln
Å

s(s− cR)
m2

N(s− cL)

ã
4k4

ê
,

(37)

k =
√

sρ(s,mπ,mN)/2with  being  the  magnitude  of  3-mo-
mentum in CM and 

I(s) = ln

Ç(
(m2

π−m2
N)2−2s(m2

π+m2
N)+ s(s+m2

σ)
)

m2
σs

å
. (38)

BC(s) BS (s)
(cL = (m2

N −m2
π)

2/m2
N ,cR = m2

N +2m2
π)

2mπ < mσ < 2mN

I(s)
m2

N −m2
π

 and  contain  the u-cut  in  the  interval
 from  the  logarithmic

term generated by u-channel nucleon exchange, as depic-
ted in  the  3rd diagram in Fig.  3.  When ,
the  function contains circular arc cuts [8] centered at
the origin with a radius of . At one loop, the cir-
cular  cut  emerges  due  to  continuous  two-particle spec-
trum, which covers the circular arc cut.

N/D
N(s)

After partial-wave projection, the perturbative PWAs
will be unitarized by  method1), which boils down to
solving an integral equation about  function: 

N(s) = N(s0)+U(s)−U(s0)+
(s− s0)
π

×
∫ ∞

sR

(U(s)−U(s′))ρ(s′,mπ,mN)N(s′)
(s′− s0)(s′− s)

ds′ . (39)

s0 N(s0)
U(s)

s > sR N(s)

The subtraction point  and subtraction value  can
be chosen appropriately and  function should be ana-
lytic  when ,  such that  only contains left  hand
cuts 

U(s)−U(s′) =
s− s′

2πi

∫
L

discM(s̃)
(s̃− s)(s̃− s′)

ds̃ , (40)

M(s)

U(s)−U(s′)

where the subscript L denotes the left-hand cut where the
integration is  performed.  The  discontinuity  of  the  amp-
litude  need to be an input from the perturbative cal-
culation. Since the dispersion relation of the amplitude on
the left-hand cut essentially gives the amplitude with the
right-hand cut integral subtracted up to a polynomial, we
can use the perturbative amplitude with the right-hand cut
dispersion integral subtracted to estimate  dir-
ectly in the following.

M(s) πN
S 11

The  amplitude  satisfying  the  unitarity  condition  can
be  constructed  as  (we  use  to  represent  scatter-
ing amplitude in  channel): 

M(s) =
N(s)
D(s)

,

D(s) = 1− s− s0

π

∫ ∞

sR

ρ(s′)N(s′)
(s′− s)(s′− s0)

ds′. (41)

(sR,Λ) (sR,∞)
s0 πN sR

(mN +mσ)2

One can  numerically  solve  the  equation  by  inverse  mat-
rix method, after introducing a cutoff Λ such that the in-
tegral  interval  becomes  instead  of .  In  the
following,  and Λ, are fixed at the  threshold , and
the  nearest  inelastic  threshold  in  perturbation
theory,  respectively.  Since  the  once-subtracted disper-
sion  relation  is  used,  the  integrand  above  this  cut  off  is
highly suppressed and the final results would be roughly
independent of this cut off choice.

Mt U(s) Mt(s)
N(s0) Mt(s0) M(s0) = Mt(s0)

mσ 0.55GeV
mσ

mπ (0.94−0.14i)GeV
N∗(920)

mπ

ImW > 0 W ≡ √s

At tree level,  since there is already no right-hand cut
in  tree-level  amplitude ,  we  set  equal  to ,
and  equal  to  which  fixes .
Starting  from  at 2),  we  have  performed  two
sets of calculations: one with fixed  and the other with
fixed λ as  increases.  A pole at  cor-
responding to  can be found on the second sheet
with physical pion and nucleon mass. The pole trajector-
ies on RSII with  increasing for both cases are shown
in Fig. 4 with  ( ) points.

N∗

mπ

The  imaginary  part  of  pole  position  decreases
while  the  real  part  grows  when  increases  in  both

 

Fig. 3.    The tree-level Feynman diagrams contributing to πN scatterings.

On the pole trajectory of the subthreshold negative parity nucleon with varying pion masses Chin. Phys. C 50, (2026)

N/D1) Here  method is used to avoid spurious poles which may present in the amplitude using Padé approximation.
mσ ππ N∗(920)2) Here the  is chosen slightly different from  case, since the  pole is close to the Roy-equation result with this choice.

-7

CPC
 A

cce
pte

d



cR cL

N∗

πN

cases,  causing  the  poles  to  move  toward  the u-cut
bounded by two branch points at  and . Since the two
conjugate  poles on RSII correspond to zeros of the S
matrix on RSI, we consider the zero points in the follow-
ing.  After  the  zeros  reach  the u-cut,  in  principle  there
could be two possibilities: (1) the zeros move away from
each  other  on  the  real  axis  after  collision;  (2)  the  zeros
cross  the u-cut  and  enter  adjacent  sheets  defined  by  the
logarithmic branch of  the u-cut.  However,  we will  show
that the first senario is impossible for  scattering.

N∗

s∗ ∈ (cL,cR) m̃π

s∗

s∗
Im[S (s∗)] = 0 Im[S ′(s∗)] = 0

In the first  senario, if  the  zeros reach the u-cut at
 at  critical  pion mass  and then separate  to

two  virtual  state  zeros,  this  implies  that  must  be  a
second-order zero of the S matrix. A necessary condition
is that  is also a second-order zero of the imaginary part
of S matrix,  i.e.,  and .  The
first condition gives 

2iρ(s∗,mπ,mN)Im[M(s∗)] = 0 , (42)

2iρ(s∗,mπ,mN)

g
u−m2

N

ImMt(s)
Mt(s) ImMt(s) = 0

as  is real on the u-cut. Since the sole con-
tribution to the imaginary part of PWA arises from the u-
channel  nucleon  pole  in the  partial  wave  projec-
tion,  which  is  non-perturbative  and  remains  valid  to  all
orders  of  perturbative  expansions1), the  zero  of  the  ima-
ginary  part  of  PWA on the u-cut  in  general  case  always
coincides  with  tree  level . According  to  the  ex-
pression of , the condition  on the u-cut

is equivalent to 

(mN−mπ−W)(mN+mπ−W)[mN(mN−W)(mN+W)2−m4
π] = 0 ,

W ≡
√

s.

(43)

W∗ ≃ mN −
m4
π

4m3
N

This equation has only one solution at  in-
side u-cut.

Im[S ′(s∗)] = 0

mN(mN −3W)(mN +W)

W ′
∗ = mN/3

Similarly,  requires  that  the  derivative
of  the  left-hand  side  of  Eq.  (43)  vanishes  at  the  same
point.  However,  this  is  impossible:  differentiating  the
left-hand  side  of  Eq.  (43)  yields 
(only consider the term in brackets),  whose only reason-
able root  does not satisfy Eq. (43). Therefore,
the  nonexistence  of  a  second-order  zero  and  only  one
zero in  imaginary  part  of  PWA  excludes  the  first  scen-
ario.

N/D
s∗

In  the  context  of  the  method,  the  zero  point  of
the S matrix at  requires 

1+2iρ(s∗,mπ,mN)M(s∗) =
D(s∗)+2iρ(s∗,mπ,mN)N(s∗)

D(s∗)
= 0 .

(44)

D(s)
ImS = 0

Since  function  is  real  on  the  left-hand cuts,  the  re-
quirement  leads to 

2iρ(s∗,mπ,mN)Im[N(s∗)] = 2iρ(s∗,mπ,mN)Im[Mt(s∗)] = 0 ,

(45)

2iρ(s∗,mπ,mN)

s∗ ImMt(s∗) = 0

Mt(s)
N/D

where  we  have  used  the  fact  that  is  real.
Thus, the necessary condition for the S matrix to vanish at

 is  which is reduced to (43). Note that the
property that the zero of the imaginary part of S matrix on
the u-cut  coincides with that  of  Im  is not  only pre-
served in  method but  also respected by Padé or K-
matrix unitarizations. A proof is provided in App. B.

ππ

It is,  however,  worth  mentioning  that  the  first  scen-
ario we have just excluded is actually what was happen-
ing in the case of  scatterings (see Fig. 5).

N∗

S + S − ±2πi

ln(
s(s− cR)

m2
N(s− cL)

)

N∗

Having  excluded  Case  1,  the  only  possibility  is  that
the  zeros cross the u-cut and enter adjacent Riemann
sheets defined by the u-cut. To trace the zeros further, the
S matrix must be analytically continued onto these sheets.
The  analytically  continued S matrix  from  the  upper
(lower)  half-plane  to  the  adjacent  lower  (upper)  half-
plane,  ( ),  can  be  obtained  by  adding  to  the

logarithmic  function  in  the  unitarized S
matrix on RSI.  Therefore,  after  crosses the u-cut,  we

 

N∗(920) mπ

0.27GeV
mσ Im[W] > 0

Im[W] < 0 S +

mπ = 0.236GeV 0.253GeV
2GeV2

3GeV2

Fig.  4.    (color online) The  trajectories  of  as 
ranges  from  the  physical  value  to  for  both  cases  of
fixed  and fixed λ at  tree level.  The points  with 
are the zeros (RSI) of S matrix for different pion masses and
those with  are the zeros of the  function (see the
text).  The  vertical  dashed  lines  correspond  to  roots  obtained
by solving equation (43) for  and , re-
spectively. We also tested the cases with cut offs at  and

 respectively  and  found  no  distinguishable  differences
in the results.

Qu-Zhi Li, Zhiguang Xiao, Han-Qing Zheng Chin. Phys. C 50, (2026)

1) The circular cut does not affect the imaginary part of PWA on the u-cut despite intersecting it.
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S +
S −

Im[S ]
S + mπ

mσ

should  find  the  zero  of  on  the  adjacent  lower  half-
plane or the zero of  on the upper adjacent  half-plane
to  continuously  trace  the  trajectories. Fig.  4 shows  how
the zeros approach the u-cut,  cross it  at the critical point
(marked by vertical  dashed lines  in Fig.  4)  where 
vanishes, and subsequently become the zeros of  as 
increase for both schemes: fixed  and fixed λ.

S II

Notably,  tracing  the  poles  across  the u-cut  starting
from  RSII  is  consistent  with  tracing  the  zeros  starting
from RSI. The  (S matrix on the RSII) is defined 

S II(s) =
1

S (s)
. (46)

ln
Å

s(s− cR)
m2

N(s− cL)

ã
S II(s)

Modifying  the  logarithmic  function  in
 similarly results in 

S II
± (s) =

1
S ±(s)

. (47)

S ± S II
±Therefore, the zeros of  correspond to the poles of .

W =W∗

In above, we have actually established a mathematic-
al theorem: if the zero reaches the u-cut, it must meet the
cut at  defined by Eq. (43), and will cross onto the

N∗

N∗

(cR, sR)

adjacent  sheet. Nevertheless,  this  theorem  does  not  tell
why the pole should move toward the real axis. Then the
next question  becomes  whether  the  zero  will  ever  ap-
proach the u-cut and why. At tree level, the  resonance
does reach the u-cut. However, there may still exist other
possibilities for the  pole of the full amplitude: it could
move  onto  the  real  axis  within  the  interval  out-
side  the u-cut,  or  it  may  even  never  touch  the  real  axis.
To further  explore these possibilities,  we extend the cal-
culations to one-loop level in the following.

N(s0)
Mt(s0)+Ml(s0) U(s)

At  one-loop  level,  parameter  is  set  equal  to
 and  is written as: 

U(s) = Mt(s)+Ml(s)− s
π

∫
sR

ρ(s′,mπ,mN)M2
t (s′)

s′(s′− s)
ds′ , (48)

Ml(s)

U(s)
(sR, (mN +mσ)2)

with  the one-loop correction to the PWA. The full
one-loop amplitude has been known for a long time [32],
and after partial wave projection, the PWA is too long to
be  presented  here1). The  third  term  in  the  above  expres-
sion  ensures  to  be  analytic  in  the  interval

 and consistent with perturbative unitarity: 

ImMl(s) = ρ(s,mπ,mN)|Mt(s)|2, s > sR . (49)

 

ππ

mπ

Fig. 5.    (color online) The S matrix values for  scatterings between the left hand cut and the threshold using the results of the previ-
ous section. Initially, no S-matrix zeros exist in this region (upper-left subfigure). As  increases, a virtual-state zero (VSIII) emerges
from the left-hand cut (upper-right). The sigma resonance turns into virtual-state zeros when the S matrix's local minimum contacts the
real  axis,  generating a  second-order  zero  precisely  at  this  point.  Subsequently,  the  two virtual-state  zeros  (VSI  and VSII)  split  apart
along the real axis (lower-left). VSI later becomes a bound-state pole of the S-matrix, leaving two virtual-state zeros (VSII and VSIII).
These two zeros then coalesce on the real axis and move into the complex plane as resonance zeros (lower-right).

On the pole trajectory of the subthreshold negative parity nucleon with varying pion masses Chin. Phys. C 50, (2026)

1) The code is also available upon request.
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(mσ+mN)2

Λ = (mN +mσ)2

(sR, (mN +mσ)2)

The nearest inelastic cut in the one-loop amplitude is
above  in real  axis,  and thus we fix the cutoff

 such that  the  unitarized  amplitude  satis-
fies  the  single  channel  unitary  condition  in  the  interval

.
(0.92−0.15i)GeV N∗(920)A pole at  corresponding to 

N∗(920)
mπ

N∗(920)

mπ

can be found on the second sheet with physical pion and
nucleon masses.  The  pole  trajectories  of  for  the
tree  level  and  the  one-loop  level  as  increases  are
shown in Fig.  6.  At  one-loop level,  the trend of 
trajectories is  similar  to  that  at  tree  level:  both  move to-
ward  the  real  axis  in  the  beginning.  However,  when 

 

N∗(920) mπ 0.138GeV
0.360GeV (sL,cL)

(cR, sR)

Fig.  6.    (color online) Up: The dot  points  and triangle points denote the trajectories of  with  variation from  to
, at one-loop level and tree level for fixed λ, respectively. Down: the values of S matrix at one-loop level in intervals 

and  on the first Riemann sheet. The red solid lines in the middle of the dashed lines denote the u-cuts.

Qu-Zhi Li, Zhiguang Xiao, Han-Qing Zheng Chin. Phys. C 50, (2026)
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mπ = 0.36GeV mπ

mπ

mN fπ
mπ

gets  larger,  the  difference  emerges.  The  one-loop  zero
does not seem likely to fall onto the real axis at least up to

.  We  do  not  further  test  larger  since
chiral expansions, which constrains the  dependence of

 and  in  our  calculations,  may  become  more  and
more inaccurate at larger .

(sL = (mN −mπ)2,cL) (cR, sR)

sL sR

cL cR

sR sL

mπ

We also studied the behavior of the two virtual states
[33] lying in the interval  and ,
respectively. The values of S matrix calculated with one-
loop level input in the two intervals on the first Riemann
sheet  are  plotted  in Fig.  6,  which  demonstrates  the  fact
that  the S matrix  equals  to  unity  at  and  by defini-
tion while it  tends to negative infinity when s is close to
the two branch points  and . As a result, a zero point
inside  each  interval  occurs.  The  calculation  reveals  that
the  virtual  states  move  toward  or  with  increasing

. 

IV.  DISCUSSIONS AND CONCLUSIONS

N∗(920) mπ

mπ fπ mN

In this paper we have studied the σ pole trajectory and
the  pole trajectory with varying , in a linear σ
model with  nucleons,  aided  by  certain  unitarization  ap-
proximations. The  dependence of  and  from the
χPT are also taken into account,  which renders the LSM
more  reasonable  in  approximating  the  low energy QCD.

N∗(920)
N∗(920)

mπ

N∗(920)
mπ = 0.36GeV

πN

πN

N∗

πN

N∗(920)

The σ pole  trajectory  is  found  to  be  in  agreement  with
previous studies [15, 16]. The result on  pole tra-
jectory is  novel.  At  tree  level,  the  pole  is  found
to move towards the u-cut on the real axis on the second
Riemann  sheet  with  increasing ,  ultimately  crossing
the u-cut and entering the adjacent Riemann sheet defined
by the u-cut. At one-loop level, however, the  still
stays  on  the  complex-plane  at  and  even
higher  values.  The  intricate  analytical  structure  of 
PWAs, including the circular cut and u-cut, which stems
from the the dynamical complexity of  interactions, in-
crease  the  difficulty  for  predictions  on  the  final  fate  of

.  The  results  presented  in  this  paper  can  be  useful  in
comparison with future lattice studies on  scatterings.
The next  interesting  topic  for  future  studies  would  be  to
investigate the  pole trajectory in the presence of
temperature  and  chemical  potential,  and  the  old  concept
of parity  doublet  model  may  return  with  some  new  in-
gredients. 

APPENDIX A: THE EXPRESSIONS OF COUNTER
TERMS AND RENORMALIZATION CONSTANTS

The counter terms and renormalization constants take
following forms up to one-loop level,

 

Zϕ = 1− g2

4π2

(
B0

(
m2
π,m

2
N ,m

2
N

)
+m2

πB′0
(
m2
π,m

2
N ,m

2
N

))
− λ2v2

144π2
B′0

(
m2
π,m

2
π,m

2
σ

)
, (A1)

 

ZF = 1− g2

32π2m2
N

(
3m2

πB0
(
m2

N ,m
2
π,m

2
N

)
+m2

σB0
(
m2

N ,m
2
N ,m

2
σ

)
−3A0

(
m2
π

)
+4A0

(
m2

N

)
−A0

(
m2
σ

))
+

g2

16π2

(
3m2

πB′0
(
m2

N ,m
2
π,m

2
N

)
+m2

σB′0
(
m2

N ,m
2
N ,m

2
σ

)
−4m2

N B′0
(
m2

N ,m
2
N ,m

2
σ

))
, (A2)

 

Zg = 1+
g2

16π2m2
N

(
−3m2

πB0
(
m2

N ,m
2
π,m

2
N

)
−m2

σB0
(
m2

N ,m
2
N ,m

2
σ

)
+3A0

(
m2
π

)
−4A0

(
m2

N

)
+A0

(
m2
σ

))
+

g2

16π2

(
2B0

(
m2

N ,m
2
N ,m

2
σ

)
+3m2

πB′0
(
m2

N ,m
2
π,m

2
N

)
+m2

σB′0
(
m2

N ,m
2
N ,m

2
σ

)
−4m2

N B′0
(
m2

N ,m
2
N ,m

2
σ

))
, (A3)

 

δm2
π =

λ2v2

144π2

(
B0

(
m2
π,m

2
π,m

2
σ

)
−m2

πB′0
(
m2
π,m

2
π,m

2
σ

))
+

λ

96π2

(
5A0

(
m2
π

)
+A0

(
m2
σ

))
− g2

4π2

(
m4
πB′0

(
m2
π,m

2
N ,m

2
N

)
+2A0(m2

N)
)
, (A4)

 

δm2
σ =

λ2v2

π2

Ç
ReB0

(
m2
σ,m

2
π,m

2
π

)
96

+
B0

(
m2
σ,m

2
σ,m

2
σ

)
32

−
m2
σB′0

(
m2
π,m

2
π,m

2
σ

)
144

å
+

λ

32π2

(
A0

(
m2
π

)
+A0

(
m2
σ

))
− g2m2

σ

4π2

(
B0

(
m2
π,m

2
N ,m

2
N

)
−B0

(
m2
σ,m

2
N ,m

2
N

)
+m2

πB′0
(
m2
π,m

2
N ,m

2
N

))
− g2

4π2

(
2A0

(
m2

N

)
+4m2

N B0
(
m2
σ,m

2
N ,m

2
N

))
.

(A5)
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A0(m2)
B0(p2,m2

1,m
2
2)

The definitions of 1-point function  and 2-point
function  are expressed as 

A0(m2) ≡ −16π2i
∫

d4k
(2π)4

1
k2−m2

,

B0(p2,m2
1,m

2
2) ≡ −16π2i

∫
d4k

(2π)4

1
(k2−m2

1)[(p+ k)2−m2
2]
.

(A6)

B′0  denotes the  derivation  with  respect  to  the  first  argu-
ment. 

APPENDIX B: THE ZERO OF IMAGINARY PART
OF S MATRIX IN OTHER UNITARY MODELS

M(s)In [1,1] Padé approximant, the ampltiude  

M(s) =
M2

t (s)
Mt(s)−Ml(s)

. (B1)

Im[Ml(s)] = Im[Mt(s)]
M(s) Mt(s)

The  fact  that  on  the u-cut  causes
the zero of Im  to be the same as that of Im  on
the cut. As to the K-matrix, the amplitude is given by1)
 

M−1(s) = M−1
t (s)− B̃(s),

B̃(s) = b0+
s− s∗
π

∫
sR

ρ(s′,mπ,mN)
(s′− s∗)(s′− s)

ds′ . (B2)

S (s)Then, the Im  on the u-cut reads:
 

ImS (s) = Im
ï

1− B̃(s)Mt(s)+2iρ(s,mπ,mN)Mt(s)
1− B̃(s)Mt(s)

ò
=

2iρ(s,mπ,mN)ImMt(s)
1− B̃(s)(M∗t (s)+Mt(s))+ B̃2(s)|Mt(s)|2 ,

s ∈ (cL,cR) . (B3)

Again, we get the same conclusion.
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