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Abstract: High-precision regression of physical parameters from black hole images generated by General Relativ-
istic Ray Tracing (GRRT) is essential for investigating spacetime curvature and advancing black hole astrophysics.
However, due to limitations in observational resolution, high observational costs, and imbalanced distributions of
positive and negative samples, black hole images often suffer from data scarcity, sparse parameter spaces, and com-
plex structural characteristics. These factors pose significant challenges to conventional regression methods based on
simplified physical models. To overcome these challenges, this study introduces Multiscale Adaptive Network
(MANet), a novel regression framework grounded in deep learning. MANet integrates an Adaptive Channel Atten-
tion (ACA) module to selectively enhance features in physically informative regions. Meanwhile, a Multiscale En-
hancement Feature Pyramid (MEFP) is employed to capture fine-grained spatial structures such as photon rings and
accretion disks, while alleviating information loss due to downsampling. Experimental evaluations on GRRT-simu-
lated datasets demonstrate that MANet substantially improves parameter estimation accuracy and generalization cap-
ability in high-dimensional parameter spaces, outperforming existing baseline approaches. This framework presents
a promising avenue for high-precision parameter regression in Event Horizon Telescope (EHT) data analysis and

broader astrophysical imaging applications characterized by sparse and noisy data.
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I. INTRODUCTION

In recent years, the Event Horizon Telescope (EHT)
successfully imaged the supermassive black holes Sagit-
tarius A* and M87 [1-3], providing valuable observa-
tional evidence for the study of strong gravitational fields
and general relativity. These images reveal the black hole
shadow, photon rings, and accretion disk radiation struc-
tures, which contain information about spacetime geo-
metry, plasma conditions, and gravitational dynamics
[4-8]. Inverting physical parameters from such
images—such as black hole spin, accretion disk thick-
ness, and electron temperature —not only helps recon-
struct electromagnetic processes near the black hole but
also offers important tests of general relativity and in-
sights into black hole formation and evolution [9—11].

With the development of General Relativistic Ray
Tracing (GRRT) simulations [12—14], researchers can
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generate high-fidelity synthetic black hole images for
modeling purposes. However, the limited observational
resolution and high cost of data acquisition have resulted
in sparse datasets and a highly nonlinear parameter space,
both of which pose significant challenges to accurate re-
gression. Traditional regression methods predominantly
rely on physics-based models that compare GRRT-simu-
lated images with observational data to infer black hole
parameters. Common approaches include forward model-
ing combined with grid search, where parameter spaces
are exhaustively sampled to identify best-fit models [15];
and Bayesian inference methods, which incorporate prior
knowledge and probabilistic frameworks to estimate pos-
terior distributions of parameters [16, 17]. Although these
methods provide interpretability, they depend on ideal-
ized assumptions about accretion disk structure, magnet-
ic field configuration, and radiation mechanisms, which
may not fully capture the complexities of real observa-
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tions [18—21]. Moreover, the computational cost of dense
sampling in high-dimensional parameter spaces limits the
efficiency and scalability of these methods. Under condi-
tions of limited resolution and noisy data, such ap-
proaches are sensitive to initialization and may converge
to local optima or produce nonphysical results. The non-
linear coupling of black hole image features further com-
plicates explicit modeling, restricting the ability to cap-
ture detailed structures and maintain regression robust-
ness [22].

Deep learning approaches have demonstrated strong
capabilities in nonlinear modeling and feature extraction
across various computer vision tasks, such as classifica-
tion, recognition, and regression [23—27]. Convolutional
neural networks (CNNs) can learn complex mappings
between images and parameters from data, improving
prediction accuracy and efficiency [28]. Compared with
traditional physics-based methods, deep learning reduces
modeling bias and improves performance in the presence
of observational noise and limited data, making it particu-
larly suitable for black hole image-based parameter es-
timation [29-31].

However, the particular characteristics of black hole
images pose challenges for training and generalization.
Key physical structures such as photon rings [32] are
subtle and sensitive to noise, complicating feature extrac-
tion [33, 34]. Additionally, current GRRT-based synthet-
ic datasets are relatively small for deep network training,
increasing the risk of overfitting and limiting the ability
to capture complex physical phenomena. Therefore, it is
essential to design an efficient neural network architec-
ture adapted to the specific characteristics of black hole
imaging data to enhance regression performance.

To address these challenges, we propose a Multiscale
Adaptive Network (MANet) that enhances modeling ca-
pacity and prediction robustness for black hole image
parameter regression. MANet adopts a ResNet backbone
and integrates two key modules in intermediate layers
[35]: a Multiscale Enhancement Feature Pyramid (MEFP)
and an Adaptive Channel Attention (ACA) mechanism.
MEFP fuses spatial features across multiple scales to bet-
ter represent multilayered structures such as photon rings
and accretion disks, mitigating information loss caused
by downsampling. ACA dynamically adjusts channel
weights to enhance feature responses in important physic-
al regions, filtering redundant information and improving
feature discrimination. Ablation studies indicate that both
modules contribute to performance improvements inde-
pendently, and their combination yields further gains. Ex-
periments under simulated observational noise show that
MANet maintains stable performance and generalization.
Even with limited GRRT training data, MANet effect-
ively captures complex physical features, demonstrating
its applicability in data-constrained scenarios.

This paper is organized as follows. Sec. 2 introduces

the proposed MANet, detailing its overall architecture
and two key components: the ACA mechanism and the
MEFP. MANet aims to overcome the challenges to high-
precision physical parameter regression posed by limited
observational resolution, costly observations leading to
sparse and uneven data, and the intrinsic complexity of
black hole images. Sec. 3 presents the experimental set-
tings and comprehensive analyses. It includes the dataset
and preprocessing pipeline, evaluation metrics, and a
comparison of different learning rate scheduling
strategies. Visual interpretations of attention-induced ac-
tivations are provided to examine how the model focuses
on key relativistic structures such as photon rings and ac-
cretion disks. In-addition, ablation studies are conducted
to quantify the contributions of individual modules, while
robustness evaluations under simulated observational
noise further assess the model’s stability in astrophysic-
ally realistic. scenarios. Sec. 4 concludes the paper and
outlines future directions.

II. PROPOSED METHOD

To accurately invert physical parameters from black
hole images, we propose the MANet, a deep convolution-
al architecture built upon a ResNet backbone. As illus-
trated in Figure 1, MANet retains the hierarchical feature
extraction capabilities of ResNet, while embedding two
specialized modules: ACA and MEFP. The ACA module
adaptively highlights informative feature channels, while
MEFP captures multiscale spatial structures crucial for
robust physical parameter regression. The enhanced fea-
tures are fused with the original residual representation
via a learnable channel-wise gating mechanism, enabling
the model to adaptively balance raw and enriched inform-
ation for robust parameter regression.

A. Adaptive Channel Attention

In the context of black hole image parameter regres-
sion, the complexity and variability of physical fea-
tures —such as relativistic beaming-induced brightness
asymmetries and jet boundaries—require the model to se-
lectively enhance channels that encode critical diagnostic
information. This motivates the introduction of an adapt-
ive channel attention module that adaptively learns to as-
sign dynamic importance weights to feature channels
based on global contextual information extracted via
global average pooling. Figure 2 illustrates the internal
structure of the ACA module.

Given an input feature map F € RV we compute
a channel-wise descriptor by averaging over spatial di-
mensions:

z = GlobalAvgPool(F) € R® (1)
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Fig. 2. Architecture of the ACA module.

This descriptor is passed through a fully connected
layer to produce channel-wise attention weights:

a=FC(z) eR® )

After reshaping to RE**!, the attention weights are
broadcast across spatial dimensions and applied to the in-
put feature map:

Fan=F-(a-a) 3)
where @ €[0,1] is a learnable scaling factor controlling
the attention strength. This adaptive reweighting enables
the model to dynamically emphasize channels corres-
ponding to physically meaningful regions, improving in-
terpretability and robustness under complex astrophysic-
al conditions.

The attention-enhanced feature map F,y, is then
passed through the MEFP module to extract rich spatial

information across multiple scales, producing Fygpp.

To balance the original features and the enhanced
multiscale features, a learnable gating parameter g € R€ is
introduced. The final output Fyy.q is computed as:

Foaea = 0(g) - Fyerp + (1 —0(9)) - F “4)
where o(-) denotes the sigmoid activation applied chan-
nel-wise. This gating mechanism allows the network to
adaptively fuse the original and enhanced features, ensur-
ing that the most informative representation is emphas-
ized for accurate black hole parameter regression.

B. Multiscale Enhancement Feature Pyramid

Black hole images generated by GRRT simulations
contain structural features spanning multiple spatial
scales. The photon ring appears as a thin, high-contrast
boundary, whereas the accretion disk manifests broader,
smoother intensity variations. Additionally, relativistic
beaming and gravitational lensing create complex emis-
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sion patterns distributed across different receptive fields.
When extracting features of certain key physical paramet-
ers that are not clearly observable—such as black hole
spin and disk inclination—it is crucial to capture informa-
tion at both fine and coarse spatial scales.

To address this challenge, we propose the MEFP
module. Given an input feature map F,,, € RV pro-
duced by the preceding attention mechanism, where C is
the number of channels and H,W denote spatial dimen-
sions, MEFP employs three parallel convolutional
branches with distinct kernel sizes to capture multiscale
information.The multi-scale feature extraction design of
MEFP is shown in Figure 3.

The first branch applies a 1x1 convolution with
weights W, and bias b, followed by a nonlinear activa-
tion () (e.g., ReLU), producing

Fy = (W) Fap +b1), Fy e ROV ®)

This branch preserves local spatial details critical for
detecting sharp edges such as the photon ring.

The second branch captures medium-scale context by
sequentially applying a 1x1 convolution W",b" for
channel reduction, followed by a 3x3 _convolution
W, b with padding 1 to maintain spatial dimensions:

Fy =0 (W 5 (W3 % Fan + b3") + b5, Fy e RV (6)

This branch extracts features related to mid-scale spa-
tial patterns, such as the photon ring’s thickness and loc-
al asymmetries.

The third branch extracts coarse-scale features by ap-
plying a 1x1 convolution W",b{", followed by a 5x5

convolution W”,5 with padding 2:

F3 =0 (WY 5 (Wi % F oy + B5)) + B5), F3 e ROV (7)

This branch captures large receptive field informa-
tion encompassing broad emission patterns and global
spatial context of the accretion disk.

Because the convolutional branches use kernel-size-
specific zero-padding (0 for 1x1, 1 for 3x3, and 2 for
5x5), all output feature maps F;,F,, F; retain identical
spatial dimensions H x W. This alignment enables their
direct concatenation along the channel dimension:

Feoncar = Concat| Fy, Fa, F5] € R*V ®)

Finally, a 1x 1 convolution with weights W, and bias
by fuses the concatenated features and reduces the chan-
nel dimension back to C:

Fyerp = O(Wys Feopear + by), Fyerp € ROHW

)
By integrating information across multiple receptive
fields, MEFP mitigates the loss of critical spatial details
caused by, fixed kernel sizes and downsampling. It pre-
serves fine-grained structures like the sharp photon ring
edges while simultaneously capturing broader accretion
disk morphology. This enriched feature representation en-
hances the model’s ability to regress black hole physical
parameters accurately, reflecting the complex spacetime
geometry and accretion physics encoded in the images.

III. EXPERIMENTS AND ANALYSIS

A. Dataset and Pre-processing

To construct a dataset tailored for black hole image
parameter regression, we employ GRRT simulations to
generate high-fidelity synthetic images that faithfully
capture radiation from accretion flows under strong grav-
itational fields. GRRT enables precise treatment of light
propagation effects such as gravitational lensing and
Doppler beaming, ensuring that the simulated images are
consistent with realistic observational conditions, such as
those of the M87 black hole.

Each image in our dataset simulates a 230 GHz obser-
vation with a field of view of 128 x 128 microarcseconds
and a 256 x 256 pixel resolution, reflecting commonly ad-
opted settings in GRRT simulations related to the Event
Horizon Telescope. The observer inclination is fixed at
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Fig. 3. Architecture of the MEFP module.

4



Physical parameter regression from black hole images via a multiscale adaptive neural network

Chin. Phys. C 50, (2026)

163°, and the total flux of each image is normalized to 0.5
Jy for consistency.

To ensure broad coverage of the physical parameter
space, we uniformly sample six key parameters: black
hole spin, mass, electron temperature, disk thickness,
Keplerian velocity factor, and position angle, while ran-
domly setting the disk rotation direction. In total, we gen-
erate 2157 images, each annotated with corresponding
ground-truth physical parameters, forming a comprehens-
ive dataset suitable for training and evaluating regression
models. The ranges of these physical parameters are lis-
ted in Table 1, which provides an overview of the
sampling space for GRRT-based simulation.

Table 1. Physical Parameters Sampled for GRRT-Based
Black Hole Image Simulation and Their Value Ranges

Parameter Symbol Range
Black hole spin a [-1,1]
Black hole mass Mpy [2x10°M5,10'0M)
Electron temperature T, [10°K,1012K]
Accretion disk thickness haisk [0.1,0.8]
Keplerian factor k [0,1]
Position angle PA [0°,360°]

To ensure effective learning in black hole image para-
meter regression, it is critical to address the disparity in
scale and units across physical parameters. Directly feed-
ing raw values into the model may lead to instability or
gradient inefficiency due to magnitude imbalances. To
mitigate this, we adopt a standardization strategy that nor-
malizes each parameter dimension to a standard normal
distribution with zero mean and unit variance. This fol-
lows established practices in scientific data regression
and ensures scale consistency across parameters.

Given the k-th physical parameter set xi,x,,...,x,, We
compute the empirical mean and standard deviation as:

1)‘! 1 n
ﬂk=;;)@', O = m;(xi—/lk)z (10)

Each sample is then standardized by:

Xr— My
Zr = 77
o

re{l,2,...,6) (11)

This transformation not only improves training stabil-
ity and convergence by eliminating scale-induced biases
but also enhances the model’s ability to learn joint repres-
entations across heterogeneous physical quantities. Im-
portantly, the transformation is reversible—original phys-

ical values can be recovered from predicted outputs us-
ing stored normalization statistics, preserving interpretab-
ility and physical significance.

In our implementation, normalization is applied inde-
pendently to each parameter category to avoid domin-
ance by parameters with larger magnitudes. This para-
meter-wise standardization ensures balanced gradient
flow and improves the model’s capacity to extract cross-
scale physical features relevant to GRRT-simulated black
hole images.

To facilitate model training and evaluation, the data-
set is partitioned into training, validation, and test subsets.
The dataset comprises 2157 GRRT-simulated black hole
images annotated with corresponding physical paramet-
ers.

Following standard machine learning protocols, we
allocate 1725 samples (80.0%) for training, 216 samples
(10.0%) for validation, and 216 samples (10.0%) for test-
ing. The training set is used for iterative model optimiza-
tion, the validation set guides hyperparameter tuning, and
the test set provides an independent assessment of the
model’s generalization performance.

To prevent distributional shifts and ensure statistical
consistency across subsets, we adopt stratified random
sampling. This ensures that critical physical
parameters—such as black hole mass and accretion disk
thickness —are uniformly distributed across the splits,
thereby minimizing potential evaluation bias and pre-
serving the representativeness of each subset. This en-
sures fair evaluation of model generalization and sup-
ports reliable performance benchmarking in subsequent
experiments.

B. Evaluation indicators

In black hole image parameter regression tasks, ac-
curately assessing model performance and interpretabil-
ity requires appropriate evaluation metrics. The coeffi-
cient of determination, denoted as R?, is widely adopted
as the primary metric because it effectively quantifies the
proportion of variance in the target parameters explained
by the model [36, 37].

Mathematically, R? is defined as:

. > 0i=9)

Z; i=3)°

where y; is the true value of the i-th sample, J; is the pre-

dicted value from the model, and V= *Z}i i is the
n i=1

mean of the true values over all samples.

This metric provides an interpretable measure of
goodness-of-fit, with values closer to 1 indicating better
explanatory power of the model on the variability of
physical parameters.

(12)
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C. Learning Rate Scheduling Strategy Selection:
Cosine Annealing

In GRRT-simulated black hole image regression
tasks, we compared four prevalent learning-rate sched-
ules —constant rate, step decay, exponential decay and
cosine annealing —and observed that cosine annealing
substantially outperformed the others in validation R?.
The initial gentle decay phase of cosine annealing pre-
serves a high learning rate for extensive global explora-
tion of the intricate, multiscale spacetime features in
black hole images, thereby avoiding premature conver-
gence to suboptimal solutions. Its mid-training rapid re-
duction concentrates parameter updates in promising re-
gions, accelerating convergence and improving optimiza-
tion efficiency. Finally, the late slow taper facilitates pre-
cise fine-tuning, enhancing the accuracy of subtle space-
time curvature estimations.

Under a unified experimental setup with an initial
learning rate of 9x 10~*, 500 training epochs and identic-

al train/validation splits, Table 2 summarizes the R* per-
formance of each learning rate schedule across six target
parameters and Figure 4 illustrates the learning rate and
loss dynamics for parameter a, shown here as a represent-
ative case.

As shown in Table 2, cosine annealing consistently
achieves the highest R?> scores across all six physical
parameters. For T, and hy;y—parameters that are particu-
larly sensitive to high-frequency image details—the relat-
ive improvements. reach 1.3% and 1.1%, respectively,
compared to the best alternative. Moreover, for PA,
which encodes orientation-related information, cosine an-
nealing surpasses-step-decay by more than 10%. These
improvements. demonstrate that the cosine learning rate
schedule is better suited to the intricate, multi-modal op-
timization landscape characteristic of GRRT-based re-
gression tasks.

Figure 4 shows the training dynamics for parameter a
as.a representative example. Among the four learning rate
scheduling strategies compared, the final loss values are

Table 2. R? Scores for Various Learning Rate Schedules in Black Hole Parameter Regression

a T, haisk Mgy k PA
Constant Rate 0.9866 0.8253 0.8910 0.9980 0.9691 0.8987
Step Decay 0.9881 0.9836 0.9653 0.9987 0.9583 0.8565
Exponential Decay 0.9582 0.9943 0.9841 0.9986 0.9534 0.8182
Cosine Annealing (ours) 0.9906 0.9969 0.9927 0.9993 0.9725 0.9602
Constant Rate Step Decay
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Fig. 4. Training Dynamics of Learning Rate and Loss Under Different Scheduling Strategies.(Shown for Parameter a) Loss is plotted
on a logarithmic scale to better illustrate convergence across several orders of magnitude.
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as follows: constant rate achieves a loss of 1.838x 1073,
step decay 2.285x 1073, exponential decay 8.843x 1074,
while cosine annealing achieves the lowest loss of
3.618x 107>, This indicates that cosine annealing enables
more effective optimization and better convergence in
black hole parameter regression tasks.

D. Visual Interpretation of the Attention Mechanism

To qualitatively assess how the adaptive channel at-
tention mechanism influences spatial feature localization
in black hole image regression, we employ Gradient-
weighted Class Activation Mapping (Grad-CAM)
[38—40] to generate activation heatmaps. These visualiza-
tions highlight the input regions contributing most to the
model's predictions, offering insight into how attention
reshapes feature weighting in alignment with physical
structures. This is particularly relevant for GRRT-simu-
lated black hole images, which exhibit bright compact
features such as the photon ring and inner accretion disk,
surrounded by diffuse backgrounds.

As shown in Figure 5, comparing activation patterns
between the baseline and attention-enhanced models re-
veals meaningful differences. The baseline model already
demonstrates reasonable localization of the black hole
structure, typically activating circular or wide ring-shaped
regions. However, with the introduction of the attention
mechanism, the model produces more structured and spa-
tially selective heatmaps. The broad activation-ring be-
comes thinner and more sharply delineated, occasionally
fragmenting into arc-like segments that more precisely
trace the morphology of the photon ring ‘and the high-
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emission regions of the accretion disk.

These localized, high-gradient zones encode key
physical information such as black hole spin, viewing
angle, and accretion dynamics. By concentrating atten-
tion on these critical structures, the model enhances its
ability to capture physically informative representations,
leading to improved regression accuracy and stronger
alignment between learned features and the underlying
spacetime geometry.

E.  Ablation Experiments

To evaluate the synergistic contribution of the
Multiscale Enhancement Feature Pyramid MEFP and the
attention module to the performance of black hole image
parameter regression, we conducted a series of ablation
experiments. Starting from the complete network, we suc-
cessively . removed the MEFP module and the attention
mechanism to construct reduced variants. All experi-
ments were carried out under the same training configura-
tion and data partition as described in the previous sec-
tions, with the coefficient of determination R? used as the
evaluation metric across six physical parameters derived
from GRRT-simulated black hole images. The results of
these experiments are summarized in Table 3, enabling a
controlled assessment of how each architectural compon-
ent influences the model’s overall regression perform-
ance.

As presented in Table 3, both the MEFP module and
the channel attention mechanism independently contrib-
ute to performance gains across all six regression targets.
When the MEFP is added to the baseline ResNet50, the
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T, = 9.64e + 11 T, = 8.94e + 11 T, = 9.63¢ + 11
A~ < L -
) 0.83
Mgy = 7.03e +9 Mpy = 7.81e +9 Mgy = 6.16¢ +9 g
8
0.6.5
=
=
3=
haise = 0.381 Raisie = 0.352 haise = 0.173 0.4 g
k = 0.590 k = 0.849 k=0638 b5
B \ ~
) ) ) 0.2<
) w
PA =27.00 PA = 168.00 PA =131.00
0.0

Fig. 5. Activation Heatmaps Comparing Baseline and Attention-Enhanced Models for Black Hole Image Parameter Regression. Each
column presents two heatmaps derived from the same input image and identical ground truth parameters. For readability, the upper im-

age (baseline model) displays three of the parameters, while the lower image (with attention model) displays the remaining three. A

color scale representing relative activation intensity is included to facilitate interpretation of the spatial focus of each model.

Table 3. R? performance comparison of MANet and ablated variants on simulated black hole datasets
a T, haisk Mpn k PA
ResNet50 0.9359 0.9284 0.9708 0.9986 0.9556 0.8569
ResNet50+MEFP 0.9887 0.9819 0.9871 0.9992 0.9603 0.9181
ResNet50+ACA 0.9864 0.9759 0.9912 0.9990 0.9561 0.9459
MANet (ours) 0.9906 0.9969 0.9927 0.9993 0.9725 0.9602
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R? score for electron temperature 7, increases from
0.9284 to 0.9819—a significant gain of 0.0535. Similarly,
hgis improves from 0.9708 to 0.9871, highlighting the
module’s strength in capturing hierarchical spatial cues.
This suggests that MEFP is particularly effective for
parameters governed by multiscale morphological gradi-
ents, as commonly found in GRRT-generated accretion
flows.

The attention module, on the other hand, delivers the
most pronounced improvements in parameters like spin a
and position angle PA. For example, the R*> for PA rises
from 0.8569 to 0.9459—an absolute increase of 0.089—
indicating its ability to enhance directional signals and
suppress irrelevant background emissions through adapt-
ive channel-wise reweighting.

When both modules are integrated into the full
MCNet architecture, the model achieves consistent and
superior results across all parameters. Notably, the R?
values reach 0.9906 for a, 0.9969 for T,, and 0.9602 for
PA, outperforming all ablated variants. This synergy
between multiscale feature abstraction and attentive re-
finement enables the model to better disentangle .com-
plex emission patterns, leading to more robust and phys-
ically accurate parameter estimations under realistic im-
age conditions.

F. Robustness Evaluation Under Simulated
Observational Noise

In practical astronomical observations, imaging data
inevitably suffer from various noise sources due to instru-
ment limitations and environmental factors. To realistic-
ally simulate these unavoidable noise disturbances and
further evaluate the robustness of the proposed frame-
work under real-world imaging conditions, we conducted
additional experiments by introducing Gaussian noise to
the test images. Gaussian noise is a common artifact in
image acquisition, particularly in high-sensitivity astro-
nomical observations, where signal instability and instru-
mental interference are prevalent. In this study, we injec-
ted zero-mean Gaussian noise with standard deviations of
10 and 20—referred to as Gauss10 and Gauss20, respect-
ively—into the test set to simulate varying levels of sig-
nal degradation typically encountered in practical scenari-
os [41-44].

Figure 6 presents representative examples before and

after noise injection, while Table 4 reports the R> scores
for different models across six physical parameters under
each noise condition.

Experimental results, as shown in Table 4, indicate
that under moderate noise conditions (Gauss10), the pro-
posed MANet maintains high regression accuracy across
all parameters, demonstrating robustness against mild
perturbations. As the noise level increases to Gauss20,
MANet continues to outperform the baseline model in
most cases, demonstrating robust generalization.
However, the regression accuracy of the disk height A,y
declines significantly, with the R® score dropping to
—0.0060, suggesting that this physical parameter is partic-
ularly sensitive to noise interference. This sensitivity is
mainly due to the inherently subtle and fine-grained mor-
phological features associated with A in the GRRT im-
ages, which become increasingly obscured by higher
noise levels, as visually illustrated in Figure 6.In con-
trast, parameters such as the electron temperature 7, and
black hole mass Mpy exhibit relative robustness, main-
taining high R? scores even under severe noise condi-
tions. These observations highlight the intrinsic difficulty
of accurately estimating parameters characterized by del-
icate image features in noisy observational environments.

IV. CONCLUSION

In this study, we propose MANet, a ResNet-based re-
gression network that integrates a MEFP and an ACA
module to improve the regression of black hole image
parameters. Traditional approaches, such as forward

--
-

Gauss10

Clean Gauss20

Fig. 6. Representative Examples of Black Hole Images Be-
fore and After Gaussian Noise Injection

Table 4. Comparison of Model Parameter Estimation R? Scores Under Simulated Observational Noise

a T, haisk Mgy k PA
ResNet50 (10uas) 0.9444 0.8876 0.9538 0.9927 0.9754 0.8376
ours (10uas) 0.9641 0.9976 0.9775 0.9960 0.9807 0.8998
ResNet50 (20uas) 0.6868 0.8862 —0.0949 0.9742 0.9491 0.8507
0.7029 0.9862 —-0.0060 0.9744 0.9580 0.8601

ours (20uas)
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modeling and Bayesian inference, typically rely on ex-
haustive sampling of the parameter space or computation-
ally intensive probabilistic computations, which can be
inefficient and poorly scalable in high-dimensional or
data-scarce settings. By contrast, the MEFP module cap-
tures fine-grained physical structures through multiscale
feature fusion, while the ACA module highlights critical
regions such as the photon ring and brightness asymmet-
ries using a dynamic attention mechanism. Leveraging
deep learning, MANet learns complex nonlinear map-
pings directly from data, improving estimation accuracy
while significantly reducing inference time. Experiment-
al results show that both MEFP and ACA independently
contribute to performance gains, and their combination
further enhances accuracy and robustness. Even under
conditions of limited data and simulation noise, MANet
exhibits strong generalization ability and stability,
demonstrating the effectiveness of combining multiscale
feature fusion with adaptive attention for high-precision
astrophysical regression tasks. In the current work, we fo-
cus on the regression of six representative parameters. In
future research, we plan to incorporate temporal features

a=0.125 a=0349 a=0.221
T, = 1.25¢ + 11 T, = 457¢ + 10 T, = 2.62¢ + 11
Baseline o )
Mpyy =5.37e +9 Mpy = 7.52e +9 Mpyy = 5.06e +9
Rgise = 0.241 Rgisie = 0.606 Rgisk = 0.791
. k=0111 k=0 k = 0952
With -~
Attention
PA = 253.00 PA = 225.00
a=-0128 a=—0.700 a=0448
T, = 9.0le + 11 T, = 1.24e + 11 T, = 8.40e + 10
Baseline
Mpy = 6.46e + 9 Mpy = 6.15¢ + 9 Mgy = 6.89% + 9
haisk = 0.339 hgisk = 0.252 Raise = 0.193
. k =0.745 k = 0.296 k=0.368
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Attention e
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a=-0711 a=-0791 a=—0054
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Baseline
Myy = 6.00¢ +9 Myy = 6.78¢ + 9 Mpy = 5.52¢ + 9
Raisk = 0.389 Raisk = 0.152 Raisk = 0213
. k = 0.845 k = 0.759 k =0.196
With C Q,
Attention -

PA = 254.00

PA =170.00 PA =132.00

Fig. Al.

and uncertainty quantification into the network architec-
ture to improve reliability and interpretability, further en-
hancing the model’s applicability to real observational
scenarios.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
openly available in Science Data Bank at https://www.
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APPENDIX A: ADDITIONAL GRAD-CAM
VISUALIZATIONS

In addition to the six examples presented in the main
text, this appendix provides supplementary Grad-CAM
visualizations on several additional samples. These ex-
panded examples offer a more comprehensive under-
standing of the attention mechanism’s behavior, includ-
ing cases with clear focus as well as ambiguous or chal-
lenging scenarios. Figure Al illustrates these additional
Grad-CAM maps, which further demonstrate the inter-
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Additional Grad-CAM visualizations illustrating the attention maps on diverse samples, including typical cases and challen-

ging scenarios to further demonstrate the interpretability and robustness of the model.
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pretability and robustness of the model’s attention mech-

anism by highlighting both typical and difficult cases.
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