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Abstract: The study investigated the elastic and inelastic scattering of *He particles from '*C, '°0, **Mg, and *Si
nuclei at 60 MeV using a double-folding approach with four newly derived effective nucleon-nucleon interactions
(R3Y(HS), R3Y(L1), R3Y(W), and R3Y(Z)) derived from the relativistic mean-field (RMF) theory. The four de-
rived effective NN interactions exhibited strong sensitivity to the choice of exchange potential. Regularizing NN in-

teractions improved the agreement between calculated folded potentials and experimental data. Normalization con-
stants for the R3Y(HS) interaction suggest its superiority over the R3Y(L1) and R3Y(W) interactions within the
double-folding framework. Transition potentials based on two models, deformed potential and double folding poten-

tial, were used to describe inelastic scattering. Physically consistent deformation parameters were obtained. The de-
formed potential model yielded better results for '*C and '®O, whereas the double folding model performed better for

Mg and *Si, suggesting the double folding model's advantage is limited for lighter targets. The Bohr-Mottelson

transition density effectively described 2° states but was less suitable for the 3~ state of '°0, for which a Tassie-like

transition density provided improved agreement.
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I. INTRODUCTION

Understanding nucleus-nucleus interactions remains a
fundamental challenge in nuclear physics. All observable
scattering quantities can be computed once the optical po-
tential is defined—and, consequently, the scattering mat-
rix is determined. For heavy-ion collisions, microscopic
models, particularly the double-folding method, have
been among the most successful approaches for calculat-
ing optical potentials [1-6]. This method relies on two
key inputs: (1) the nuclear densities of the colliding nuc-
lei and (2) an effective nucleon-nucleon (NN) interaction
between projectile and target nucleons. While nuclear
densities can be accurately derived from models or elec-
tron scattering experiments, developing a realistic, effect-
ive NN interaction remains an open problem [7, §].

Despite extensive theoretical and experimental ef-
forts, the nature of effective NN interactions remains in-
completely understood. Recent progress has been made
through relativistic mean-field (RMF) theory, which has
yielded new microscopic NN interactions (e.g., R3Y(HS),
R3Y(L1), R3Y(W), and Z). The NN interaction obtained
in this theory was remarkably related to the inbuilt funda-
mental parameters of RMF where the HS, L1, W and Z

Received 25 April 2025; Accepted 6 June 2025

parameters have been extensively validated in the literat-
ure for reproducing nuclear ground-state properties, such
as binding energies, charge radii, and deformation para-
meters [9, 10]. These interactions have been successfully
applied to cluster radioactive decays [11, 12] and were
used to investigate the elastic scattering cross-sections of
proton and neutron halo nuclei [7] and the analysis of
SLi(3He,d)’Be transfer reaction [13]. However, further
validation is needed, particularly in intermediate-energy
scattering, where nuclear and Coulomb forces play signi-
ficant roles.

One of the primary sources of knowledge about the
characteristics of the ground and low-lying excited states
of atomic nuclei is the study of the elastic and inelastic
processes of helium isotope *He interaction with nuclei
[14]. Over the past few decades, researchers have extens-
ively investigated *He scattering on light nuclei at ener-
gies reaching 150 MeV [15-23]. The energy range of the
incident particles can be classified into three major cat-
egories. The first includes energies below 15-20 MeV. In
this range, the Coulomb interaction is the dominant scat-
tering determinant, and the nucleus's inner region does
not affect differential cross-sections. In the second cat-
egory, nuclear forces become relevant with incident
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particle energies of 20-40 MeV. As a result, the scatter-
ing takes on a different character and a diffraction pat-
tern appears in the angular distributions, similar to that of
an absorbing sphere. Lastly, the *He scattering properties
change at energies greater than 40 MeV. Recently, elast-
ic-scattering data of *He on '*C, '°O, **Mg, and #*Si at 60
MeV have been used to experimentally determine the
parameters of the optical potentials [19, 22, 24, 25].

This work investigates *He elastic and inelastic scat-
tering from '*C, '°O, **Mg, and *Si at 60 MeV using a
double-folding model with RMF-derived NN interac-
tions. Specifically, we aim to evaluate the performance of
R3Y(HS), R3Y(L1), R3Y(W), and R3Y(Z) interactions
in reproducing elastic scattering data; examine the im-
pact of NN interaction regularization and exchange po-
tentials on cross-section predictions; determine the optim-
al NN interaction and associated parameters for describ-
ing *He scattering; compare the deformed potential (DP)
and double-folding (DF) models for inelastic scattering to
excited states; and investigate the sensitivity of inelastic
scattering descriptions to the choice of transition poten-
tial model and the relevance of the Bohr-Mottelson and
Tassie models for describing collective nuclear excita-
tions. The theoretical framework is presented in Section
2. The results of the calculations are given in Section 3,
analyzing scattering observables obtained from the
double-folding model for the various target nuclei and
discussing the sensitivity of the results to model paramet-
ers and associated uncertainties. Finally, Section 4 sum-
marizes the key findings, discusses their implications for
our understanding of *He-nucleus scattering, and outlines
potential avenues for future research.

II. THEORETICAL FORMALISM

A. Elastic Scattering

In the double-folding approach, the real part of the
optical potential is generated by folding the matter dens-
ity of the projectile and the target with an effective NN
interaction [26]. The folded potential could be expressed
as follows:

VPF = yP 4 yEX )
where VP and VEX are the direct and exchange potentials,
respectively. The direct part of the folded potential, rep-
resenting the nuclear interaction independent of nuclear
spins and isospins, takes the following form:

VP(RE) = /

where p,, are the nuclear matter densities of the pro-
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jectile and target, respectively. vy, is a direct part of the
NN effective interaction. The exchange part VEX, which
considers the effect of a single knock-on exchange, has
two forms; the first has the form [1]:

VEX (7 E) = / DF, &F, () pi(F) T BSOS (3)

where, JAOO (E) represents the strength of the exchange
term, which exhibits a weak linear dependence on energy.
The Dirac delta function &(s) ensures the interaction is
local, effectively transforming it into a zero-range
pseudo-potential. This form is widely used in heavy-ion
scattering studies. The knock-on interaction Jy, (E)d(s) is
a semi-phenomenological formula that requires calibra-
tion for both nucleon-nucleus and nucleus-nucleus scat-
tering:

A more rigorous and theoretically grounded approach
to approximating the exchange potential has been pro-
posed as an alternative to the simpler, semi-phenomeno-
logical approach of the first form [1]. This approach ex-
plicitly accounts for the finite range of the interaction. Al-
though this form is non-local, it has been demonstrated
[27, 28] that an accurate local approximation could be ob-
tained by treating the relative motion locally as a plane
wave, yielding the following expression:

VEX (7 ) = / 747, po(P 7+ 3) pFoTi— )

R(P).3
X VEX(S,E) exp (l * s) @)
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2
K(r) = h—’; [E-VPF V] )

where K (r) is the local momentum of relative motion.
This exchange form involves a self-consistency problem,
which could be readily solved using a realistic approxim-
ation for the density. The potential is then evaluated us-
ing an iterative method [26], yielding a local self-consist-
ent potential.

1. The Effective NN Interactions

There are several types of effective NN interactions.
These interactions were phenomenological, derived by
fitting experimental scattering data and phase shifts. New
microscopic NN interactions were derived from RMF
theory. A relativistic mean-field Lagrangian density of a
nucleon-meson many-body system was assumed [29-31],
which was constructed from the Lagrangian density of
Dirac spinor fields for the nucleons, four different meson
fields (o, o, p, 8) and the electromagnetic field due to the
interaction of the charged particles. Assuming a heavy
and static baryonic medium with a one-meson exchange,
the solution of single NN potential for scalar (o, d) and
vector (o, p) fields was determined. The resultant effect-
ive NN interactions were obtained from the summation of
the scalar and vector parts of the single meson fields and
were defined as [11]

VNN(F):Vw'i'V/)"'V(T"'Vd (9)
2 ,—myr 2 —myr 2 ,—mgr 2 ,—msr
ga} e gp e go‘ e g6 e
= — + — _— _—
van(r) 4 r 4 r 4 r 4 r
(10)

where g,, g, .8, and gs are the coupling constants for o,
o, p and & mesons, respectively. m,, m, ,m, and ms are
the masses of o, ®, p and & mesons, respectively. For a
standard nuclear medium, the contribution Vs of & meson
could be neglected, compared to the magnitudes of both
V,, and V,, then Eq. 10 took the form:

—mﬂr —Mgr

_ 2
dr r dr r

gi,e
4

(11)

van(r) =

The derived NN interaction from RMF theory was in-
serted into Eq. 4 to obtain a real direct folded potential
based on RMF. Using the R3Y(HS) parameters from
Table 1 in Eq. 11 as illustrative examples, one could ob-
tain the following:

e—3968r e—3.902r e

4099.06 —6882.64
4r * 4r

—-2.64r

ViR (r) = 11956.94 -
(12)

An essential aspect of using the effective NN poten-
tials in the form of Yukawa potential was related to their
regularization due to singularities. This regularization
aimed to eliminate the singularities at |s|=0, which
lacked physical significance. While the singularity could
have impacted the analysis of nucleon-nucleon scattering,
it did not pose any challenges when calculating the fold-
ing integral for generating the nucleon-nucleus or nucle-
us-nucleus potential. However, certain studies (e.g., [32,
33]) utilized "regularized" M3Y potentials of the NN in-
teraction that did not include the singularity mentioned.
In this study, we explored this issue further. Such prob-
lems could be attributed to the breakdown of the meson
theory at extremely short distances, which was caused by
the extended structure of nucleons [34]. The one-boson-
exchange potentials are commonly regularized by incor-
porating several cut-off factors, such as monopole, di-
pole, and exponential cut-off form factors [35]. In this
work, the approach of [33] was followed. The regular-
ized Yukawa function ¢. was derived from the Fourier
transform to configuration space through the incorpora-

tion of a momentum cut-off form factor ¥ (7) ,

4n err
oc(r) = —
m

&

- F
2n)? (ﬁz+m2) )

(13)

The cut-off form factor was defined as the nucleon form
factor py (p),

Fp) = / A7 P oy () (14)

Table 1. The parameters of effective NN interactions are based on Eq. 11 for different RMF models [11].
Set mg (MeV) mg, (MeV) my, (MeV) 8o 8w 8p g2 /m (MeV) go%/m (MeV) go2/m (MeV)
R3Y(HS) 520 783 770 10.47 13.80 08.08 11956.94 4099.06 6882.64
L1 550 783 - 10.30 12.60 - 9967.88 - 6660.95
w 550 783 - 09.57 11.67 - 8550.74 - 5750.24
z 551.31 780 763 11.19 13.83 10.89 12008.98 7445.91 7861.80




A. F. Hamza, N. A. ElI-Nohy

Chin. Phys. C 49, (2025)

1200

1200

(a) Unregularized Vpn

eV]

-]
=1
t=)

400

200

Potential Strength [M

0

-200

(b) regularized Vphn |—— Hs
— U1
— W
—Z

1000

800

600
400
200
0 \/r

-200

0.0 0.5 1.0 1.5

r [fm]

20 25

Fig. 1.

3.0

0.0 0.5 1.0 1.5

r [fm]

2.0 25 3.0

(color online) Comparison of (a) unregularized effective NN potentials and (b) regularized effective NN potentials. The im-

pact of regularization on the shape and strength of the potentials is illustrated.

After some transformations, we obtain for the regular-
ized Yukawa function ¢¢ (r) the expression [36]

@c(r) =/

Then, the regularized effective NN potential, which con-
sist of three Yukawa function, could be written in the reg-
ularized form as [33],

eIl

dry PN(F)ﬁ (15)

)= [P = )

—m,|r?|
-3 L/ o

2
m;g;
o ed(r)

>

(16)

where pyn(7) is the nucleon density distribution, which
was parameterized based on experimental data in [37] us-
ing a sum of Gaussian functions:

pN(r) Zaz 3/26 P( ) (17)

2. The Matter Density Distributions

In addition to the effective NN interaction, the fold-
ing calculation required nuclear density distributions for
the colliding nuclei. The nuclear matter density distribu-
tion of the projectile nucleus *He was assumed to follow a
Gaussian distribution (GD),

pu(r) = pu(0)exp(—pr?), (18)

For the target nuclei, the densities were assumed to

follow modified Gaussian distributions (MGD), which
exhibited a nuclear bubble structure [43], see Figure 2,

(1) = pu(0) [1+wr] exp(-Br), (19)

where p), (0) values were obtained from the normaliza-

tion condition:
47r/p(r)r2dr =A

the parameters for p,, (0) , ® and B used in Eq. 17 and 18
are given in Table 2.

An imaginary potential (W) was introduced into the
optical potential to accommodate absorption into alternat-
ive reaction channels. Since surface absorption was de-
termined to predominate within this energy range, the
imaginary potential was modelled as a surface potential.
Two forms of the imaginary potential were used. The first
form consisted of a phenomenological potential obtained
from the first derivative of a Woods-Saxon (WS) poten-

tial,
o d r=R\\'
Wy =—-4a W,—|( 1—exp
’dr a

The second form was formulated based on the first
derivative of the obtained folded potential itself and is ex-
pressed as follows:

(20)

(2]

dVP(r)
dr

WhE = —4a N, (22)

where a is the diffuseness parameter of the folded poten-
tial, obtained by fitting the folded potential to a WS form.
N is a normalization constant introduced for scaling pur-
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Table 2. The parameters and root-mean-square (RMS) radii of the nuclear matter densities for *He [38], '*C [39], '°O [39], >*Mg [40],

and 2Si [38].

Nuclei po (fm™) o (fm™) B (fm™) Calculated RMS radius (fim) Experimental RMS radius (fm)
*He 0.2202 - 0.5505 1.6508 1.976 [41]
e 0.1644 0.4988 0.3741 2.4067 2.46 [42]
%0 0.1317 0.6457 0.3228 2.6401 2.73 [42]
Mg 0.1499 0.4012 0.2383 3.0498 3.08 [42]
=8 0.2052 0:1941 02112 3.1378 3.15 [42]
poses. The second form was employed to reduce the ZpZre® r>Re
number of free parameters and provide a less ambiguous Ve(r) = r " R (24)
method for examining the different effective interactions. ZpZre (3 — L) ,r<Re
Finally, the local optical potential took the form, 2Rc R’

U(r,E)=Ng [VP(r,E)+ VX (r,E)| +iW(r)+ Vc(r)  (23)

here, the real component of the optical potential, denoted
as VPP was scaled by a normalization factor Ng. This
normalization factor was incorporated to accommodate
minor adjustments required to address dynamic polariza-
tion contributions, higher-order effects omitted in the
methodology employed to derive the folded potential, and
slight uncertainties inherent in the folding inputs. It was
anticipated that this factor would remain proximate to
unity, affirming the folded potential's physical signific-
ance. The Coulomb potential, V¢, describing the interac-
tion between the projectile and the target, was assumed to
correspond to the interaction between a point particle and
a uniformly charged sphere with radius R¢. Accordingly,
the Coulomb potential is expressed as follows:

The optical potentials can be characterized by real Jy and
imaginary Jy volume integrals per nucleon defined as,

)

4r
Jv=— V(r)rdr, 25
v=aa | vord (25)
0
Jw 2dr. (26)
B. Inelastic Scattering

For inelastic scattering, the 2" -pole component of the
transition potential U, is

U,(7) = V(D +iW (D) + Vo), (27)
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In the DF model, the real part of the transition potential
of the inelastic scattering is taken to be:

Vi@ = N [V2(E, )+ VX (E.D)] (28)
where (V¢), is Coulomb's transition potential. VP and
VEX are direct and exchange transition potentials, respect-
ively. The transition potential was obtained by folding the
transition density p{", which describes the inelastic excit-
ation of the target nucleus, with the ground-state density
of the projectile and the effective interaction as [2],

VPR E) = / DF, &F, () o0 VNS E)  (29)

VEX (7 E) = / LRLE (7, +5)

S . iK(P).5
pi/l)(rt, 7—35) V}%]’S](sa E) exp ( T )

(30)

A simple "collective" model is usually used when the
excitation is "isoscalar" and strong [44]. In this work, the
Bohr—Mottelson (BM) model [45] was adopted, in which
the radial transition density (with A >2)was assumed to
be proportional to the radial derivative of the ground-state
density,

dp(r)
dr

(1) = -BiR G

where 37 is the matter deformation parameter, and R is
the nucleus radius, which is taken to be R=1.24'3fm
[2].

In the deformed potential (DP) model, the radial
transition potential was taken to be proportional to the ra-
dial first derivative of the normalized folded potential,

d
|AGERH R VPE(r) (32)

where gY is the deformation parameter of the folded po-
tential V,(r). To compare the DP model with the DF ap-
proach for the inelastic form factor, it was assumed that,
By =B} (33)
The deformed imaginary part W, was taken as the de-

formed surface WS of the phenomenological imaginary
elastic scattering potential [46],

_ d r=RO)\™
Wp(r,0) = _4aWOE (1 —exp ( p )) (34)
R(9)=Ro(1+ﬁ?/Yff(9)),/l=2or3 (35)

then W, had the form [47],

Wa(r) = % / Wp(r,60) Pi(cos(@))sin(@)dd  (36)
0

The deformation parameter of the imaginary poten-
tial served as-a measure of absorption in the considered
channel. In this approach, the Coulomb deformation was
not included; only the nuclear part of the transition poten-
tial was considered. The deformation parameter was typ-
ically -adjustable and was determined by comparing the
computed inelastic cross-section with the observed data.
In both models, it was assumed that the real and imagin-
ary deformations were equal,

Bl =" By =5 (37)

Since all deformation parameters were derived by
modifying the potentials, they should be denoted as g*".
However, for simplicity, they will be referred to as . All
the DF calculations were performed using a modified ver-
sion of BiFold code [48]. The code originally calculates
the density-dependent or independent DF potentials
between two colliding spherical nuclei. The modifica-
tions extend the code's capability to calculate the trans-
ition potentials based on Eq. 29 and Eq. 30.

III. RESULTS AND DISCUSSION

In this work, a double-folding analysis of *He elastic
and inelastic scattering off '°C, '°0, **Mg, and **Si at 60
MeV was performed. The experimental data for elastic
and inelastic differential cross-sections were taken from
[19, 22, 24, 25].

A. Elastic Scattering

The angular distributions of the elastic and inelastic
scattering were calculated using the DF approach. The
real part of the optical potential was calculated using new
effective NN interactions, and the imaginary part of the
optical potential was assumed to have two forms: a sur-
face WS and the first derivative of the folded potential.
First, the effective NN interactions were regularized to
consider the effect of regularization on the nucleus-nucle-
us potential. The present work used four effective NN in-
teractions obtained from the RMF model (R3Y(HS),
R3Y(L1), R3Y(W), and Z) to examine their validity in
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describing the elastic and inelastic scattering of light pro-
jectiles and to investigate their effects on the nucleus-
nucleus scattering. Figure 1 illustrates the effective NN
interactions before and after the regularization. The cut-
off form factor's impact on the effective NN interactions
removed the singularity. It preserved the potential behavi-
or, which was repulsive at the core and attractive as the
separation increased. The depth of the regularized inter-
actions was observed to be reduced (about 30% of their
original value). At the core, the R3Y(Z) interaction had
the largest repulsive strength, followed by the R3Y(HS)
interaction and then the R3Y(L1) and R3Y(W) interac-
tions.

Second, the regularized effective interactions were
folded with the nuclear matter densities for *He and tar-
get nuclei. The direct component of folded potentials ex-
hibited a repulsive nature for R3Y(HS) and R3Y(Z) inter-
actions, similar to the DF potentials derived from the
M3Y Paris interaction [1]. For R3Y(L1) and R3Y(W) in-
teractions, the direct component of folded potentials was
attractive, similar to the DF potentials derived from the
M3Y Reid interaction [1]. The exchange part of the. fol-
ded potential was added to the direct part. The study ex-
plored the effects of employing both zero-range and fi-
nite-range exchange interactions within the potential
model. Zero-range exchange interactions produced a
deeper total folded potential than finite-range exchange
interactions, requiring a small normalization constant to

HS

fit the differential cross-section data. Therefore, consider-
ing the finite-range exchange interactions, the direct po-
tentials were combined with the exchange potential, res-
ulting in a combination denoted as R3Y+EX(FR). An ad-
ditional examination of the exchange potential was con-
ducted with both Reid and Paris finite exchange interac-
tions. For the R3Y(HS) interaction, the direct part
R3Y(HS) was combined with both EX(FR/Reid) and
EX(FR/Paris) to obtain R3Y(HS)+EX(FR/Reid) and
R3Y(HS)+EX(FR/Paris), respectively. The generated
total folded potential based on the Reid interaction was
very shallow, making it unsuitable. The obtained shallow
potential was similar to [7]; the author used the Reid
EX(ZR), and one can see in Figure 2 in [7] that the fol-
ded potential R3Y(HS)+EX(ZR/Reid) had the smallest
depth. Conversely, combining the exchange potential
based on the Paris interaction with the direct part of
R3Y(HS) produced a more suitable potential than the Re-
id exchange. For R3Y(L1) and R3Y(W) interactions, It
was found that using the Reid finite exchange potential to
generate the total folded potential R3Y(L1)+EX(ZR/Re-
id) and R3Y(W)+EX(ZR/Reid) was the best choice. The
analysis revealed that the folded potential generated by
R3Y(Z)+EX(FR) exhibited a repulsive characteristic,
with the majority of the contribution arising from the dir-
ect component of the potential (see Fig. 3). Therefore,
The R3Y(Z) interaction was excluded from this analysis
because a purely repulsive potential for the *He-nucleus

L1

100 1
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=300

3 45
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(color online) The Folded potential for *He+'*C at 60 MeV based on unregularized (Solid line) and regularized NN effective

interactions (Dashed line). Paris exchange interaction is used for R3Y(HS) and R3Y(Z), whereas Reid exchange potential is used for
R3Y(L1) and W. The colored lines represent the total, direct, and exchange potentials for R3Y+EX(FR).
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scattering is considered physically meaningless within
this energy range. The direct, exchange and total poten-
tials for '2C were plotted in Figure 3.

Folded potentials, obtained from regularized effect-
ive NN interactions, were examined to investigate how
regularization affects nucleus-nucleus scattering. The reg-
ularization decreased the direct portion of the folded po-
tential while marginally boosting the exchange portion,
resulting in an overall rise in the R3Y(HS) folded poten-
tial and decreases in the R3Y(L1) and R3Y(W) folded
potentials. The repulsive nature of the folded potential
based on the R3Y(Z) interaction remained unchanged by
regularization, reinforcing our choice to exclude R3Y(Z)
from this analysis. The total folded potentials for *C, '°O,
Mg, and **Si are illustrated in Figure 4.

Next, Calculations were carried out to obtain the
elastic scattering cross-sections of the *He+"“C, *He+'°O,
‘He+**Mg, and *He+**Si systems at 60 MeV. The folded
potentials served as the real component of the optical po-
tentials, while surface WS or the derivative of the folded
potential were used as the imaginary components. The a's
values used to derive the imaginary potentials from the
folded potentials based on Eq. 21 and its equivalent
Woods-Saxon (WS) parameters are listed in Table 3.

Table 4 identifies the optimal parameter set (includ-
ing normalization and imaginary potential parameters) for
describing elastic scattering. The folded potentials, de-
rived from regularized interactions, effectively fit the ex-

perimental data, as shown in Figure 6. For the *He+"2C
system, Figure 5 illustrates how the imaginary compon-
ent influences the differential cross sections, with the
SWS outperforming the SDF. This outcome is expected
because the SWS incorporates more adjustable paramet-
ers—such as depth, radius, and diffuseness of the poten-
tial - while the SDF is restricted to a single parameter N,
that only adjusts the potential's depth. Additionally, a lim-
itation of the SDF is its lack of a microscopic foundation
and the use of a fixed geometry that may not adequately
reflect the absorption process. The assumption that the
imaginary part is proportional to the real folded potential
part is somewhat arbitrary, employed here merely to sim-
plify the parameter count and facilitate comparisons
between different effective interactions. The results in
Table 4 show that both the SWS and SDF provide equi-
valent normalization constant values across diverse R3Y
interactions. This shows that, despite its many paramet-
ers, the-SWS may be useful for testing and evaluating
R3Y interactions. The choice of imaginary potentials ap-
pears to affect the normalization constant, with SDF po-
tentials obtaining slightly higher Ny values than SWS po-
tentials, but with less fitting (a large y* value). The dif-
fraction pattern at forward angles formed by SDF poten-
tials has a deep first minimum that does not match experi-
mental data, suggesting that SDF may not be the best op-
tion. It is also worth noting that the performance of SDF
is very dependent on the folded potential and its shape; in

Depth (MeV)

Depth (MeV)

r (fm)
(color online) The unnormalized folded potentials R3Y(HS)+EX(ZR/Paris) and R3Y(HS)+EX(ZR/Reid) for *He+"C,

*He+'%0, *He+**Mg, and *He+?*Si at 60 MeV based on unregularized (solid lines) and regularized (dashed lines) effective NN interac-
tions obtained from the RMF model.

Fig. 4.

r (fm)
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Table 3.  Parameters of Woods-Saxon potentials equivalent to folded potentials based on the regularized NN interactions
R3Y(HS)+EX(FR/Paris), R3Y(L1)+EX(FR/Reid) and R3Y(W)+EX(FR/Reid).
Reaction VN V (MeV) R (fm) a+Aa (fm)
HS -121.10 2.5412 0.8404+0.0022
SHe+'?C L1 —264.84 2.4338 0.8364+0.0030
W —242.97 2.4393 0.8303+0.0029
HS —130.51 2.7806 0.8694+0.0023
SHe+'°O L1 —283.92 2.6631 0.8701+0.0032
w —259.70 2.6732 0.8632+0.0032
HS —144.81 3.1105 0.9453+0.0028
‘He+*Mg L1 —311.68 2.9864 0.9464+0.0036
W —284.34 3.0010 0.9393+0.0035
HS -162.70 3.0941 0.9885+0.0032
SHe+2%Si L1 —356.57 2.9348 0.9926+0.0039
W —324.94 2.9497 0.9866+0.0038

Table 4. The normalization constants (Ng, Nj), the depth (Wp), the radius and diffuseness parameters (rp and ap), the total cross-sec-
tions (o), x> values and volume integrals (Jrx and <J;) for the theoretical analysis with the regularized NN interactions
R3Y(HS)+EX(FR/Paris), R3Y(L1)+EX(FR/Reid) and R3Y(W)+EX(FR/Reid).

Reaction VOF 4 Img. Ng Jr (MeV fm®)  Wp/N; MeV)  rp (fm)  ap (fm)  J; (MeV.fim®)  or (mb) X
Het+'2C R3Y(HS)+SWS  0.98 4498 19.342 1.298 0.608 164.0 869.3 8.5
R3Y(HS)+SDF  0.96 4417 0.13 - - 157.3 953.9 204
R3Y(L1)+SWS 046 4149 18.480 1223 0.658 146.2 859.2 45
R3Y(LI)*SDF  0.46 414.9 0.064 - - 156.4 600.6 14.4
R3Y(W)+SWS  0.50 413.0 18.378 1237 0.645 144.6 851.0 5.4
R3Y(W)+SDF 049 4117 0.070 - - 155.8 877.4 9.2
‘He+''0  R3Y(HS}+SWS  0.90 413.6 12.746 1.549 0.686 152.8 11413 8.4
R3Y(HS}+SDF  0.95 436.3 0.14 - - 165.0 1082.5 22.1
R3Y(L1)+SWS 043 390.8 11.662 1.505 0.769 152.4 1183.0 10.9
R3Y(LIY+SDF 0.1 460.3 0.079 - - 188.3 1058.4 31.4
R3Y(W)+SWS 047 386.7 11.488 1.491 0.783 151.1 1185.6 11.4
R3Y(W)+SDF 057 470.6 0.089 - - 193.0 1059.8 315
‘He+*Mg  R3Y(HS)+SWS  0.79 364.8 14.295 1.169 1.067 159.0 1601.1 423
R3Y(HS)+SDF  0.80 367.9 0.14 - - 163.5 1292.3 53.4
R3Y(L1)+SWS  0.40 362.6 16.410 1.171 0.980 162.0 1496.2 325
R3Y(LIY+SDF  0.43 387.8 0.075 - - 176.3 12632 71.9
R3Y(W)+SWS  0.39 3183 13.513 1.008 1313 169.2 1848.2 43.1
R3Y(W)+SDF 047 387.8 0.084 - - 179.6 1262.1 75.15
‘He+Si  R3Y(HS)+SWS  0.79 357.8 18.243 1.030 1.047 150.9 1571.2 238
R3Y(HS)+SDF  0.82 3737 0.12 - - 142.6 1355.0 37.8
R3Y(L1)+SWS 039 349.7 19.723 1.018 0.989 147.3 1473.7 8.6
R3Y(LI)+SDF  0.40 358.0 0.062 - - 149.2 1297.6 15.3
R3Y(W)+SWS 043 349.0 19.839 1.021 0.982 147.3 1465.7 9.0
R3Y(W)+SDF 045 368.4 0.070 - - 153.3 1298.2 16.2
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(color online) Elastic differential cross-sections for *He + '2C scattering at 60 MeV, calculated with folded potentials using a)

R3Y(HS), b) R3Y(L1), and c) R3Y(W) real parts, and surface Woods-Saxon (SWS) or folded derivative (SDF) imaginary parts. (d)

Compares SWS and SDF within R3Y(HS) model.

this situation, folded potentials obtained from R3Y do not
appear to be adequate for generating the imaginary poten-
tial at this energy. Moving forward in this study, the SWS
will be used to simulate the imaginary component of the
optical potential in further investigations.

The effect of regularization on elastic differential
cross-sections was investigated by comparing calcula-
tions using unregularized and regularized NN interac-
tions. Figure 6 demonstrates that regularization consist-
ently enhances the differential cross-sections within the
diffraction region for all interactions considered. Spe-
cifically, the regularized HS interaction yielded a sub-
stantially better fit to the data than the unregularized HS
interaction. This improvement suggests that the shape of
the folded potentials derived from regularized NN inter-
actions more accurately represents the physical system.
The Ny constant associated with the regularized HS inter-
action was found to be lower than that of the unregular-
ized HS interaction but higher than those obtained with
the unregularized L1 and W interactions. Finally, the im-
pact of regularization was negligible for scattering angles
less than 25 degrees.

The Ny for the R3Y(HS) interaction with SWS ima-
ginary potentials are 0.98, 0.90, 0.79, and 0.79 for *C,
%0, Mg, and **Si, respectively, with real volume integ-
rals of about 350450 MeV-fm3. The R3Y(L1) and

R3Y(W) interactions were able to reproduce the experi-
mental data with a normalization constant of less than
half (see Table 4), which indicates that R3Y(L1) and
R3Y(W) interactions produce deeper potentials than re-
quired, meaning that both are not good candidates for
nuclear potentials for the description of *He scattering at
this energy. The Ny decreases as the mass number in-
creases, indicating that the R3Y interactions are suitable
for light nuclei.

B.

The inelastic scattering of *He has been analyzed us-
ing the DWBA and CC methods based on the
Schrddinger equation for the low-lying 2* state for '*C, 3
state for '°0, 2" state for *Mg, and 2" state for **Si at 60
MeV. Two real form factors of the transition potentials
were considered: the simple deformed optical potential
(DP) and double folded potentials (DF). In the deformed
optical potential approach, the transition potentials were
calculated using Eq. 31. In the folded transition potential
approach, the real part of the form factor was calculated
by folding the R3Y(HS)+EX(FR/Paris) regularized NN
interaction with the ground state of *He and the target
transition density using Eq. 28 and Eq. 29. The R3Y(L1)
and R3Y(W) interactions were excluded due to their low
normalization constants. The target transition density was

Inelastic Scattering
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Fig. 6. Elastic differential cross-sections of for *He on '*C, '°O, *Mg, and **Si at 60 MeV. The graphs compare differential cross-sec-
tions calculated using a folded potential with different nucleon-nucleon (NN) interactions: a) unregularized (left) and b)regularized

(right). The specific interactions used are R3Y(HS)+EX(FR/Paris), R3Y(L1)+EX(FR/Reid), and R3Y(W)+EX(FR/Reid), all with a
SWS imaginary potential.



A. F. Hamza, N. A. ElI-Nohy

Chin. Phys. C 49, (2025)

assumed to follow the Bohr-Mottelson model (BM) as in
Eq. 30. The imaginary part of the transition potentials
was taken as the deformed surface WS potential derived
from the semi-microscopic elastic potential as in Eq. 35.

The DWBA calculations were carried out using the
ECIS06 code by inserting the real part of the obtained
transition potentials and setting the imaginary part para-
meters. It was assumed that 8z = 8; and searched for the
deformation parameters that best fit the inelastic experi-
mental data. The obtained values are listed in Table 5 (see
DWBA (DP) and DWBA (DF) columns).

For the low-lying 2" state of '*C, the transition poten-
tials based on the DP and DF models, with the R3Y(HS)
regularized NN interaction based on the Bohr-Mottelson
(BM) model for transition density, were obtained (see
Fig. 7 (c)). The DP potential was significantly deeper and
possessed a distinct form factor compared to the DF po-
tential. DP and DF potentials described the inelastic scat-
tering well at small angles but failed at large ones (see
Figure 10). This failure confirms the strong coupling
between states and supports the application of the CC
method. The DP model gave a better result than the DF
model. The deformation parameter obtained from the DP
model is consistent with the parameter obtained from pro-
ton scattering. It is larger than the results obtained from
electron and *He scattering (see Table 5). The deforma-
tion parameter obtained from the DF approach had a large
value (f = 0.81). Although this result could indicate that
the DF approach struggled to yield realistic transition po-
tentials, we should not conclude that until we examine the
DF approach in the CC framework.

For the low-lying 3~ state of '°Q, the DF transition po-
tential did not provide a good fit and required a large de-
formation parameter. In Figure 8, the folded potential of
the ground state and the transition potentials obtained via
the microscopic method for multipole A = 2 and A = 3

were plotted. As the multipolarity increases, the depth of
the transition potentials decreases; that is why the trans-
ition potential for the inelastic 3 state of '°O requires a
large deformation parameter. The '°O nucleus may exhib-
it collective excitations in the form of vibrational modes.
While the deep core retains the ground state's shape in
such modes, a few nucleons beyond this core participate
in surface oscillations, leading to vibrational spectra [51].
Therefore, it may not be appropriate to treat the trans-
ition density of the 3- state in the same way as that of the
2" state. Consequently, it was speculated that the trans-
ition density might be the source of the problem. It is
known that the Bohr-Mottelson (BM) transition density is
not suitable for weaker transitions or larger multipolarit-
ies [44]. An appropriate deformation parameter could be
obtained when a Tassie-like (T) transition density [52] is
used, in which the radial transition density was taken to
be,

dp,(r)

PO = iR e

(38)

where 77 is the matter deformation , with dimensionality
(fm™), used to construct the nuclear transition density for
multipole A.

The transition potential obtained by the Tassie-like
transition density, denoted as DF-T, reproduced the in-
elastic data better than the transition potential obtained by
the Bohr-Mottelson (BM) model, denoted as DF-BM (see
Figure 9). The deformation parameter obtained from fit-
ting the data has a reasonable value (t = 0.245 fm™"). In
Figure 9, a comparison was made between the transition
potentials obtained from the BM and T models and the
transition potential of the DP model for the *He+'°O sys-
tem. The BM model generated a shallow transition poten-
tial, whereas the T model generated the deepest one. Sim-

Table 5. The target nuclei, excited state (17), excitation energy (E,, in MeV), and deformation parameters.

Semi-Microscopic

Target yul E,, (MeV) Previous Studies
DWBA (DP) DWBA (DF) CC (DP) CC (DF)
+0.51 (*He, *He")[49]
- . o +0.810 (BM) +0.719 (BM)
C 2 4.44 +0.6 (p, p')[49] +0.618 +0.54
. +0.336 (T) +0.313 (T)
—0.45 (e, €")[49]
p _ N +0.507 (BM) +0.511 (BM)
0o 3 6.13 +0.331 ("He, "He") [19] +0.329 +0.314
+0.245 (T) +0.249 (T)
+0.67 (*He, *He") [24]
Mg 2" 1.37 +0.47 (p, p') [50] +0.520 +0.655 (BM) +0.436 +0.562 (BM)
+0.45 (e, €') [50]
+0.49 (3He, 3He") [25]
A3 2+ 1.78 -0.37 (p, p") [50] +0.386 +0.495 (BM) +0.322 +0.407 (BM)

~0.39 (e, ") [50]

“ The reference did not determine the sign of the parameter.
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Fig. 7. (color online) a) The transition density for '>C based on the Bohr-Mottelson (BM) model (8 = 0.81). b) The unnormalized dir-

ect and exchange parts of the transition potential based on the DF approach with regularized R3Y(HS)+EX(FR/Paris). ¢) Transition po-
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Fig. 8. (color online) The unnormalized ground state folded

potential (black line) and the transition potentials of '*O for
different multipolarities based on the DF approach with
R3Y(HS)+EX(FR/Paris) interaction (colored lines) and the
Bohr-Mottelson (BM) model for transition density (Setting
B7R =1 for comparison).

ilar to the '“C case, both DP and DF models gave satis-
factory results at small angles but failed at large angles.
An attempt was made to extend the T model to "“C in-

elastic scattering, but no satisfactory result was obtained;
the deformation parameters had a very small value ( =
0.336) compared to the BM model value (B = 0.81). The
analysis revealed that the BM model yielded larger de-
formation parameter values than the T model, particu-
larly when considering the transition potential estimated
for2C and '°O. A possible explanation for the failure of
the Tassie model in describing the 2" state of '*C is that
this state exhibits rotational rather than vibrational char-
acteristics. The Bohr-Mottelson collective model, which
successfully describes rotational bands, would therefore
be more appropriate for '*C, in contrast to the Tassie
model usually employed for vibrational excitations [53].
This discrepancy elucidates why the Tassie model effect-
ively represents the vibrational excitations of '°0, but the
rotating characteristics of '*C require the Bohr-Mottelson
model.

The transition potentials of the inelastic 2* state for
*Mg and **Si were determined for the DP model and for
the DF approach using the BM transition density. Both
models yielded satisfactory results for small and large
angles. The DP model exhibited a slightly enhanced res-
ult, particularly at large angles. The deformation paramet-
ers based on the DF approach are consistent with previ-
ous *He scattering studies (B = 0.655 and 0.495 for **Mg
and **Si, respectively). DP and DF models yield deforma-
tion parameters that exceed those derived from electron

1.6 100 10
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~ 0.8 =0 =
S 06 £ =20
a 2.50 =
0.4 2 L -30
a a a
=~ 0.2 -100 — Total-T 40
0.0 T ehanae part T
-0.2 -150 -50
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
r [fm] r [fm] r [fm]
Fig. 9. color online) a) The transition density of '®O based on the Bohr-Mottelson (BM) and Tassie-like (T) models (settin
g y g

BR =7R =1 for comparison). b) The unnormalized direct and exchange parts of the transition potential are based on the DF calculation
for the T model. ¢) The transition potentials are based on the DP and DF models.
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and proton scattering. The real and imaginary parts of the
transition potentials after fitting with the inelastic data
were plotted in Figure 11. The maximum depth for the
transition potential of '°C, **Mg, and **Si ranged between
11 and 14 MeV, while for '°O, the maximum depth was
around 9 MeV. The rms radii for the real part of the trans-
ition potential were 3.872, 3.865, 4.636, and 4.720 fm for
12C, '°0, #*Mg, and **Si, respectively. The rms radii of the
transition potential for the 2" state were factors of 1.134,
1.177, and 1.177 larger than the rms radius for the ground
state DF potential of '*C, **Mg, and **Si, respectively. For
the '®O nucleus, the rms radius of the transition potential
for the 3 state was 1.075 times larger than the ground-
state DF potential. The calculated rms radii did not rep-
resent the radii of the excited states; rather, they should
be interpreted as the rms radii of the interaction range
between the *He particle and the target nuclei. Changes in
these radii relative to the ground state could provide in-
sights into nuclear deformation. These Changes for *C,
Mg, and **Si exceeded that of 'O, likely due to their
significant static nuclear deformation.

Next, the CC method was applied to measure the
strength of coupling between states based on the semi-mi-
croscopic optical potentials. In the CC calculations, the
(0%, 27) coupling schemes were studied using the collect-
ive rotational model for '*C, **Mg, and **Si, while the (0",
3°) coupling schemes were used for '°O. The CC calcula-
tions involved the variation of the normalization constant,

120 0 20 40 60 80

1073

100 120
Oc.m. [deg]

(color online) DWBA calculations for elastic scattering of *He on '>C, '°0, **Mg, and **Si at 60 MeV.

surface WS potential parameters, and deformation para-
meters permitted to simultaneously optimize the fit for
elastic and inelastic data. The results are listed in Table 6.
The deformation parameters are listed in Table 5 (see CC
(DP) and CC (DF) columns). The potentials derived from
elastic scattering were utilized as the initial potentials for
the CC calculations, with inelastic data incorporated into
the process. Channel coupling was found to influence the
ground-state scattering behavior [54, 55], requiring a
comparison of CC calculations for both elastic and in-
elastic cross-sections.

First, the coupling effect on the elastic scattering was
analyzed. The sensitivity of the coupling to the inelastic
form factor was explored by examining both the DP and
DF models. The elastic scattering with and without coup-
ling was depicted in Figure 12 for both models. The CC
method accurately described elastic scattering within the
angular range of 10 to 100 degrees. For the '>C nucleus,
the CC approach produced an oscillation within the angu-
lar range of 80 to 120 degrees, consistent with the data
and not observed in the DWBA method. The CC calcula-
tion based on the DP potential, referred to as CC-DP, had
a better result than the calculation based on the DF poten-
tial, denoted CC-DF, with BM densities. The oscillation
was out of phase at angles over 120 degrees in the DF
calculation. For the '°O nucleus, the CC method agreed
with the DWBA method up to an angle of 120 degrees.
The CC-DF disagreed with both DWBA and CC-DP
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(color online) a) The real part of the DF transition potentials for the scattering of *He on '*C (*2 state — BM model), 'O (3

state — T model), **Mg (*2 state — BM model) and **Si ("2 state — BM model) at 60’ MeV based on the regularized HS+EX (FR/Paris)

interaction. b) The imaginary part of the transition potentials.

Table 6. The normalization constant (Ny), the depth (Wp) in MeV, the radius and diffuseness parameters (rp and ap), the total cross-
sections (og) and x? values of elastic and inelastic scattering for the CC calculations based on the folding model with regularized

R3Y(HS) interaction.
Reaction Model N Wp (MeV) rp (fm) ap (fm) og (mb) Bt Xastic Xinelastic
*He+'2C DP 0.863 10.431 1.569 0.596 915.5 +0.54 18.37 2.66
DF - BM 0.892 10.843 1.569 0.611 915.5 +0.719 30.70 11.2
*He+'*0 DP 0.892 10.969 1.594 0.701 1159.7 +0.314 7.89 151.22
DF-T 0.861 13.593 0.858 1.126 1249.5 +0.249 9.98 769.91
*He+*Mg DP 0.722 9.882 1.230 1.146 1639.3 +0.436 37.3 9.26
DF - BM 0.739 10.095 1.243 1.126 1624.8 +0.562 37.5 6.52
*He+*Si DP 0.761 13.576 1.126 1.037 1546.9 +0.322 12.4 13.1
DF - BM 0.777 14.055 1.123 1.022 1529.7 +0.407 11.2 11.2

from a large angle. The effect of coupling is not evident
in the %O case. No significant difference was observed
for the **Mg and **Si nuclei compared to the DWBA cal-
culations. The DP results are slightly better than the DF
results, except for the '°O nucleus. The coupling effect
consistently decreased the normalization constant across
all cases. Additionally, the explicit inclusion of inelastic
states reduced the imaginary potentials' depth and re-
quired larger values for the radius parameter. In all cases,
rp > ap is satisfied, except for the DF calculation of '°O.
The CC method yields larger total reaction cross-sections
than the DWBA method.

Secondly, the inelastic cross sections calculated us-
ing the CC method were analyzed and were presented in
Figure 13. The solid lines depict the results obtained us-
ing the DWBA method, whereas the dashed lines repres-
ent those from the CC method. The CC calculations were
initiated with the most suitable DF transition potentials
identified within the DWBA analysis. Regarding the DF
model, the transition potentials based on the BM model
were applied to ?C, **Mg, and **Si, while the T model
was utilized for '°O. For '?C, the CC method enhanced

the accuracy of results at both small and large angles for
both DP and DF potentials (see Fig. 13). This improve-
ment suggests strong coupling between nuclear states.
The DP potential provided a better fit for the experiment-
al data than the DF potential. Coupling reduced the de-
formation parameter by 12.6% for the DP potential and
11.2% for the DF potential. An evaluation of the DF po-
tential based on the T model showed unsatisfactory res-
ults; the small value obtained for the deformation para-
meters supported the conclusion that the BM transition
density is the optimal choice for the 2" state '*C.

For the 3™ state of '°O, the CC method provided accur-
ate descriptions within an angular range of 10 to 50 de-
grees. However, for larger angles, neither CC-DP nor
CC-DF showed significant improvement. The calculated
cross-sections at angles greater than 80° are significantly
higher than the experimental ones. The DWBA results
outperformed those of the CC method. This finding aligns
with the results of a previous study [19]. Burtebayev et al.
have taken into account the coupling of the elastic and in-
elastic scattering in both the forward and reverse direc-
tions in the framework of the collective and microscopic
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models, respectively. Still, the results were unsatisfact-
ory (See Fig. 4 in [19]). The deformation decreased by
4.56% for the DP potential and increased by 1.63% for
the DF potential. The DP potential produced a very con-
sistent value of f.

For the 2" state of **Mg, applying coupled channel
calculations improved the results in the diffraction region
for both DP and DF potentials. At large angles, the
DWBA and CC calculations exhibited no significant dif-
ference. The present result exceeded the results obtained
by Sadykov et al. (See Fig. 7 [24]) in the comparison.
The authors utilized only the deformed real potential, a
common approach in light particle scattering studies, al-
lowing them to compare their results with existing data.
The present study provides evidence for the crucial role
of imaginary part deformation in describing inelastic scat-
tering. The coupling decreased the value of . The DP po-
tential produced P = 0.436, consistent with proton and
electron scattering results. In contrast, the DF potential
yielded B = 0.562, aligning with findings from *He scat-
tering (see Table 5). Compared to the CC-DP results, the
CC-DF results showed a marginal improvement.

For the 2" state of 2*Si, the implementation of coupled
channel calculations demonstrated minimal enhancement
in the accuracy of inelastic cross-section determinations.
Consequently, coupled channel calculations had virtually
no effect on the accuracy of inelastic cross-section pre-
dictions. CC-DF calculations produced a B value of
0.322, consistent with proton and electron scattering ex-
periment results. The CC-DP calculations  yielded the
lowest value of the deformation parameter. Similar to the
case of Mg, the CC-DF results showed only a marginal
improvement over the CC-DP results, suggesting that the
DF approach is not particularly advantageous for light
targets.

The deformation parameters extracted from *He scat-
tering systematically exceed those obtained from elec-
tron scattering, consistent with previous observations of
projectile-dependent results [56]. This discrepancy arises
because electron scattering interacts with protons solely
via the Coulomb force, exclusively probing their charge
distribution. In contrast, *He scattering interacts with pro-
tons via both Coulomb and nuclear forces and with neut-
rons via the nuclear force, thus exhibiting sensitivity to
both neutron and proton distributions. The extracted de-
formation values may reflect dynamic deformation ef-
fects, where nuclear distortions emerge from the inter-
play between the target nucleus's internal structure and
the incident projectile. Such dynamic deformation should
fundamentally depend on both the nuclear structure and
the effective NN interactions during the scattering pro-
cess. A comparison between the extracted deformation
parameters and proton scattering results offers additional
support for dynamical deformation effects, with the ex-
pectation that this effect will be more pronounced in *He

scattering due to its greater deformation magnitude.

IV. CONCLUSIONS

This study investigated *He elastic and inelastic scat-
tering off '*C, '°0, **Mg, and *Si at 60 MeV using a
double-folding approach. Optical potentials were calcu-
lated based on RMF-derived NN interactions R3Y(HS),
R3Y(L1), R3Y(W), and R3Y(Z) for the real part. The
results of the present study can be summarized as fol-
lows:

I. The regularization procedure maintained the char-
acteristic behavior of NN interactions while reducing the
potential well depth. The R3Y(Z) interaction was ex-
cluded from our-analysis as a purely repulsive potential
was deemed unphysical for *He-nucleus scattering in this
energy regime. The regularized potentials demonstrated
improved agreement with experimental data. Comparat-
ive analysis revealed that a surface Woods-Saxon (WS)
imaginary potential provided superior results to those de-
rived from folded potentials. Furthermore, the selection
of imaginary potential influenced the required normaliza-
tion constant significantly.

II. The R3Y(HS) interaction successfully reproduced
experimental scattering data with an optimal normaliza-
tion constant N = 1 for '2C and 0.9, 0.79 and 0.79 for 'O,
Mg and *Si, respectively. In contrast, both R3Y(L1)
and R3Y(W) interactions required significantly smaller
normalization constants (N < 0.5), producing unrealistic-
ally deep potentials that rendered them unsuitable for de-
scribing *He-nucleus scattering. Notably, we observed an
inverse relationship between the normalization constant
and target mass number, suggesting that the RMF-de-
rived R3Y(HS) interaction demonstrate better perform-
ance for lighter nuclear systems.

III. Analysis of inelastic scattering was conducted
within the Distorted Wave Born Approximation (DWBA)
framework, employing two distinct approaches for trans-
ition potentials: a phenomenological deformed potential
(DP) and a microscopic double-folded potential (DF).
The DP approach yielded larger potential depth for the 2°
excited state of '>C than the DF method. While both mod-
els successfully reproduced small-angle scattering cross-
sections, their accuracy diminished at larger angles, with
the DP model demonstrating a better performance in this
regime. In the case of '°O's 3~ state, the DF approach
based on Bohr-Mottelson collective models required an
anomalously large deformation parameter (f; > 0.5). A
better agreement with experimental data was achieved us-
ing a Tassie-type transition density, which provided more
realistic nuclear deformation characteristics. For the 2*
states of **Mg and #Si, both DP and DF approaches in-
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corporating Bohr-Mottelson transition densities produced
comparable and satisfactory results across the measured
angular range.

IV. The coupled channels (CC) method was also ap-
plied to analyze both elastic and inelastic scattering pro-
cesses, demonstrating varying degrees of success across
different nuclear systems. For elastic scattering, the CC
calculations showed excellent agreement with experi-
mental data in the angular range of 10°-100°, particularly
for the '*C nucleus, which accurately reproduced the
characteristic oscillatory pattern observed between 80°-
120. An analysis of the effects of coupling various trans-
ition potentials on elastic scattering revealed that the de-
formed potential implementation (CC-DP) consistently
outperformed the double-folded potential approach with
Bohr-Mottelson densities (CC-DF), with the latter exhib-

iting phase discrepancies beyond 120° that limited its ef-
fectiveness for backward-angle scattering. In the analysis
of inelastic scattering, the CC method proved particularly
effective for the ?C nucleus, significantly improving the
agreement with experimental data across both forward
and backward angles for both transition potential formu-
lations, suggesting strong coupling between nuclear states
in this system. The method also provided accurate de-
scriptions of the 3™ state in 'O for scattering angles up to
50°, though its effectiveness diminished at larger angles
regardless of the potential used. The results were more
varied for the 2* states of heavier nuclei: the **Mg case
showed noticeable improvement in the diffraction region.
At the same time, the *Si system exhibited only minimal
enhancement in-cross-section determination, indicating
weaker coupling effects in these heavier nuclei.
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