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Abstract: We present a comprehensive theoretical approach for describing the amplitude of the processes
J/W — yab, where a and b are pseudoscalar mesons. Our approach systematically incorporates: final-state rescatter-
ing between the pseudoscalar pair ab, contributions from intermediate resonances and coupled-channel effects via
rescattering of @ with a intermediate state X (which subsequently decays to yb). The formalism ensures unitarity in
the two-body rescattering amplitude and dynamically dressed couplings between resonances and pseudoscalar pair.
Using a toy model, we perform numerical calculations and demonstrate that coupled-channel effects significantly in-
fluence the lineshape of the invariant mass spectrum of the final states. These findings highlight the necessity of in-
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I. INTRODUCTION

Quantum Chromodynamics (QCD) constitutes the
fundamental theory of strong interactions [1], presents
one of the most profound challenges in modern physics:
the mechanism by which quarks and gluons form had-
rons. While perturbative methods_successfully describe
high-energy regimes, the low-energy domain remains in-
tractable due to nonperturbative phenomena such as col-
or confinement. Recent experimental discoveries of new
hadrons [2] have further challenged the conventional
quark model, where mesons are understood as quark-anti-
quark pairs and baryons as three-quark systems. These
observations provide critical insights into exotic reson-
ance dynamics and nonperturbative QCD, yet our under-
standing remains limited by sparse statistical data and in-
complete amplitude parameterizations [3]. Many candid-
ates are observed exclusively in single production or de-
cay channels, necessitating rigorous constraints on reac-
tion amplitudes to reduce systematic uncertainties.

Traditional Breit-Wigner (BW) parameterizations suf-
fice for narrow, isolated resonances but fail for overlap-
ping states or those near thresholds. In such cases, pre-
serving fundamental amplitude properties —unitarity
(from probability conservation) and analyticity (from
causality) —requires more sophisticated coupled-channel
frameworks [4]. The K-matrix formalism [5], for in-
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stance, enforces unitarity through real matrix elements
but suffers from limitations: its fixed matrix structure
struggles with new channels, and parameter uncertainties
degrade accuracy for high-statistics data. Crucially, it
neglects energy-dependent of the real part of self-energy
corrections, leading to inconsistencies in lineshape de-
scriptions and pole extractions [6—8].

A key objective in QCD is the search for
glueballs—exotic states dominated by gluonic interac-
tions—which directly probe non-Abelian gauge dynam-
ics. Radiative J/y decays to pseudoscalar meson pairs of-
fer a unique window into glueball production, as demon-
strated by extensive BESIII studies [9, 10]. These gluon-
rich processes are ideal for identifying scalar and tensor
glueball candidates [11], though challenges persist due to
broad, overlapping resonances and flavor-blind gluonic
decays that populate multiple channels [12]. Convention-
al BW methods are inadequate for resolving these com-
plexities.

In this work, we develop a unitary coupled-channel
amplitude for J/y — yab (where a and b are pseudoscal-
ars), incorporating: two-pseudoscalar rescattering via
coupled-channel Lippmann-Schwinger (LS) equations
[13—16], intermediate =~ meson-photon  couplings
(aX — yb), and energy-dependent self-energies absent in
K-matrix approaches. Our framework avoids the pitfalls
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of BW and K-matrix methods by embedding unitary two-
body amplitudes directly into the decay process, enabling
unbiased resonance property extraction from experiment-
al data. We validate the model’s efficacy using toy calcu-
lations and demonstrate its application to J/y — yKs K.

The rest of this paper is structured as follows. In the
following section, we outline the model construction and
formalism. Section III will present the calculation of
J/Yy — yKs Ky process as an example by using this form-
alism. We include concluding remarks and a discussion in
Section IV.

II. FORMALISM

A. Mechanisms of J/y radiative decay into two pseudo-
scalar mesons

We analyze the process J/y — yab, where a, b de-
note pseudoscalar mesons, incorporating two coupled-
channel effects:

1. Rescattering ab — ab: Dominated by intermediate
resonances (XY) originating from bare states.

2. Rescattering Xa — X’b: Assumes constant decay
widths for X (which couples to ya) and neglects X's
coupled channels.

These approximations are justified because:

e Electromagnetic interactions (e.g., photon rescatter-
ing) are negligible compared to strong interactions.

e Including X's strong decays would require a three-
body formalism at least, breaking two-body unitarity—a
reasonable trade-off for this work.

The decay processes J/y — yab can be classified into
the following four categories as illustrated in Fig. 1. In
Fig. 1(a), the process corresponds to a direct three-body
decay governed by the vertex of J/yyab. The contribu-
tion of rescattering a’b’ — ab is included in Fig. 1(b). It is
worth mentioning that the first vertex shares with that in
the diagram (a), and the rescattering contribution is de-
scribed by the full 7-matrix of a’b’ — ab which will be
discussed in the next section in detail. In Fig. 1(c), it
refers to the bare state X. J/y first radiative decays to
bare state X, and then X will couple to the final ab state.
Here we need a new vertex of J/yyX, a full propagator
matrix of bare states X, denoted as Ayy, and a dressed
vertex of Xab. Importantly, the propagator matrix and the
dressed vertex of Xab are both determined by the 7-mat-
rix of the rescattering a’b’ — ab. At last, in Fig. 1(d), we
show the contribution of the rescattering of Xa, which is
totally independent of the previous three mechanisms.

Y Y
e J. a Iy —...a' a
'm
“b b b
(a) (b)
_, b 7V
Y X 7
I/ a /Y A
Axy b v X

(c) (d)
Fig. 1. The diagrams for the four categories of reactions. In
this paper, pseudoscalar mesons are represented by dashed
lines, and bare states by solid lines. Grid-patterned boxes de-
note coupling vertices associated with specific initial and fi-
nal states, while solid black circles depict propagators modi-
fied -through’ self-energy corrections. Solid black triangles
symbolize propagators of bare states with parameter-adjusted
properties.

Conventional isobar models (e.g., BW) only include Fig.
1(c), violating unitarity for overlapping resonances.

B. Coupled-channel T-matrix

The S-matrix connects the initial and final states,
which encodes the probabilities of transitions between
them. Since S-matrix satisfies the unitarity for the conser-
vation of probability, i.e., STS =1, it is well defined and
can be expressed through phase shifts and inelasticities,
which can be extracted from the experimental observ-
ables. Furthermore, the T-matrix calculated from the in-
teraction vertices based on the theoretical models can also
be used to derive the S-matrix through the standard scat-
tering theory. However, under different notation, the con-
nection between them may differ. In this paper, we use
the following definition for the 2 — 2 process[17],

S_fi = 6]'1' —2nmi V pf(E)Tfi(kamkon;E) V pt(E), (1)
where f and i are for the final and initial states, respect-
ively. The p;(E) is the states density of the channel i for
two bodies system, given as

E;y (ki)Ein(k:)

k7,
E 1

pi(E) = 2)

where the k; is defined as the on-shell momentum for
channel i, i.e., E= \/k}+m}+ \/k} +m}, and E is the
total energy in their CM frame. Then the differential
cross section between two channels can be expressed as
follows,
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where ¥ is for the average the spin states of initial state i
and summation of the spin states of finial state f. In addi-
tion, for the differential decay width, it is expressed as,

dliy  2mpr(E) T 2
Rl > IT. )
Typically, the T-matrix defined here has a factor differ-
ent from usual covariant amplitude M defined in Particle
group data [1] as follows,

1 1
T P = i 5
T @ny  2Eq2En2E2E;, My )
for 2 — 2, and
1 1
T = 6
T @nylr 2MQ2Es2Es, ©)

for 1 — 2.1t is related to the definition of the LS equa-
tion to solve the T-matrix. Here the symbol fi refers to
the final states and initial states, while the T is the T-
matrix elements.

The LS equation, defined in the center-mass system
(CMS) of the final two-body system, is formulated as fol-
lows for the fixed partial wave denoted by angular mo-
mentum L,

L (kK E) = VEy (kK S E)

+Z/d 2 Voy
Y

arﬁ
v (k,q; EYTLy (g, k'3 E)
E-w,(q) +ie

(7

where, the potential V* between two coupled channels in-
cludes contributions from bare states with spins J = L and
the direct vertices. And here a and S refer to the final and
initial states since the two sides of re-scattering are one of
the considered channels. The T, is the partial wave amp-
litude for @ — B with angular monument L. The on-shell
energy w, of the given channel is defined as
w(q)= /mi+¢*+ \/m3+¢*. The corresponding dia-
grams for the processes 2 — 2 and 1 — 2 are shown in
Figs. 2(a) and (b), respectively.
The potential V. ) L (k,k',E) comprises two terms,

G, (k)G(K)

E—my+ie ’

VE (kK \E) = VE (k,K)+ Z (8)

where V%, (k,k') is the bare-states-independent potential

B - ©
(a)

_g = — + —m_ .

= = v —lE

(b)
Fig. 2. The LS equation for coupled vertexes. (a) is for
2 — 2 interaction, while (b) is for that of 1 — 2.

between two channels(energy-independent on E), while
coupling function Gy, describes the coupling between
bare state X with bare mass my and channel a. Please
note that the spins of these X should be equal to L. The
potential Vi, (k,k’) typically includes ¢ and u-channel ex-
changes as well as the contact term. However, for inter-
polating the scattering data in the finite energy region,
separable potential form is a reasonable way to paramet-
erize this potential. Furthermore, such separable potential
will promise an exact analytical solution of LS equation,
thus, we choose the form of v,z (k,k’) as follows,

Vs (kK = v fr (k) fi (K, 9
1+ K2t gy
A2 0 (10)

frk) =

V Ea, (K)E,, (k)

where A is the QCD energy cut around 1 GeV, my is the
representative meson mass and usually chooses m,,, and

aﬁ taken as a real number indicates the coupling con-
stant between channel a and f in the partial wave L The
vertex of the bare state X and channel a, G%,(k) can be
expressed as,

G)L( a (k)

mo .p
8 NTRL an
where gk, is a real dimensionless coupling strength con-
stant.
Based on Eq. (8), the solution of LS equation as
shown in Eq. (7) is the T-matrix, 7%, which could be de-
composed into two components as follows,

TL =t + T (12)
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These two parts t* and Tt indicate the contribution from
the channels without and with the bare states with the
same orbital angular moments L and the same matrix ele-
mentsaf, respectively.

tL is defined as

tog (kK s E) = Vi (k. K')

VE (k,q)tls (g, ks E)
d 2 Tay B )
+27:/ 19 E—-w,(q)+ie

(13)

Adopting the separable potential Vj; as shown in Eq. (9),
the solution of 7%, inherits a similar separable form as fol-
lows,

thy (kK E) = fr()lg(E) f (K'), (14)
where
AE) =Y (I=v"M(E)) vy (15)

Y

Here, 7 is unit matrix, the elements of matrix v* is vug,
and diagonal matrix M(E) is defined as follows,

Myo (E) = /

The second term at the right side of Eq. (12), T%, is
derived as

7*dqlfa (@)

E—wy(q)+ie (16)

Tk K E)=Y_ GixAxGiy. (17)
XY

where GIy and Gy, are the dressed coupling functions of
X - a and B — Y, respectively, and Ayy is the dressed
propagator between the bare state X and Y. The two
dressed coupling functions can be derived as,

G E) = G5, () + > gxy(E)L,(E) £ (k) (18)
Y
w(kE) =Gy, (0+ Y [l (E)gn(E). (19
Y
with,
_ 2 GXy (Q) fy (Q)
8xy(E) = / e 0 Q)+ i€ (20)

On the other hand, the T-matrix of 1 — 2 is indeed
G5, (k;E). The dressed propagator of the bare states is a

matrix and elements of its inverse matrix can be ex-
pressed as follows

(A)xy(E) = 6xy(E —my) - Sy (E) - iy (E),  (21)
where,
0 (E)= 2 Gxy(@)Gry(9)
(-3 Jaar PEEEE )
is for the self energy of
S E)V=D " gxal E)y(E)gys(E). (23)

ap

The corresponding diagram is shown in Fig. 3.

Finally, we consider the rescattering between X and
a. As discussed in the previous subsection, the X can de-
cay, implying this scattering process inherently involves
the effect of three-body unitary, which is beyond current
model. As shown in Fig. 4, the two right diagrams in the
first line show the three-body contribution, the intermedi-
ate state could be three states described by dashed lines.
Then, we make the assumption that we use a contact term
to describe the interaction between X and q, illustrated by
the first diagram in the second line. For the triangle loop,
we directly absorb it into the width of X, which is indic-
ated by the solid triangle in the right diagram in the
second line of Fig. 4. Then the energy term of X is re-
placed as a complex energy E—iI'/2, where I' denotes
the width. Consequently, analogous to the solution of the
LS equation mentioned earlier without the bare state con-
tribution, as shown in Eq. (12), with the same separable
potential form, we can obtain,

f=1-vM)7"p, (24)

—)h— B
- (—)_1+ .a—

Fig. 3. The self-energy corrections for propagator.

=)= (

—_—

Fig. 4. The diagrams of the scattering between X and a. The
Z diagram and triangle loop are proximate to the contact term
and two particles loop with a fitted parameter of width of X.
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|ﬁaX)(q)|2
E - (L)(ax)(q) + l F/Z’

M(aX) =/dqq2 (25)

where v is the coupling constant matrix.

C. Partial Wave Amplitudes

In the preceding subsection, we have obtained the
propagators and coupling vertices involved in the four
mechanisms of Fig. 1. The dynamical component of the
scattering amplitude directly is an explicit product of
these factors, so it remains only to introduce the angular
distribution components to obtain the complete partial
wave amplitude. Here, we incorporate the partial wave
amplitudes to account for the angular distributions. For
the background terms and the two processes involving the
ab scattering, we need to consider two angular mo-
mentum degrees of freedom, while for the Xa process,
three degrees of freedom must be taken into account.
Consequently, the four reaction amplitudes including the
orbital angular momentum can be expressed for an out-
put channel(a) and photon (y) as:

>

Li Lo L5 15,8,

X (S8, LiLi|1S%,,)

M, e = (183, L L3S S

LiL,S A L
X U™ 3o Y1 (S8y) fpep(4y)

X YL;L; (@n)ﬁfz(%t)7

>

L1.L2. L3 I5.8.8°
X183, Ly L3S SEKS SE, LiLi1S 5,,)

XY Ui oM (BN (E) 2 (q0) Vi (3a)
B

(26a)

, a N oL
M(J/TIH o= YLle (_‘h)f(ll/l//ﬂ/)(qy)

(26b)

(©) —
MJ/(//*) ya T

>

Li.Lp, L3 L5.8.8°
X (187, L L3|S S¢S 87, L, L;[1875,)

x> 5 Ay (E)GY( G E)Y iy (Ga)
XY

YL1 L (_Ely)fiLj]/l/,,y) (Qy)

(26¢)

(d)
MJ/://H ya

=3 Y @S yS 5. LiLiI1S5,)
Ly,L§ }_/L‘,S;—(
x “ﬁ/l.pq 7o Myc(myy)

X3 (S e85 LaL3I1S ) Y, ()

Ly, L5 )_(,S%,

X tyegp (M) [ ;?;l (g»)
XY (1S3, L1518 S 5 Y11 ()
L3L§
1%
x fxlya(Qa)
E(q)-mg+il/2°

26d)

Here, the three related momenta are all the back-to-back
moments in their CMS frame, where dynamic factors like
fE kMY AR GE are defined in the last subsection. The
spherical harmonics terms Y;;: with Clebsch-Gordan
coefficients are involved to describe the angular moment
contributions for the partial wave amplitudes.

The uf}éz_fya(x) refers to the coupling strength con-
stants of their subscript processes, where L, L, and S are
the angular momentum between y and a(X), the total spin
of a channel (or the spin of X) and the total spin of ya(X),
respectively. Here, we do not make a detailed expansion
since the relative partial-wave amplitudes are written ex-
plicitly in Ref. [18]. To clarify the notation, we give an
example for X with J” =0". In this case, only one partial
wave survives, L; = 1, L, =0 and S = 1 the formula write
as:

L[S _ *Y ADa
)y yat0) = €uvap €y €, Py i,

27)
where 7V is the p-wave vertex of the y and X as defined
in Ref. [18].

D. The Comparison with other methods

Recognizing the importance and relevance of the
comparison between our Lippmann-Schwinger (LS)
formalism and the K-matrix, as well as other approaches,
we will make a detailed discussion in this subsection.

Firstly, as we point out in the introduction part, the K-
matrix method neglects energy-dependent of the real par-
tof self-energy, how it can be modified by introducing
K=(1-VG")V, where G’ is the Chew-Mandelstam vari-
able and ¥V is a potential. However, even though such
method still have a significant limitation. It is that the po-
tentials / or K remain independent of the loop integra-
tion. This implies an on-shell approximation is applied to
both ¥ and K. While this framework may provide ad-
equate data fitting, its predictive capabilities can be ques-
tionable.

In our method, we definitely include the off-shell con-
tribution of potential in the loop integration. As shown in
Eq. (16), the M matrix replaces the pure two points loop
integration in the K-matrix method combining with
Chew-Mandelstam variables or the ip term in the pure K-
matrix method. In M matrix, it incorporates form factor
details from the potential, which indicates the off-shell
contribution is reasonably included. Furthermore, this po-
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tential is established through theoretical interpolation,
with various parameters tightly constrained by symmet-
ries like chiral Lagrangians or SU(3) symmetry. Accord-
ingly, during data fitting, these parameters benefit from
robust theoretical constraint.

Conducting a numerical comparison involves inher-
ent challenges, primarily due to the need for identical po-
tentials when comparing the LS approach with the K-
matrix approach, or using both to fit similar datasets to
evaluate pole positions. Previous work [19] has explored
the prediction of the P, state, offering detailed comparis-
ons between our LS approach and the Valenca method, a
variant of the K-matrix+Chew-Mandelstam approach.
Using identical potentials, these calculations yielded dif-
fering predictions for the mass of the P, state. Notably,
the LS approach predicted a smaller binding energy, more
closely aligning with experimental measurements at LH-
Cb latter. As such, we do not repeat these calculations
here. Latter we will employ a toy model to illustrate the
impact of coupled channel contributions.

At last, let us make a discussion about the relativistic
Corrections. Relativistic corrections encompass two
primary components: kinematic alterations and particle-
antiparticle generation from vacuum states. Our methodo-
logy incorporates the first through a relativistic disper-
sion relation. However, the second—which is often over-
looked at the hadronic level —remains unsolved in the
context of the four-dimensional Bethe-Salpeter equation.
The LS approach effectively employs a three-dimension-
al reduction. This reduction remains justified at the had-
ronic level; for example, the pion, as the lightest hadron,
has a mass approximating 100 MeV, permitting the neg-
lect of antiparticle contributions during propagation. Nev-
ertheless, if current quark structures constitute the found-
ation of the theory, these relativistic corrections become
more pronounced. Presently, such a non-relativistic ap-
proach is prevalently adopted in hadronic physics.

This section provides a comprehensive discourse on
the comparative strengths and limitations of the various
methodologies, highlighting our advancements and situat-
ing them within existing theoretical frameworks.

III. NUMERICAL RESULTS: TOY MODEL ANA-
LYSIS

To demonstrate the significance of the coupled-chan-
nel effect, we apply our framework to the decay
J/¥ — yKs K. In this toy model, we include two pseudo-
scalar coupled channels(Ks K and mom,, with bare masses
aset to their PDG values [1]), along with two bare states
(JF€ =0%): an f, with a bare mass of 1.221 GeV and an
fy at 1.451 GeV. In addition, we include a K,
state(J*C = 1*) with a mass of 1.403 GeV and a width of
0.174 GeV for the yKs channel. For simplicity, we re-
strict our analysis to S-wave partial wave amplitudes. The

model parameters are listed in Tables 1 and 2.

We first determine the pole positions of the 7-matrix
in the complex energy plane for the two-pseudoscalar
coupled channels by solving Det[Axy(E)™']1=0 on the
relevant Riemann sheets. For the ab coupled channels,
we identify two pole positions in the second Riemann
sheets(denoted as uu), as summarized in Table 3. For the
KK channel, the width in the K;'s propagator is pre-set,
and its pole position is fixed to My, = Mpgre —iT'/2.
While the real and imaginary parts of the pole position in
a unitary model generally differ from the BW mass and
width, they converge for narrow resonances [20]. Our
model shows that the two f; resonances, generated via
the bare-state couplings, exhibit narrow widths, resulting
in invariant mass peaks consistent with their pole posi-
tions. In contrast, the broader K| resonance(I" ~150 MeV)
undergoes. significant lineshape modifications due to
K1 K5 = K| Kg rescattering, leading to an observable shift
in‘the yKy invariant mass spectrum.

We now present the Daliz plots for the reaction. The
distributions of the sum of Fig. 1(a-c), pure Fig. 1(d) and
the full amplitudes are shown in Fig. 5(a-c), respectively.
Two clear f; signals presented as red lines in Fig. 5(a),

Table 1.
cay PP Model. The meaning of each parameter is defined in
the description provided in the previous section. All energy
units are GeV, and the QCD energy cutoffs A are fixed at 1
GeV.

Parameters for the Considered Dual-Channel De-

RA{L} fo {0} fo i1
mg 1.221 1.457
8(R.KK) 0.810 —0.710
&(R,nn) —0.740 0.910
W /yyR) 0.300 0.500
yPP
VKK.KK 0.980 -
VKK 0.870 -
Varan 0.980 -
U1y, yKK) 0.800 -
U(Jfypynm) 0.800 -
Table 2. Parameters for the Considered Dual-Channel De-
cay XP Model. See Tables I for the description.
R {L} K, {0}
mg 1.403 -
I'r 0.174 -
U(J/y,KR) 1.400 -
V(KR,KR) 1.000 -
S(RyK) 1.000 -
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Table 3. Pole positions in PP scattering case amplitudes.
The Riemann sheets of them are specified by (KK, xr). for the
K resonance, we take its pole position from the BW form.
The real part is very close to the input mass of K;, and the im-
agery part is obtain by Im(Mp..) = —I'(Res)/2.

R{L} M 10 (GeV) RS
Sol0} 1.225-0.010 (uu)
£0) 1.457-0.007 i (uu)
K1{0} 1.403-0.087 i -

and one signal for K; as shown blue broad belt in Fig.
5(b) emerge, corresponding to the intermediate states in
our model. Interference between these components signi-
ficantly distorts the K, lineshape, underscoring the neces-
sity of including all mechanisms. An enhancement is ob-
served at high My, and low M, , arising from interfer-
ence between the tree-level diagram and dynamical res-
cattering effects.

To elucidate the contributions of dynamical mechan-
isms, Fig. 6 decomposes the contributions of individual
mechanisms. We find that the mechanism shown in Fig.
1(c) provides the primary contribution to two f, reson-
ance peaks, while Fig. 1(a)(b) remain essentially flat.
However, their interference enhances contributions in the
high-energy region of Mgk, and also strengthens the
background under both f; resonance peaks. Thus, the

analysis demonstrates the coupled-channel model is cru-
cial for a unified treatment of various background contri-
butions, and the correct description of the background is
also extremely important for extracting resonance struc-
tures. Regarding the mechanism shown in Fig. 1(d), it
does not produce any special structure in the invariant
mass spectrum of KK, but generates a subtle bump via
interference from other channels in the high-energy re-
gion. This explains the observed statistical enhance in the
high M, k, region on the Dalitz plot. Similarly, in the yK
invariant mass spectrum, the Xb rescattering as shown in
Fig. 1(d) clearly dominates the peak structure, which un-
dergoes a measurable shift due to the interference with
contributions of Fig. 1(a-c). These results highlight the
critical role of coupled-channel effects in resonance ana-
lysis: interference can distort lineshapes from simple BW
expectations, necessitating a unified framework for accur-
ate mass/width extraction.

IV. SUMMARY AND OUTLOOK

In this article, we develop a unitary coupled-channel
framework for a system of two pseudoscalar mesons, ex-
plicitly distinguishing between resonant signals and non-
resonant background contributions. The model is applied
to the radiative decay J/y — yab, incorporating rescatter-
ing effects between the final-state mesons. This frame-
work includes the tree-level decay of J/y into the final-

1M |2 arb.units
0.20

Wi (GeV<)
MLj«{Ge\I?}

IM|? arb.units 6
020

Mfweevﬁ

2 4 6 8 10 2 4

ME(GeV?) ME(Gev?)

(a) (b)

(color online) The Dalitz plot on M*(KK) and M?(yK)for different amplitudes' square.(a) Tree-level, PP-rescattering and Bare

Fig. 5.
states;(b) XP-rescattering; (c) All amplitudes.
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(color online) One-dimensional projection plot for each amplitudes on M(yK) and M(KK) invariant mass spectrum. The lines
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state pseudoscalar mesons, the cascade decay of J/y radi-
ating into a resonance particle which subsequently de-
cays into ab, the rescattering process where J/y radiates
into ab, followed by final-state interactions, and the chain
of J/y decaying into one pseudoscalar meson and an in-
termediate resonance, which then radiates another
pseudoscalar meson via scattering. Additionally, the de-
cay of the fy resonance includes contributions from
meson rescattering. In contrast, conventional isobar mod-
els typically describe cascade decays through a BW para-
metrization of intermediate resonances, supplemented
with ad hoc background terms. Such approaches often in-
troduce arbitrariness in modeling background structures,
leading to uncertainties in resonance parameter extrac-
tion. Our coupled-channel formalism, however, is con-
strained by ab scattering, providing a self-consistent de-
scription of both resonant and non-resonant effects,
thereby minimizing model-dependent ambiguities. Des-
pite its computational complexity, this approach offers
significant theoretical advantages for practical data ana-
lysis.

For the three-body system yab, considering only ab
coupled-channel effects is insufficient. Although photon-
induced electromagnetic interactions are weak (allowing
photon-meson rescattering to be neglected), an additional
coupled-channel effect arises: the rescattering between a

meson X (coupled the ya system) and another pseudo-
scalar meson. We derive the corresponding formalism to
incorporate this process. Combining these four mechan-
isms, we establish a comprehensive theoretical frame-
work for J/y — yab, essential for future experimental
analyses of this decay.

To illustrate the framework, we construct a toy mod-
el for J/y — yKs Ky, introducing two fy-resonances and
one K; meson. The fy-resonances coupled to KK, with
additional contributions from the nr coupled channel,
forming a two-bare-state, two-channel system. The K,
meson couples to yKs, as described earlier. By evaluat-
ing all four mechanisms, we compute the Dalitz plot and
invariant mass spectra for KsKs and yKs. The results
demonstrate that the peaks of the fy-resonances emerge
atop smooth backgrounds, while the K, peak exhibits sig-
nificant distortion due to interference effects, deviating
markedly from its nominal resonance profile. These find-
ings highlight the necessity of a unified treatment of sig-
nals and backgrounds for correct experimental interpreta-
tion.

This work aims to provide a coupled-channel-based
amplitude analysis framework for the analysis of the ex-
tremely high-precision data and to advance the study of
glueballs by taking into account coupled-channel effects
in a self-consistent way.
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