

HEP ML LAB: An end-to-end framework for applying machine learning
to phenomenology studies*

Jing Li (李靖)† Hao Sun (孙昊)
Department of Physics, Dalian University of Technology, Dalian 116024, China

hml

W+

Abstract: Recent years have seen the development and growth of machine learning in high-energy physics.
However, additional effort is required to continue exploring the use of machine learning to its full potential. To sim-
plify the application of the existing algorithms and neural networks and to advance the reproducibility of the analys-
is, we developed HEP ML LAB (), a Python-based, end-to-end framework for phenomenology studies. It covers
the complete workflow from event generation to performance evaluation, and provides a consistent style of use for
different approaches. We propose an observable naming convention to streamline the data extraction and conversion
processes. In the KERAS style, we provide the traditional cut-and-count and boosted decision trees together with
neural networks. We take the tagging as an example and evaluate all built-in approaches with the metrics of sig-
nificance and background rejection. With its modular design, HEP ML LAB is easy to extend and customize, and
can be used as a tool for both beginners and experienced researchers.

Keywords: framework, machine learning, phenomenological research, Jet, new physics

DOI: 10.1088/1674-1137/addcc9 CSTR: 32044.14.ChinesePhysicsC.49093106

I. INTRODUCTION

In recent years, the continuous accumulation of data
from the Large Hadron Collider experiments has intensi-
fied the demand for new developments in physics. Be-
cause of their outstanding capabilities in data analysis and
pattern recognition, machine learning techniques have
been widely researched and applied in high-energy phys-
ics, such as jet tagging tasks [1−34] and rapid generation
of simulated events [35−40]. Additional applications are
discussed in a review paper on this topic [41].

Typically, the process of research involving machine
learning models in high-energy physics comprises four
steps: data generation, dataset construction, model train-
ing, and performance evaluation. In this process, coopera-
tion between various types of software is often required.
For instance, MADGRAPH5_AMC [42] is used for gen-
erating simulated events, PYTHIA8 [43] for simulating
parton showering, DELPHES [44] for fast simulation of
detector effects, ROOT [45] for data processing, and deep
learning frameworks such as PYTORCH [46] and
TENSORFLOW [47] for subsequently building the neur-
al networks. Researchers new to high-energy physics find
it challenging to learn and use these software tools,

whereas experienced researchers find it tedious to switch
between different types of software. Such a process inev-
itably increases the complexity of the computational res-
ults, which makes them potentially difficult to replicate,
leading to difficulties in comparing the results in sub-
sequent research.

Lately, some efforts have been made to simplify the
entire process, as follows. PD4ML [48] includes five
datasets — Top Tagging Landscape, Smart Background,
Spinodal or Not, EoS, and Air Showers — and provides a
set of concise application programming interfaces (APIs)
for importing them. MLANALYSIS [49] can convert
LHE and LHCO files generated by MADGRAPH5_AMC
into datasets, and has three built-in machine learning al-
gorithms: isolation forest (IF), nested isolation forest
(NIF), and k-means anomaly detection (KMAD). MAD-
MINER [50] offers a complete process for inference tasks
[51], and internally encapsulates the necessary simula-
tion software as well as neural networks based on PYT-
ORCH. These frameworks significantly reduce the work-
load related to specific tasks but have scope for further
improvement.

HEP ML LAB, developed in Python, encompasses an
end-to-end process. All modules are listed in Fig. 1.

 Received 28 March 2025; Accepted 23 May 2025; Published online 24 May 2025
 * Hao Sun is supported by the National Natural Science Foundation of China (12075043)
 † E-mail: jingliphd@mail.dlut.edu.cn

Chinese Physics C Vol. 49, No. 9 (2025) 093106

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd

093106-1

http://orcid.org/0009-0007-8967-582X
http://orcid.org/0000-0002-2341-536X

MADGRAPH5_AMC is minimally encapsulated for
event generation, such as defining processes, generating
Feynman diagrams, and launching runs. In the transition
from events to datasets, we introduced an observable
naming convention that directly links physical objects
with observables, facilitating users to directly use the
names of the observables to retrieve the corresponding
values. This convention can be further applied to the
definitions of cuts. Inspired by the expression form of
cuts in UPROOT [52], we expand the corresponding syn-
tax to support filtering at the event level, using veto to
define events that need to be removed and define custom
observables of greater complexity. This naming rule also
applies to the creation of datasets with different repres-
entations. In the current version, users can easily create
set and image datasets. In addition, we offer a rich set of
functions for preprocessing and displaying of images.

In the context of machine learning, we introduce two
basic deep learning models: simple multi-layer per-
ceptron and simple convolutional neural network. Both
have fewer than ten thousand parameters, providing a
baseline for classification performance. These models are
implemented using KERAS [53] without any custom
modifications, making it easy to expand to other existing
models. Additionally, we integrated two traditional ap-
proaches, cut-and-count, and gradient boosted decision
tree, ensuring compatibility with KERAS. After the dif-
ferent approaches were trained, we provided physics-
based evaluation metrics — signal significance and back-
ground rejection rate — at a fixed signal efficiency to as-
sess their performance.

pip install hep-ml-lab

This package is publicly available through the Py-
thon Package Index (PyPI) and can be installed using the
standard pip package manager with the command

. It supports Python 3.9+ and

is compatible with Linux, MacOS, and Windows operat-
ing systems. The source code is open-sourced on
Github1).

The structure of the paper is as follows. Sec. II intro-
duces the wrapper class of MADGRAPH5_AMC to gen-
erate events. In Sec. III, we describe the observable nam-
ing convention and demonstrate step by step its use in ex-
tracting data from events as well as its extension to filter
data and to the creation of datasets. Three types of ap-
proaches — cut and count, decision trees, and currently
available neural networks — are discussed in Sec. IV.
Physics-inspired metrics are also discussed. In Sec. V, we
demonstrate the effectiveness of the framework using a
simple and complete W boson tagging as a case study. Fi-
nally, we conclude the paper and discuss the scope for fu-
ture research in Sec. VI.

II. GENERATE EVENTS

generators

All phenomenological studies generally begin by sim-
ulating collision events, for example, by using MAD-
GRAPH5_AMC. The module provides a
wrapper for specific parts of its core functionalities, aim-
ing to facilitate its integration into Python scripts for cus-
tomized setting requirements.

Madgraph5Code example 1: Initialize .

executive
verbose

In code example 1, users need to pass the executable
path to the parameter to ensure that com-
mands can be sent to it. The parameter decides
whether to display the intermediate outputs. The default

hmlFig. 1. (color online) All modules in the framework and main classes in each module.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

1) https://github.com/Star9daisy/hep-ml-lab

093106-2

value is 1, indicating that the intermediate outputs are dis-
played, consistent with the output obtained when using
MADGRAPH5_AMC in the terminal. After initialization,
we can use its various methods to simulate commands
entered in the terminal, as shown in code example 2.

Madgraph5Code example 2: Methods of to generate pro-
cesses.

import_model

define
define ("j = j b b ∼ ")

generate
add process

g.generate("p p >
w+ z", "p p > w- z")

display_diagrams

diagram_dir

output

During the process generation, we first need to use
the method to import the model file. This
method supports passing the path or name of the model
(MADGRAPH5_AMC will search for the model in the
models folder or download the model based on its name).
Next, use the method to define multi-particles,
for example, . Then, in the

 method, pass all the processes to be generated
without having to input as in the case of
the terminal. Here, the asterisk represents the unpacking
operation in Python, and multiple processes can be dir-
ectly entered, separated by commas,

 without constructing a list with
square brackets. Usually, to confirm that processes have
been generated as expected, we need to view the Feyn-
man diagrams, for which the meth-
od can be used. It saves the generated Feynman diagrams
to the folder. Prior to this, it converts the
default EPS files into the PDF format for convenience.
Finally, use the method to export the processes to
a folder.

launchCode example 3: Use the method and set up all
possible parameters for generating the events.

launch

shower detector madspin

With the process folder ready, we can begin produ-
cing runs to generate the simulated events, as shown in
code example 3. The method includes paramet-
ers that may need to be configured for the run, where

, , and represent switches for
PYTHIA8, DELPHES, and MADSPIN, respectively,
consistent with the options in the prompt of the terminal.

settings
settings = {"nevents":1000, "iseed":

42} iseed

seed

decays

decays = ["w+ > j j", "z > vl vl ∼ "] cards

cards=["delphes_card.dat"
"pythia8_card.dat"]

multi_run

multi_run = 2
run_01_1 run_01_2

MadEvent

nevents
settings

nevents
multi_run hml

dry = True

 includes parameters configured in the run card,
for example,

. Furthermore, is the random seed used by
MADGRAPH5_AMC to control the randomness of the
sub-level events. It does not affect PYTHIA8 and DEL-
PHES. You can specify the parameter to uniformly
configure these three, ensuring the cross section, error,
and events are fully reproducible. The method is
used to set the decay of the particles; for example,

. The
parameter accepts the path to the pre-configured paramet-
er files; for example, ,

. In this version, only Pythia8 and
Delphes cards with "pythia8" and "delphes" in their file
names can be recognized correctly. It currently does not
support the cards that have external folders as dependen-
cies, such as the muon collider delphes card. When nu-
merous events need to be generated, the para-
meter can be set to create multiple sub-runs for a single
run, for example, by setting . The final
event files will be named as , , which
is controled by . Note that because MAD-
GRAPH5_AMC does not recommend generating more
than one million events in a single run, the para-
meter in should also be set appropriately, as
the total number of events is the result of multi-
plied by . will generate the correspond-
ing valid commands based on the settings and send them
to MADGRAPH5_AMC running in the background. To
check the actual commands before the beginning of the
run, set , which returns the generated com-
mands instead of starting the run.

Code example 4: All the information in the table can be
accessed.

summary
g.summary()

After generating the events, the method, i.e.,
 can be used to print the results in a table, as

shown in Fig. 2. The table includes the name of each run,
number of sub-runs in brackets, colliding particle beam
information, tags, cross-section, error, total number of
events, and the random seed. The header displays the pro-
cess information, and the footnote shows the relative path
of the output; these are essentially consistent with the res-
ults seen on the web page.

launch
To continue experimenting with different parameter

combinations, the method can be used again, or
the loop statements in Python can be employed to gener-

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-3

ate a series of combinations to observe the differences in
the cross-section under various conditions. When doing
so, it is recommended to set short label names to facilit-
ate subsequent search and analysis, as in code example 5.

Code example 5: Use a loop to scan the mass of a particle
called "nh2" and show the summary.

hml

Madgraph5.from_output
Madgraph5Run

output
MadGraph5

events

uproot

If output files are already available, can be used
to extract the necessary information for subsequent use.
The class method and

 will be of great assistance, as shown in
code example 6. The former accepts the path to the out-
put folder, which is the path entered in the com-
mand of , as well as the path to the executable
file. The latter requires the output folder path and name of
the run to access information such as the cross section
and error. The method enables the retrieval of the
paths to all event files under a run, including those of the
sub-runs. Currently, it supports only files in the root
format. can be used to open these files for sub-
sequent processing.

Madgraph5.from_output
Madgraph5Run
Code example 6: Use and

 to access the information.

III. CREATE DATASETS

<physics
object>. <observable type>

The mass of the leading fat jet, angular distance
between the primary and secondary jets, total transverse
momentum of all jets, number of electrons, etc., demon-
strate that observables are always connected to certain
physical objects. Therefore, we propose the following ob-
servable naming convention: the name of an observable is
a combination of the name of the physical object and type
of the observable, connected by a dot, that is,

. In this section, starting
from physical objects, we gradually refine this represent-
ation, eventually extending it to the acquisition of observ-
ables, construction of data representations, and defini-
tions of cuts.

A. Physics objects
Physical objects in DELPHES are stored in different

branches and represent a category rather than a specific
instance. Considering that the calculation of multiple ob-
servables involves different types and numbers of physic-
al objects, often utilizing their fundamental four-mo-
mentum information, we have categorized physical ob-
jects into four types based on their quantity and category:

Single1. physical objects, which precisely refer to a
specific physical object. For example:

"jet0"– is the leading jet.
"electron1"– is the secondary electron.

Collective2. physical objects, representing a cat-

egory of physical objects. For example:
"jet" "jet:"– or represents all jets.
"electron:2"– represents the first two electrons.

Nested3. physical objects, formed by free combina-

tions of single and collective physical objects. It cur-
rently supports the combination of "FatJet/Jet" and "Con-
stituents":

"jet.constituents"– represents all constituents of
all jets.

"fatjet0.constituents:100"– represents the first
100 constituents of the leading fat jet.

Multiple4. physical objects, comprising the previ-
ous three types and separated by commas. For example:

"jet0,jet1"– represents the leading and secondary
jets.

This naming convention is inspired by the syntax of
Python lists. To minimize the input cost for the user, we
discard the original requirement to use square brackets
for receiving indexes or slices: for single physical objects,
the type name is directly connected to the index value; for
collective physical objects, a colon is used to separate the
start index from the end index, and the type name alone

summaryFig. 2. Output of the method.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-4

parse_physics_
object
represents the entire set of objects. The

 method can be used to obtain the branch and the
required index values based on the name of the physical
objects, as shown in code example 7. This design makes
users focus on the physical objects, rather than on how
the corresponding classes should be initialized. In Table
1, we summarize all types of physical objects along with
their initialization parameters and provide examples.

parse_physics_objectCode example 7: Use the meth-
od to obtain the branch and slices of physics objects.

In this version, physical objects are merely tools for
parsing the user input and do not contain any information
about the observables. Unlike other software packages,
we strictly separate the acquisition of observables from
the physical objects. Physical objects store only the in-
formation on the connection between the observables and
their data sources, and not the data.

B. Observable

branch slices

After defining the physical objects, the task of the ob-
servables is to extract information from them. In code ex-
ample 7, we store all useful information from a physical
object in and : the former refers to the
corresponding branch name, and the latter means specific
parts of array-like data. The advantage of this is that
when encountering certain physical objects, such as the
hundredth jet, which does not exist, it returns a list of

False
length zero instead of an error. An empty list will auto-
matically be judged as when applying cuts,
thereby being skipped.

Mass mass m
NSubjettinessRatio taumn

m n

Size

AngularDistance

Table 2 lists all the currently available observables.
To avoid remembering the exact name of an observable,
its name is case-insensitive and common aliases are ad-
ded. For example, can be written as or , and

 has the alias , where the
values of and are passed as parameters to the corres-
ponding class. For the transverse momentum, consider-
ing the style in different types of software, we have as-
signed a greater number of aliases for its symbol repres-
entation. Moreover, different observables support differ-
ent types of physical objects. For example, the ob-
servable supports collective physical objects, whereas the

 observable supports all combinations
of multi-body objects.

parse_observable
observables read

read

awkward

None var

In code example 8, we show how to use such an ob-
servable. First, initialize the corresponding observables
using the function from the

 module. Then, use the method to ex-
tract the values from an event. As the returns the
object itself, method chaining can be used to define an
observable, directly followed by the reading of an event.
Additional information, namely, the observable name,
shape, and data type, is added when the observable is
printed. Internally, [54] is used for manipulat-
ing variable-length jagged arrays. The question mark in
the data type indicates missing values (). The
appearing in the shape indicates inconsistent lengths; for
example, each event has a varying number of jets and
each jet has a varying number of constituents.

Size

1 AngularDistance

(n_events, var, 1)
n_events var

1

The first dimension of the observable value always
represents the number of events, but the shape is gener-
ally determined by the related physical objects. For ex-
ample, the shape of the transverse momentum and other
kinematic variables is identical to its physics obsject.
However, this also depends on the computation of the ob-
servable. For instance, the shape of the observable
is the number of physics objects and the second dimen-
sion is always , whereas the shape of
depends on the type of physical objects: when calculat-
ing the distance between all jets and the leading fat jet,
we will obtain an array of shape ,
where represents the number of events,
represents a variable number of jets, and represents the
leading fat jet; when calculating the distance between the

Table 1. Types of physics objects and their examples.

Type Initialization parameters Name examples

Single branch: str, index: int "jet0", "muon0"

Collective branch: str, start: int|None "jet", "jet1:", "jet:3", "jet1:3

Nested main: str|PhysicsObject, sub: str|PhysicsObject "jet.constituents", "jet0.constituents:100

Multiple all: list[str|Physicsobject] "jet0,jet1", "jet0,jet"

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-5

(n_events, 10, var)
var

None

first ten fat jets and all constituents of all the jets, we ob-
tain an array of shape . The value
of now originates from the number of constituents
and number of jets; the two dimensions are compressed
into one. For events that do not have sufficient physics
objects, the missing values are filled with .

parse_observable read
events

uproot

Code example 8: Use and to
obtain the values of the observables. are opened
by .

The built-in observables are very basic and may not
be sufficient for every use case. Therefore, we show three
examples of building your own observables. In the first
example 9, when the needed observable is already stored

Observable hml

MET

MissingET parse_observable
register_ observable

"missinget0.met" "MissingET0.MET"
parse_observables "MET"
"met"

"MissingET"

under a certain branch, only the name of this observable
needs to be declared as a class that inherits from

. will search for the branch based on the
physical object name and extract the corresponding value
based on the slices. Here, we take the observable as
an example, which is originally stored under the branch

. To use the function, the
 function can be called to re-

gister an alias for it. Please note that this implementation
requires a physical object, which means that only by en-
tering or can the

 function normally. Only or
 without a physics object is not allowed. As each

event has only one missing energy physical object,
 is followed by 0.

ObservableCode example 9: Inheriting from will auto-
matically retrieve the corresponding value if the physics
object has it.

Table 2. Types of observables and their supported types of physical objects.

Type Alias Single Collective Nested Multiple

MomentumX, Px momentum_x, px ✓ ✓ ✓

MomentumY, Py momentum_y, py ✓ ✓ ✓

MomentumZ, Pz momentum_z, pz ✓ ✓ ✓

Energy, E energy, e ✓ ✓ ✓

TransverseMomentum, Pt transverse_momentum, pt, pT, PT ✓ ✓ ✓

PseudoRapidity, Eta pseudo_rapadity, eta ✓ ✓ ✓

AzimuthalAngle, Phi azimuthal_angle, phi ✓ ✓ ✓

Mass, M mass, m ✓ ✓ ✓

Charge charge ✓ ✓

BTag b_tag ✓ ✓

TauTag tau_tag ✓ ✓

NSubjettiness, TauN n_subjettiness,tau_n, taun ✓ ✓

NSubjettinessRatio, TauMN n_subjettiness_ratio, tau_mn, taumn ✓ ✓

Size size ✓

InvariantMass invariant_mass, inv_mass, inv_m ✓ ✓

AngularDistance, DeltaR angular_distance, delta_r ✓ ✓ ✓ ✓

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-6

read

events uproot.open
events

awkward
_value

awkward hml
self

If a computation process has been already established
and the physical objects need not be considered, we re-
commend referring to the second example 10. For this,
the method should be overwritten by specifying the
process for computing the values of the observables.

 is the return value of . You may
need to adjust the calculation because of and the
underlying array. It is important to note that

 must be an iterable object, such as a list or array,
to be correctly converted into an array by .
Additionally, should be returned at the end, en-
abling chain calls similar to those of other observables.

readCode example 10: Overwrite the method to specify
the process for calculating the value of the observable.

read

The third example 11 changes the initialization. We
add constraints on the physical objects, i.e., it can be re-
lated only to a single physics object. In addition, a new
parameter is introduced for greater flexibility. The
part is the same as that in the second example. This is the
strictest observable but also the safest one.

Currently, the naming convention is built upon the
output of DELPHES and does not support other formats
yet. However, considering that different analyses require
data at different levels and in different formats, we plan
to gradually add support for other event formats in the fu-
ture versions, such as HEPMC, LHE, etc.

C. Representation
To make high-energy physics data compatible with

different analysis approaches, it is necessary to convert
the data into various representations. The review paper
[55] summarizes six representations of jets: ordered sets,
images, sequences, binary trees, graphs, and unordered

hml
sets. Built upon the observable naming convention, we
extend the representation to an event. Currently, sup-
ports the (ordered) set and image representations. In fu-
ture versions, we will prioritize adding the graph repres-
entation and the corresponding neural networks.

Code example 11: Define an observable with constraints
on the type of physical objects and with a new parameter.

(n_events,
n_observables)

The ordered set is one of the most commonly used
representations. It arranges physics-inspired observables
in an arbitrary order to form a vector that describes an
event. The vectors from all events are then assembled in-
to one matrix by event, with the shape

. By following the naming convention,
such a set can be constructed in a straightforward and
concise manner, as illustrated in code example 12.

SetCode example 12: Use to represent the ordered set of
observables.

Set read

values
awkward

muon0.charge
None

The observable names must be packaged into a list
and passed to the . Next, the method must be
called to obtain the values from the events. The values
will be stored in the attribute. Here, it can be seen
that the arrays are used to store the data. For ob-
servables that have the correct physical object name but
do not exist (for example, , when there are
no muons produced in the event), the value is set to .
This approach of handling missing values allows us to
follow the matrix operation sequence: first build the data
matrix, then deal with the missing values.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-7

read

Image

with_subjets

translate

pixelate

For the image representation, the observable names
are used to specify the method for fetching the data for its
height, width, and channel, as shown in code example 13.
The method is used to read events as before. Here,
we construct an image of the leading fat jet, along with
the pseudorapidity, azimuthal angle, and transverse mo-
mentum of all its constituents. Considering that similar
preprocessing processes have been employed in a large
number of studies, we add them as the methods of the

 class. Because preprocessing often relates to sub-
jets, it is necessary to add the information on sub-jets via
the method ; its parameters include the
name of the constituents, clustering algorithm, radius, and
minimum momentum of the jet. The method
moves the position of the leading sub-jet to the origin,
which reduces the complexity of the position information
and expedites the learning process. Next, the position of
the sub-leading sub-jet can be rotated right below the ori-
gin, making the features of the entire image more pro-
nounced. Lastly, the method is used to pixelate
the data to obtain a real image. Because pixelation re-
duces the data precision, this step is removed. Further
studies are needed to determine when this method should
be applied and the effect of the order of its application.

ImageCode example 13: Use to represent a fat jet and
preprocess it via sub-jets.

Image
show

For convenience in displaying the images, the
class contains the method, which can directly plot it

norm="log"

.values

as an image. Code example 14 shows all the available
parameters: the first two are used to show the image as
dots; the last three parameters display a pixel-level grid,
enable the grid by default, and apply normalization over
the entire image, respectively. Figure 3 shows the image
representations before and after the preprocessing steps.
In the raw image, the observables used for "height" and
"width" are directly plotted as a 2D scatter image. In ad-
dition, enhances the features of the final
pixelated image to make them more distinct. The data can
be accessed via the property as a list of awk-
ward arrays (before pixelation) or one awkward array
(after pixelation). These can be converted and saved in
formats such as a numpy array and JSON files to allow
for their handling with common tools.

showCode example 14: Use to plot the image as a 2d
heatmap if it has been pixelated or as a 2d scatter plot.

(uproot cut
hml

Cut
read

After acquisition, the original event data are filtered
to obtain events that satisfy specific criteria. In the previ-
ous workflow, during the event loop, it was common to
manually include the calculation of the observables and
then apply conditionals to filter the events. We note that
the array) method in supports the paramet-
er. In , we utilize a matrix-oriented programming
style to change the filtering procedure into Boolean in-
dexing; furthermore, we add the logical operation syntax
to the observable naming convention to make the defini-
tions of cuts intuitive, as shown in code example 15.
continues to have a similar method. The values
form a one-dimensional Boolean matrix, the length of
which is equal to the number of events, allowing its dir-
ect use to filter other observables via Boolean indexing.

For the extend syntax of the logical operations, i.e.,

Fig. 3. (color online) Raw image and pixelated image after preprocessing.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-8

uproot
| and or

(pt1 > 50) ((E1>100) | (E1<90))
pt1 E1

n_events, var

how to combine multiple conditions, we refer to the im-
plementation of : it uses the bitwise logical oper-
ators of the matrices, & and , to replace and , re-
spectively, and adds parentheses to ensure priority. For
example, & ex-
presses the condition that is greater than 50 and is
either greater than 100 or less than 90. The expression is
then parsed directly by Python: it is purely a matrix oper-
ation, without considering the case of the DELPHES out-
put. It cannot handle cuts such as "all jets are required to
have a transverse momentum greater than 10 GeV,"
where the data have the shape . It un-
doubtedly requires users to rearrange the original data to
make the dimensions of the matrices consistent, as the
number of jets is not necessarily the same among the
events. This essentially filters only the values that meet
the conditions, not the events that meet the conditions. In
conjunction with the observable naming convention, we
advocate simplifying the matrix logical operation syntax
to facilitate the user input.

Code example 15: Cut values are Boolean arrays that can
be used to filter other observables.

and or
|

1. Logical AND and logical OR are represented by
 and , respectively. They are automatically conver-

ted to bitwise logical operators & and , respectively,
avoiding too many parentheses.

2. The result of the logical expression acts on the first
dimension, that is, the dimension of the events, to filter
the events.

3. The involved observables must have the same di-
mensions to ensure the correctness of the logical opera-
tions.

[all]4. At the end of a cut, default represents a lo-
gical AND operation on all values of all observables in
each event. It can be ignored and need not be written;

[any] represents a logical OR operation on all values of
all observables in each event. This syntax is suitable for
cases where all of a certain observable or any one observ-
able in the events must meet the conditions.

veto5. Add support for at the beginning of a cut for
cases where certain events need to be excluded.

Below, we demonstrate and explain the new syntax
by referring to literature. The original text will be presen-
ted first, followed by the corresponding cut in the next
line. We assume that the data are stored in the same units
as indicated in the description. In [56]:

µ±

pµT > 10 GeV
|ηµ| < 2.4

1. Muons are identified with a minimum trans-
verse momentum and rapidity range

...

muon.pt > = 10 and -2.4 < muon.eta < 2.4

and
[any]

Here, we take all the muons and simplify the syntax for
pseudorapidity within a certain range, which can be writ-
ten consecutively. Here, represents the bitwise logic-
al operator of the matrix. For each event, if is ab-
sent at the end of the expression, all values must satisfy
the condition;

2. Only events with reconstructed di-muons having
the same sign are selected.

muon0.charge = = muon1.charge

None
False

Here, we only need to judge whether the charges of the
two muons are the same, without determining whether the
number of muons is two. When there are fewer than two
muons, the charge of one muon will be , and such a
judgment will be automatically treated as ;

W±

J pJ
T > 100 GeV

3. We identify the hardest fat-jet with the candid-
ate jet (), which is required to have .

fatjet0.pt > = 100

In [57]:

1. C3: we veto the events if the OS di-muon invariant
mass is less than 200 GeV.

muon0.charge ! = muon1.charge and muon0,muon1.inv
_mass > 200

2. C4: we apply a b-veto.

veto jet.b_tag = = 1 [any]
veto [any]Use and to indicate that for all jets, if any

jet is b-tagged, then the event is excluded.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-9

3. C5: we consider only events with a maximum MET
of 60 GeV.

MissingET0.PT < 60

The case used (uppercase or lowercase) is incon-
sequential because there is only one missing energy;
hence, it is represented by 0. The MET observable in this
case also refers to the transverse momentum; hence, it
can be represented by PT.

N τJ0
21 < 0.44. C8: we choose events with -subjettiness .

fatjet0.tau21 < 0.4

The definition of this observable is provided by the

DELPHES card. We have already defined its parsing
method in the observables module; therefore, its name
can be directly used here.

MN = 600−900In [58], the cuts of CBA-I for GeV:

2.8 < ∆R(j, ℓ) < 3.81. Jet-lepton separation

2.8 < jet0,lepton0.delta__mass > 200r < 3.8

In [59]:

e µ |ηℓ| < 2.5 pT,ℓ > 500
1. The basic selections in our signal region require a

lepton (or) with and GeV...

-2.5 < muon0.eta < 2.5 and muon0.pt > 500.

We take the example of the muon.

|ηℓ| < 2.5 pT,ℓ > 7GeV
2. ... veto events that contain additional leptons with

 and

veto -2.5 < muon.eta < 2.5 and muon.pt >
7 [any]

vetoIn this cut, it is easier to use to exclude events
with additional leptons.
 ∣∣η j

∣∣ < 2.5 pT, j > 30GeV
3. ... and impose a jet veto on the subleading jets with

 and .

veto -2.5 < jet1.eta < 2.5 and jet1.pt >
30 [any]

In [60]:

pT > 15 |η| < 2.5
1. Photon-veto: Events having any photon with

 GeV in the central region, , are discarded.

veto -2.5 < photon.eta < 2.5 and photon.pt
> 15 [any]

τ |η| < 2.3
pT > 18 |η| < 2.5
pT > 20

2. and b-veto: No tau-tagged jets in with
 GeV and no b-tagged jets in with
 GeV are allowed.

veto jet.tau_tag = = 1 and -2.3 < jet.eta <

2.3 and jet.pt > 18 [any]

min(∆ϕ(pMET
T ,

p j
T)) > 0.5 pT > 30 GeV
|η| < 4.7

3. Alignment of MET with respect to the jet direc-
tions: Azimuthal angle separation between the recon-
structed jet with the MET to satisfy

 for up to four leading jets with
and .

jet:4,missinget0.min_delta_phi > 0.5 and
jet:4.pt >30 and -4.7 < jet:4.eta < 4.7

MinDeltaPhi
min_delta_phi

Users need to define the observable in
advance and register it with the alias .

D. Dataset

SetDataset ImageDataset

read read
targets

1
cuts

1
0

split

samples
targets

numpy
save

.ds
load_dataset SetDataset.load

With the previously defined data representation and
cuts, we can now proceed to construct the dataset. Corres-
ponding to the data representations, we currently offer
two datasets: and . Code example
16 shows the use of the dataset of an ordered set. Its ini-
tialization requires the names of the observables. Next,
use the method to read the events. For this ,
we introduced two additional parameters: is the
integer label assigned to the event, which is the target of
the convergence. Here, we assign to denote the events
as signals; are the filtering criteria. Here, we re-
quire the number of jets to be greater than , and the
number of leading fat jets to be greater than . When
multiple cuts are used, the result of each cut is applied to
the dataset sequentially, which means they are connected
by a logical AND. The method can be used to split
the dataset. Its parameters are the ratios for the training,
test, and validation sets. Here, we used 70% of the data as
the training set, 20% as the test set, and 10% as the valid-
ation set. Before saving the dataset, and

 can be accessed to view the stored data, which
have already been converted into arrays. Finally,
use the method to save the dataset to a zip com-
pressed file with the suffix. Such a file can be loaded
by the function or
class method.

show

n_feature_per_line

n_samples
target

The method can be used to quickly view the
distributions of the entire dataset. Code example 17
shows all the available parameters:
is the number of observables to display per line,

 is the number of events to display, and
 is the label of the events to display.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-10

SetDatasetCode example 16: Use to build a dataset repre-
senting each event as a set of observables.

showCode example 17: Use to display the distribution of
observables of a set dataset.

Image

The construction process of an image dataset is simil-
ar to that of an ordered set, as shown in code example 18.
When initializing an , you can directly configure
the necessary preprocessing steps in method chaining.
When the dataset reads the events later, these steps will
be performed in sequence.

ImageDatasetCode example 18: Use to build a dataset
representing each event as an image

show

n_events,height, width, channel
height, width, channel

The method of an image dataset can be used to
display the events as an image, as shown in Example 19.
By default, the images of the entire dataset are com-
pressed into one image. If the original dimensions are

, the compressed
dimensions will be , respect-

show
Image

n_samples
target

ively. Most parameters are the same as those in the
method of with the exception of two additional
parameters: representing the number of
events to display, and representing the label of
the events to display.

showCode example 19: Use to plot the image of the data-
set.

IV. APPLICATION OF THE APPROACHES

approaches

compile
fit

predict

With well-prepared datasets, we can apply different
approaches to identify rare new physics signals. The

 module includes cut-and-count, trees, and
neural networks. We will gradually enhance it in the fu-
ture versions. The basic design principle of this module is
ensuring minimal encapsulation to interface with current
frameworks, such as SCIKIT-LEARN [61], TENSOR-
FLOW, and PYTORCH. Considering simplicity, we ad-
opted the Keras-style interface design: decide approach
structure at initialization, for configuring the
training process, for training the approach, and

 for prediction using new data. KERAS was ori-
ginally a high-level encapsulation of TENSORFLOW.
However, after the release of version 3, it supports mul-
tiple backends, thus offering unprecedented flexibility,
which is one of the reasons for choosing it. Note that to
date, we have tested only its compatibility with the
TensorFlow backend.

A. CutandCount
Cut-and-count (or cut-based analysis) is fundamental

and widely used when studying the effect of various ob-
servables on the final sensitivity. It provides evidence to
support the discovery of new particles and verification of
new theories.

As the name suggests, it involves two steps: applying
a series of cuts to distinguish the signal from the back-
ground as much as possible, followed by counting the
number of events that pass the cuts. The subsequent dis-
tribution, such as an invariant mass, is used to determine
the nature of the particles involved. These cuts can be ap-
plied to the properties of specific particles, such as kin-
ematic quantities, charge, other observables, or other
characteristics associated with simulated collision events,
such as the particle states in decay chains. Filtering the
data allows focusing on the areas of interest, increasing

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-11

the possibility of discovering new physics.
Applying cuts requires a technique to make the final

signal more evident. Typically, the distribution of the ob-
servables that reflect the signal characteristics would be
plotted and the area with a higher signal ratio would be
selected as the cut range based on manual judgment.
There are two issues here: 1) manual judgment is subject-
ive and cannot guarantee the effect of the cut; 2) the ob-
servable distributions observed by users are sometimes
the source data without any cuts. If there is an unavoid-
able association between the observables, applying a cut
will affect the distribution of the next observable. There-
fore, a more rigorous method is to apply one cut first, plot
the distribution of the next observable, and then determ-
ine the next cut.

CutAndCount

CutAndCount

CutLayer

n_bins

topology
parallel

sequential

Users can use to implement these two
different strategies of applying cuts. In code example 20,
we demonstrate how to initialize a method.
The number of involved observables must be specified.
Subsequently, an internal is created to auto-
matically search for the optimal cut values. For each ob-
servable, four possible conditions are considered: the sig-
nals on the left side, right side, middle, and both sides of
the cut. Then, the user-specified loss function for each
case is calculated, and the one with the minimum loss is
selected as the final cut. sets the granularity of
the data when searching, i.e., the number of bins for the
distribution of each observable. A higher number of bins
can make the cut more precise but increases the cost of
calculation, which also affects the data size and complex-
ity of its distribution. The principle here is that as long as
the data distributions remain stable, the number of bins
can be appropriately reduced without affecting the final
result. sets the order or strategy of applying the
cuts: indicates that all cuts are independent,
and the distributions are considered to originate from the
original data, whereas considers the correla-
tion among the cuts, with each cut applied on the basis of
the previous one.

Code example 20: Initialize the CutAndCount approach

CutAndCount compile

CutAndCount

In code example 21, we show how to configure and
train the approach. In the method,
you can specify the optimizer, loss function, and evalu-
ation metrics. The optimizer is unnecessary for

 because it does not use the gradient des-
cent methods internally but rather finds the optimal cut

run_eagerly = True

CutAndCount

True fit

epochs
callbacks

values through a search process. The loss function is used
to evaluate the effectiveness of each cut, whereas the
evaluation metrics will be used to reveal the performance
scores during the training. It is better to evaluate the per-
formances simultaneously after the training. The setting

 is necessary. By default, KERAS
uses a computational graph for the calculations, which is
very efficient for training neural networks. However,

 includes some custom calculations that are
not yet fully compatible within the computational graph;
hence, it needs to be set to . In the method, the
samples and targets of the training set must be input,
where the batch size should be the minimum number that
can reflect the distribution pattern of the data. If the user
dataset is relatively small and can fit entirely into the
GPU memory, the batch size can be set to the size of the
entire training set. Moreover, the parameter is un-
necessary, and the parameter has not been
implemented yet but will be gradually added in future
versions.

CutAndCountCode example 21: Configure and train the
approach

B. Trees and neural networks

GradientBoostingClassifier

Decision trees are a common method of classification,
and several mature frameworks are available, such as
TMVA [62], XGBOOST [63], and SCIKIT-LEARN.
TENSORFLOW DECISION FORESTS [64] is
also a good choice, as it too adopts the KERAS
training style. Considering our preference for the multi-
backend support, we modify parts of the

 code from SCIKIT-
LEARN to conform to the same style.

fit

Keras
"accuracy"

predict

Keras

Firstly, the original method is enhanced to handle
the input targets in a one-hot encoded format. Secondly,
support for the metrics, such as the commonly
used , is provided during the training pro-
cess. Thirdly, the output of its method is
changed to predict the probabilities, aligning it with

. Despite these changes, many parameters are not
supported yet: many of the original initialization paramet-
ers are related to early stopping, learning rate adjust-

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-12

Keras

scikit-learn
compile

ments, etc., which are implemented in through the
callback functions. Moreover, loss functions are not uni-
formly customizable in ; hence, we do not
support changing it in the method. In code ex-
ample 22, we demonstrate the basic usage.

hml

SimpleMLP
SimpleCNN

A starting point of is to provide researchers with
existing deep learning models so that they can conduct
benchmark tests on their datasets and select the optimal
model. At this early development stage, we offer only
two basic models: (multi-layer perceptron)
and (convolutional neural network). In future
versions, after thorough testing, we will gradually intro-
duce additional existing models to provide a larger range
of selection.

GradientBoostedDecisionTree
Code example 22: Basic usage of the modified

 approach.

Sequential

Model

SimpleMLP 4386
SimpleCNN 5960

(33,33,1)

In KERAS, a model can be built in three ways: 1. Us-
ing to stack the layers, 2. Using the Func-
tional API to construct more complex topologies, 3. In-
heriting from to declare a subclass for greater flex-
ibility. Considering that the construction of many models
is highly complex and requires exposing a certain num-
ber of hyper-parameters for tuning, we used the third ap-
proach to build the models. Fig. 4 shows the structures of
the two models. has parameters and the
inputs are three observables. has para-
meters and the inputs are images of the shape .
Both models are shallow and simple, resulting in low
consumption of computing resources during the training
and testing stages.

C. Metrics

σ

σ

After training an approach on a dataset, it is often ne-
cessary to use various metrics to assess its effectiveness.
Unlike the classical accuracy score, which is commonly
used in classification tasks, in high-energy physics, the
scarcity of signals shifts the focus toward the signal signi-
ficance, denoted by . A higher value indicates a lower
probability that the observed signal is a result of back-
ground fluctuations alone. For instance, 3 is often con-
sidered as an evidence of a signal, indicating that there is

σ

hml S
B

approximately a 0.27% chance of the signal being a stat-
istical fluke. Further, 5 is the gold standard in high-en-
ergy physics for claiming a discovery, corresponding to a
probability of roughly 1 in 3.5 million that the observed
signal is due to background noise. Equation 1 is the for-
mula for calculating the significance in . Note that
represents the number of signals, and represents the
number of backgrounds, which indicates the number of
simulated events when the cross section of the corres-
ponding process and integrated luminosity are not spe-
cified. We demonstrate its use in code example 23.

σ =
S√

S +B
. (1)

MaxSignificanceCode example 23: Use the metric to
evaluate the performance of a trained approach.

The outputs of the built-in approaches are the probab-
ilities for the signal and background. By default, only
when the probability exceeds 0.5 do we consider it as a

SimpleMLP SimpleCNNFig. 4. Structures of the and models.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-13

MaxSignificance
thresholds

class_id = 1

signal or background. In , this
threshold can be changed by setting . By de-
fault, data with are viewed as the signal
and 0 as the background. This can be changed if the tar-
gets for the signal and background in the user dataset are
different.

reset_state

In addition to significance, some studies have also in-
cluded the background rejection at a fixed signal effi-
ciency as an evaluation metric. Hence, this metric was ad-
opted in our study as well and is expressed as equation 2.
The higher the background rejection rate, the fewer are
the background events that are mistakenly classified as
signals. Example 24 demonstrates its use. Note that mul-
tiple calls to both the metrics will result in the values be-
ing averaged. Therefore, the method
should be called to calculate them from scratch.

rejection = 1/ ϵb|ϵs . (2)

RejectionAtEfficiencyCode example 24: Use the
metric to evaluate the performance of the model.

V. EXAMPLE: W BOSON TAGGING

To enable users to gain a complete understanding of
the entire workflow, this section shows how to integrate
various modules to complete the task of jet tagging. This
example serves merely as a proof of concept; users must
conduct a more personalized analysis on this basis.

A. Step 1: generate events
W+We simulated the production of highly boosted

bosons that decay into two jets, resulting in a single fat jet
during event reconstruction. This jet has distinct charac-
teristics of mass and spatial distributions, making it easi-
er to identify using all built-in approaches.

Madgraph5 generate
output
W+

pT

In code example 25, we first import the event generat-
or module from using the method
to create the signal process, and then use the
method to save it to a designated folder. To make bo-
sons highly boosted, we leave the decay chain unfinished
here and constrain its range in code example 26. After

output
Diagrams

the command is completed, the output Feynman
diagrams can be viewed in the folder within
the output folder.

launch
shower

detector W+

pT W+

250 350
R = 0.8 kT

W+ decay
seed

summary

Madgraph5

Then, the method in code example 26 is used
to start the simulation, turning on the and

. To boost the boson, we set the spin mode
as "none" to apply the following cuts1) in the settings.
Following [3], we set the range for the boson to

 to GeV. When using the default CMS delphes
card with and the anti- algorithm to cluster the
jets, a fat jet is expected to originate from the decay of the

 boson. The method is used for further specific
decays. The random seed () is set to 42 to ensure the
reproducibility of the results. When the simulation ends,
the method is used to review the results (shown
in Fig. 5). This is akin to viewing the results on the web-
site of .

W+

Madgraph5
Code example 25: Generate boson events using

W+Code example 26: Launch the simulation of boson
events.

The generation process for the background events is

Fig. 5. Summary table of the signal (upper) and background
(lower) events.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

1) https://answers.launchpad.net/mg5amcnlo/+question/666825

093106-14

pT

pT

similar to that in code example 27, with the difference ly-
ing in the range settings. Because the jets in this case
do not originate from the decay of a single particle, we
directly restrict the range of the jets.

Madgraph5
Code example 27: Generate background events using

uproot

generators
Madgraph5Run

run_01

After the event generation is complete, we begin pre-
paring the dataset. First, in code example 28, we use

 to open the root file output by DELPHES, which
stores the branches categorized according to the physical
objects. The module includes

, which conveniently retrieves informa-
tion about the run, such as the cross section and gener-
ated event files. Because it searches for files produced in
all sub-runs of a given run, even though the files for the
signal events are stored in the sub-runs, can also
retrieve the corresponding path correctly.

uprootCode example 28: Use to open the DELPHES
output root file.

SetDataset ImageDataset

read
Cut

In code example 29, to avoid missing values of the
desired observables, we use the previously mentioned ex-
tended logical operations to apply the cuts. For both types
of datasets, that is, and , it is
required to have at least one fat jet and two regular jets.
The method supports entering multiple cuts. Thus,
there is no need to use the class to parse the expres-
sions first. When reading the events, integer labels are as-
signed separately for the signal and background events.
Before saving locally, the data are split into training and
testing sets at a 7:3 ratio.

Code example 29: Prepare the set dataset.

ϕ η pT

with_subjets

0.3
kT R = 0.3 translate

rotate

pixelate
33×33 (−1.6,1.6)

0.1

For the image dataset, the representation of the data is
first decided, namely, which observables should consti-
tute the images and which preprocessing steps should be
taken. In code example 30, , , and of all constitu-
ents from the leading fat jet are used as the data source
for the height, width, and channel of an image. Before
preprocessing, is used to recluster the
constituents to add information about the subjets. Be-
cause the distance between the two sub-jets will not be
less than according to the previous equation, it is safe
to use the algorithm with . Then,
and are used to translate and rotate the image,
aligning the information of the two sub-jets. Finally,

 is used to pixelate the image; the size here is
, with a range of and an equivalent pre-

cision of around . This precision does not match the
precision in the detector card. For simplicity, we take this
fixed precision. In code example 31, we show how to pre-
pare the image dataset.

Code example 30: Construct the representation of the im-
age dataset.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-15

show

After constructing the datasets, we count the signal
and background samples in code example 32 to avoid in-
troducing an artificial bias. Then, we use the meth-
od of the dataset to display the distribution of the observ-
ables, as illustrated in Fig. 6 and Fig. 7.

Code example 31: Prepare the image dataset.

Code example 32: Count the number of signals and back-
grounds and show the distribution of the datasets.

It is observed that the number of signals and number
of background instances are approximately equal, and the
observables used clearly reflect the distinct characterist-
ics of each, which is beneficial for our subsequent classi-
fication tasks. In the display of the image dataset, we
show a merged image of the signal and background. It
can be seen that the fat jet image of the signal promin-
ently features two sub-jets, whereas the sub-jets in the
background are less distinct.

B. Step 2: apply the approaches
After preparing the datasets, all the available ap-

proaches are imported for training. These approaches
learn the differences between the signal and background.
Subsequently, a dictionary and the built-in metrics are
used to assess their performance, which will then be
presented as a benchmark test. First, import all the neces-
sary packages, as shown in code example 33; the pack-
ages have been roughly categorized to facilitate the un-
derstanding of their purposes.

The selected evaluation metrics are accuracy, Area
Under the Curve (AUC), signal significance, and back-
ground rejection rate at a fixed signal efficiency. These
metrics are commonly used in high-energy physics and
help us better understand the performance of the ap-
proaches. In code example 34, we define a function to re-
trieve the evaluation metrics of an approach.

The cut-and-count and decision tree approaches are

Fig. 6. (color online) Feature distributions of the set dataset.

Fig. 7. (color online) Combined images of signal (left) and background (right) events.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-16

not sensitive to the scale of features. Hence, we can dir-
ectly import the dataset (code example 35) and start the
training (code example 36). Two different topologies of
the cut-and-count are used to demonstrate how the order
of applying the cuts affects the performance.

Code example 33: Import necessary packages for the
benchmark test.

Code example 34: Define a function to obtain the evalu-
ation metrics of a model.

MinMaxScaler
The input for the multilayer perceptron requires the

use of to scale the features within the 0-1

range, as detailed in code example 38, which aids in the
rapid convergence of the model. We trained the model for
100 epochs with a batch size of 128. Code example 39 il-
lustrates the training process.

Code example 35: Load the set dataset for training the
cut-and-count and decision tree approaches.

Code example 36: Train the cut-and-count approaches
with two different topologies.

Code example 37: Train the decision tree approach.

For the convolutional neural network, we employ two
different preprocessing methods. One scales each image
by its maximum value, whereas the other applies a logar-
ithmic transformation to each pixel value. Given the large
variations in the pixel intensity in the jet images, scaling

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-17

directly by the maximum value might result in excess-
ively small pixel values, whereas logarithmic transforma-
tion preserves the information better. In code example 40
and 42, we load the image dataset and demonstrate these
two distinct preprocessing techniques.

Code example 38: Load the set dataset for training the
multilayer perceptron approach.

Code example 39: Train the multilayer perceptron ap-
proach.

Finally, we present a performance comparison using
code example 43. The results are shown in Table 3.

Table 3. Comparison of different approaches.

Name ACC AUC Significance R50 R99

cnc_parallel 0.750323 0.728121 33.660892 4.005174 1.000000

cnc_sequential 0.787784 0.769440 36.557026 4.712174 1.000000

bdt 0.902011 0.955063 44.368549 117.804291 2.146139

mlp 0.900904 0.956274 44.205276 117.804291 2.124265

cnn_max 0.806827 0.867769 38.444225 17.089737 1.188322

cnn_log 0.809452 0.876692 38.732323 19.042860 1.276514

The significance column shows that for the cut-and-

count method, the sequential topology, which considers
the impacts among the cuts, performs better than the par-
allel topology. For convolutional neural networks, the
performance of logarithmic scaling is roughly equivalent
to that using maximum value scaling. Multilayer per-
ceptron and decision trees, which utilize features with
clear distinctions, exhibit the best performance. For more

practical problems, we can apply different approaches to
the dataset and then select the most suitable one based on
various performance metrics.

Code example 40: Load the image dataset and normalize
the pixel values with the maximum value.

Code example 41: Train the convolutional neural net-
work approach with the maximum value normalization.

VI. SUMMARY

hml

In the current era of rapid evolution of machine learn-
ing models, it is worthwhile to explore methods to use
them more conveniently in high-energy physics for
searching new physical signals. In this paper, we intro-
duced the Python package, which offers a stream-

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-18

lined workflow from event generation to performance
evaluation. The simplified process and control over ran-
dom seeds significantly enhance the reproducibility of the
final analysis results.

"..."
Code example 42: Normalize the pixel values by using
the logarithm. indicates the same code as in code
examples 40 and 41.

Code example 43: Compare the performances of differ-
ent approaches.

show

We proposed a naming convention for observables,
which enables users to easily extract the required data
from the events output by DELPHES. Additionally, we
extended the cut expression syntax, originally in UP-
ROOT, to make it more user-friendly and compatible
with the DELPHES output formats. This convention is
also utilized in our dataset construction process, helping
users to quickly and conveniently build datasets. Based
on this naming convention, we implemented a transform-
ation from the outputs of event generators to datasets us-
able by various analysis approaches. Moreover, the
method included in the datasets enables users to display
the data either as 1D distributions or 2D images, facilitat-
ing the adjustment of observable selections based on the
observed differences.

We adopted the interface style of KERAS to stand-
ardize traditional methods such as the cut-and-count tech-
nique and decision trees. Furthermore, the cut-and-count
approach supports automatic searching for the optimal cut
positions, significantly reducing the workload for users.
Additionally, we incorporated the commonly used evalu-
ation metrics in high-energy physics, such as signal signi-
ficance and background rejection rate at a fixed signal ef-
ficiency. These metrics help users to better understand the
performance of the models.

hml hml

We demonstrated the complete workflow through a
practical example, which intuitively showcased the usage
of . is continuously being updated. We plan to in-
corporate additional existing deep learning models and
datasets, and extend it to graph representations of data to
further enhance its capabilities.

References

 J. Cogan, M. Kagan, E. Strauss et al., JHEP 02, 118 (2015)[1]
 L. G. Almeida, M. Backović, M. Cliche et al., JHEP 07, 086
(2015)

[2]

 L. de Oliveira, M. Kagan, L. Mackey et al., JHEP 07, 069
(2016)

[3]

 P. Baldi, K. Cranmer, T. Faucett et al., Eur. Phys. J. C
76(5), 235 (2016)

[4]

 P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, JHEP
01, 110 (2017)

[5]

 G. Kasieczka, T. Plehn, M. Russell et al., JHEP 05, 006
(2017)

[6]

 L. M. Dery, B. Nachman, F. Rubbo et al., JHEP 05, 145
(2017)

[7]

 G. Louppe, K. Cho, C. Becot et al., JHEP 01, 057 (2019)[8]
 A. Butter, G. Kasieczka, T. Plehn et al., SciPost Phys. 5(3),
028 (2018)

[9]

 E. M. Metodiev, B. Nachman, and J. Thaler, JHEP 10, 174
(2017)

[10]

 J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra,
JHEP 11, 163 (2017)

[11]

 L. Moore, K. Nordström, S. Varma et al., SciPost Phys.[12]

7(3), 036 (2019)
 T. Heimel, G. Kasieczka, T. Plehn et al., SciPost Phys. 6(3),
030 (2019)

[13]

 P. T. Komiske, E. M. Metodiev, and J. Thaler, JHEP 01,
121 (2019)

[14]

 H. Qu and L. Gouskos, Phys. Rev. D 101(5), 056019 (2020)[15]
 A. Butter et al., SciPost Phys. 7, 014 (2019)[16]
 E. A. Moreno, O. Cerri, J. M. Duarte et al., Eur. Phys. J. C
80(1), 58 (2020)

[17]

 Y. C. J. Chen, C. W. Chiang, G. Cottin et al., Phys. Rev. D
101(5), 053001 (2020)

[18]

 V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135(6), 463
(2020)

[19]

 J. S. H. Lee, I. Park, I. J. Watson et al., J. Korean Phys. Soc.
84, 427 (2024)

[20]

 F. A. Dreyer and H. Qu, JHEP 03, 052 (2021)[21]
 L. Anzalone, T. Diotalevi, and D. Bonacorsi, (2022). DOI:
10.1088/2632-2153/ac917c

[22]

 S. K. Choi, J. Li, C. Zhang et al., Phys. Rev. D 108(11),
116002 (2023)

[23]

 A. Elwood, D. Krücker, and M. Shchedrolosiev, J. Phys.
Conf. Ser. 1525, 012110 (2020)

[24]

 P. Baldi, P. Sadowski, and D. Whiteson, Nature Commun.[25]

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)

093106-19

https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/s40042-024-01037-3
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
http://dx.doi.org/10.1088/2632-2153/ac917c
http://dx.doi.org/10.1088/2632-2153/ac917c
http://dx.doi.org/10.1088/2632-2153/ac917c
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1038/ncomms5308

5, 4308 (2014)
 A. Aurisano, A. Radovic, D. Rocco et al., JINST 11(09),
P09001 (2016)

[26]

 W. Bhimji, S. A. Farrell, T. Kurth et al., J. Phys. Conf. Ser.
1085(4), 042034 (2018)

[27]

 P. Abratenko et al., Phys. Rev. D 103(9), 092003 (2021)[28]
 J. Li, T. Li, and F. Z. Xu, JHEP 04, 156 (2021)[29]
 Y. Zhu, H. Liang, Y. Wang et al., Eur. Phys. J. C 84(2), 152
(2024)

[30]

 E. Buhmann, C. Ewen, G. Kasieczka et al., Phys. Rev. D
109(5), 055015 (2024)

[31]

 S. Song, J. Chen, J. Liu et al., JINST 19(04), P04033 (2024)[32]
 C. L. Cheng, G. Singh, and B. Nachman, Incorporating
Physical Priors into Weakly-Supervised Anomaly Detection,
(2024), arXiv: 2405.08889

[33]

 C. Li et al., Accelerating Resonance Searches via
Signature-Oriented Pre-training, (2024), arXiv:
2405.12972

[34]

 L. de Oliveira, M. Paganini, and B. Nachman, Comput.
Softw. Big Sci. 1(1), 4 (2017)

[35]

 M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev.
Lett. 120(4), 042003 (2018)

[36]

 M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev. D
97(1), 014021 (2018)

[37]

 P. Baldi, L. Blecher, A. Butter et al., SciPost Phys. 13(3),
064 (2022)

[38]

 C. Jiang, S. Qian, and H. Qu, SciPost Phys. 18, 195 (2025)[39]
 D. Kobylianskii, N. Soybelman, E. Dreyer et al., Phys. Rev.
D 110, 072003 (2024)

[40]

 M. Feickert and B. Nachman, A Living Review of Machine
Learning for Particle Physics, (2021), arXiv: 2102.02770

[41]

 J. Alwall, R. Frederix, S. Frixione et al., JHEP 07, 079
(2014)

[42]

 T. Sjöstrand, S. Ask, J.R. Christiansen et al., Comput. Phys.
Commun. 191, 159 (2015)

[43]

 J. de Favereau, C. Delaere, P. Demin et al., JHEP 02, 057
(2014)

[44]

 R. Brun, F. Rademakers, P. Canal et al., root-project/root:
v6.18/02, (2020), DOI: https://doi.org/10.5281/zenodo.
3895860

[45]

 J. Ansel, E. Yang, H. He et al., in 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’
24) (ACM, 2024). DOI: 10.1145/3620665.3640366. URL

[46]

https://pytorch.org/assets/pytorch2-2.pdf
 M. Abadi, A. Agarwal, P. Barham et al., TensorFlow:
Large-scale machine learning on heterogeneous systems,
(2015). URL https://www.tensorflow.org/. Software
available from tensorflow.org

[47]

 L. Benato et al., Comput. Softw. Big Sci. 6(1), 9 (2022)[48]
 Y. C. Guo, F. Feng, A. Di et al., Comput. Phys. Commun.
294, 108957 (2024)

[49]

 J. Brehmer, F. Kling, I. Espejo et al., Comput. Softw. Big
Sci. 4(1), 3 (2020)

[50]

 J. Brehmer, K. Cranmer, I. Espejo et al., J. Phys. Conf. Ser.
1525(1), 012022 (2020)

[51]

 J. Pivarski, P. Das, C. Burr et al., scikit-hep/uproot: 3.12.0,
(2020). DOI: https://doi.org/10.5281/zenodo.3952728

[52]

 F. Chollet et al., Keras. https://keras.io (2015)[53]
 J. Pivarski, I. Osborne, I. Ifrim et al., Awkward Array,
(2018). DOI: https://doi.org/10.5281/zenodo.4341376

[54]

 A. J. Larkoski, I. Moult, and B. Nachman, Phys. Rept. 841,
1 (2020)

[55]

 A. Das, P. Konar, and A. Thalapillil, JHEP 02, 083 (2018)[56]
 A. Bhardwaj, A. Das, P. Konar et al., J. Phys. G 47(7),
075002 (2020)

[57]

 S. Chakraborty, M. Mitra, and S. Shil, Phys. Rev. D 100(1),
015012 (2019)

[58]

 L. Buonocore, U. Haisch, P. Nason et al., Phys. Rev. Lett.
125(23), 231804 (2020)

[59]

 V. S. Ngairangbam, A. Bhardwaj, P. Konar et al., Eur.
Phys. J. C 80(11), 1055 (2020)

[60]

 L. Buitinck, G. Louppe, M. Blondel et al., in ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, (2013), pp. 108–122

[61]

 A. Hocker et al., TMVA - Toolkit for Multivariate Data
Analysis, (2007)

[62]

 T. Chen and C. Guestrin, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, (ACM, New York, NY, USA,
2016), KDD’16, pp. 785–794. DOI: 10.1145/2939672.
2939785

[63]

 M. Guillame-Bert, S. Bruch, R. Stotz et al., in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023, (2023), pp. 4068–4077. DOI:
10.1145/3580305.3599933

[64]

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)

093106-20

https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://arxiv.org/abs/2405.08889
https://arxiv.org/abs/2405.12972
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.21468/SciPostPhys.18.6.195
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.110.072003
https://arxiv.org/abs/2102.02770
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
http://dx.doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://www.tensorflow.org/
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.5281/zenodo.3952728
https://keras.io
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/3580305.3599933

	I INTRODUCTION
	II GENERATE EVENTS
	III CREATE DATASETS
	A Physics objects
	B Observable
	C Representation
	D Dataset

	IV APPLICATION OF THE APPROACHES
	A CutandCount
	B Trees and neural networks
	C Metrics

	V EXAMPLE: W BOSON TAGGING
	A Step 1: generate events
	B Step 2: apply the approaches

	VI SUMMARY
	REFERENCES

