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Abstract: Recent  years  have  seen  the  development  and  growth  of  machine  learning  in  high-energy  physics.
However, additional effort is required to continue exploring the use of machine learning to its full potential. To sim-
plify the application of the existing algorithms and neural networks and to advance the reproducibility of the analys-
is, we developed HEP ML LAB ( ), a Python-based, end-to-end framework for phenomenology studies. It covers
the complete workflow from event generation to performance evaluation, and provides a consistent style of use for
different approaches. We propose an observable naming convention to streamline the data extraction and conversion
processes.  In  the  KERAS style,  we  provide  the  traditional  cut-and-count  and  boosted  decision  trees  together  with
neural networks. We take the  tagging as an example and evaluate all built-in approaches with the metrics of sig-
nificance and background rejection. With its  modular design, HEP ML LAB is easy to extend and customize,  and
can be used as a tool for both beginners and experienced researchers.
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I.  INTRODUCTION

In  recent  years,  the  continuous  accumulation  of  data
from the Large Hadron Collider experiments has intensi-
fied the  demand  for  new  developments  in  physics.  Be-
cause of their outstanding capabilities in data analysis and
pattern  recognition,  machine  learning  techniques  have
been widely researched and applied in high-energy phys-
ics, such as jet tagging tasks [1−34] and rapid generation
of  simulated  events  [35−40].  Additional  applications  are
discussed in a review paper on this topic [41].

Typically,  the process of  research involving machine
learning  models  in  high-energy  physics  comprises  four
steps: data  generation,  dataset  construction,  model  train-
ing, and performance evaluation. In this process, coopera-
tion between various types of software is  often required.
For instance, MADGRAPH5_AMC [42] is used for gen-
erating  simulated  events,  PYTHIA8  [43]  for  simulating
parton  showering,  DELPHES [44]  for  fast  simulation  of
detector effects, ROOT [45] for data processing, and deep
learning  frameworks  such  as  PYTORCH  [46]  and
TENSORFLOW [47] for subsequently building the neur-
al networks. Researchers new to high-energy physics find
it  challenging  to  learn  and  use  these  software  tools,

whereas experienced researchers find it tedious to switch
between different types of software. Such a process inev-
itably increases the complexity of the computational res-
ults,  which  makes  them potentially  difficult  to  replicate,
leading to  difficulties  in  comparing  the  results  in  sub-
sequent research.

Lately,  some  efforts  have  been  made  to  simplify  the
entire  process,  as  follows.  PD4ML  [48]  includes  five
datasets — Top Tagging Landscape, Smart Background,
Spinodal or Not, EoS, and Air Showers — and provides a
set of concise application programming interfaces (APIs)
for  importing  them.  MLANALYSIS  [49]  can  convert
LHE and LHCO files generated by MADGRAPH5_AMC
into  datasets,  and has  three  built-in machine  learning al-
gorithms:  isolation  forest  (IF),  nested  isolation  forest
(NIF),  and k-means anomaly  detection  (KMAD).  MAD-
MINER [50] offers a complete process for inference tasks
[51], and  internally  encapsulates  the  necessary  simula-
tion software  as  well  as  neural  networks  based on PYT-
ORCH. These frameworks significantly reduce the work-
load  related  to  specific  tasks  but  have  scope  for  further
improvement.

HEP ML LAB, developed in Python, encompasses an
end-to-end  process.  All  modules  are  listed  in Fig.  1.
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MADGRAPH5_AMC  is  minimally  encapsulated  for
event  generation,  such  as  defining  processes,  generating
Feynman diagrams,  and launching runs.  In the transition
from  events  to  datasets,  we  introduced  an observable
naming  convention that  directly  links  physical  objects
with  observables,  facilitating  users  to  directly  use  the
names  of  the  observables  to  retrieve  the  corresponding
values.  This  convention  can  be  further  applied  to  the
definitions  of  cuts.  Inspired  by  the  expression  form  of
cuts in UPROOT [52], we expand the corresponding syn-
tax  to  support  filtering  at  the  event  level,  using  veto  to
define events that need to be removed and define custom
observables of greater complexity. This naming rule also
applies to  the  creation  of  datasets  with  different  repres-
entations.  In  the  current  version,  users  can  easily  create
set and image datasets. In addition, we offer a rich set of
functions for preprocessing and displaying of images.

In the context of machine learning, we introduce two
basic  deep  learning  models:  simple  multi-layer per-
ceptron  and  simple  convolutional  neural  network.  Both
have  fewer  than  ten  thousand  parameters,  providing  a
baseline for classification performance. These models are
implemented  using  KERAS  [53]  without  any  custom
modifications, making it easy to expand to other existing
models. Additionally,  we  integrated  two  traditional  ap-
proaches,  cut-and-count,  and  gradient  boosted  decision
tree, ensuring  compatibility  with  KERAS.  After  the  dif-
ferent  approaches  were  trained,  we  provided  physics-
based evaluation metrics — signal significance and back-
ground rejection rate — at a fixed signal efficiency to as-
sess their performance.

pip install hep-ml-lab

This package  is  publicly  available  through  the  Py-
thon Package Index (PyPI) and can be installed using the
standard  pip  package  manager  with  the  command

.  It  supports  Python  3.9+  and

is compatible with Linux, MacOS, and Windows operat-
ing  systems.  The  source  code  is  open-sourced  on
Github1).

The structure of the paper is as follows. Sec. II intro-
duces the wrapper class of MADGRAPH5_AMC to gen-
erate events. In Sec. III, we describe the observable nam-
ing convention and demonstrate step by step its use in ex-
tracting data from events as well as its extension to filter
data and  to  the  creation  of  datasets.  Three  types  of  ap-
proaches  — cut  and  count,  decision  trees,  and  currently
available  neural  networks  —  are  discussed  in  Sec.  IV.
Physics-inspired metrics are also discussed. In Sec. V, we
demonstrate  the  effectiveness  of  the  framework  using  a
simple and complete W boson tagging as a case study. Fi-
nally, we conclude the paper and discuss the scope for fu-
ture research in Sec. VI. 

II.  GENERATE EVENTS

generators

All phenomenological studies generally begin by sim-
ulating collision  events,  for  example,  by  using  MAD-
GRAPH5_AMC.  The  module  provides  a
wrapper for specific parts of its core functionalities, aim-
ing to facilitate its integration into Python scripts for cus-
tomized setting requirements.

Madgraph5Code example 1: Initialize .

executive
verbose

In code example 1, users need to pass the executable
path  to  the  parameter to  ensure  that  com-
mands can be sent to it.  The  parameter decides
whether  to  display  the  intermediate  outputs.  The  default

 

hmlFig. 1.    (color online) All modules in the  framework and main classes in each module.
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value is 1, indicating that the intermediate outputs are dis-
played,  consistent  with  the  output  obtained  when  using
MADGRAPH5_AMC in the terminal. After initialization,
we  can  use  its  various  methods  to  simulate  commands
entered in the terminal, as shown in code example 2.

Madgraph5Code example 2: Methods of  to generate pro-
cesses.

import_model

define
define ("j = j b b ∼ ")

generate
add process

g.generate("p p >
w+ z", "p p > w- z")

display_diagrams

diagram_dir

output

During  the  process  generation,  we  first  need  to  use
the  method to import the model file. This
method  supports  passing  the  path  or  name  of  the  model
(MADGRAPH5_AMC  will  search  for  the  model  in  the
models folder or download the model based on its name).
Next,  use  the  method  to  define  multi-particles,
for  example,  .  Then,  in  the

 method, pass all the processes to be generated
without  having  to  input  as  in  the  case  of
the  terminal.  Here,  the  asterisk  represents  the  unpacking
operation in  Python,  and  multiple  processes  can  be  dir-
ectly entered, separated by commas, 

 without  constructing a  list  with
square  brackets.  Usually,  to  confirm that  processes  have
been generated  as  expected,  we  need  to  view  the  Feyn-
man  diagrams,  for  which  the  meth-
od can be used. It saves the generated Feynman diagrams
to  the  folder.  Prior  to  this,  it  converts  the
default  EPS  files  into  the  PDF  format  for  convenience.
Finally, use the  method to export the processes to
a folder.

launchCode example 3: Use the  method and set up all
possible parameters for generating the events.

launch

shower detector madspin

With the  process  folder  ready,  we  can  begin  produ-
cing  runs  to  generate  the  simulated  events,  as  shown  in
code  example  3.  The  method includes  paramet-
ers  that  may  need  to  be  configured  for  the  run,  where

, ,  and  represent  switches  for
PYTHIA8,  DELPHES,  and  MADSPIN,  respectively,
consistent with the options in the prompt of the terminal.

settings
settings = {"nevents":1000, "iseed":

42} iseed

seed

decays

decays = ["w+ > j j", "z > vl vl ∼ "] cards

cards=["delphes_card.dat"
"pythia8_card.dat"]

multi_run

multi_run = 2
run_01_1 run_01_2

MadEvent

nevents
settings

nevents
multi_run hml

dry = True

 includes parameters configured in the run card,
for example, 

.  Furthermore,  is  the  random  seed  used  by
MADGRAPH5_AMC  to  control  the  randomness  of  the
sub-level events.  It  does  not  affect  PYTHIA8 and  DEL-
PHES. You can specify the  parameter to uniformly
configure  these  three,  ensuring  the  cross  section,  error,
and events are fully reproducible. The  method is
used  to  set  the  decay  of  the  particles;  for  example,

.  The 
parameter accepts the path to the pre-configured paramet-
er  files;  for  example, ,

. In this version, only Pythia8 and
Delphes  cards  with  "pythia8"  and  "delphes"  in  their  file
names can be  recognized correctly.  It  currently  does  not
support the cards that have external folders as dependen-
cies, such  as  the  muon  collider  delphes  card.  When  nu-
merous events need to be generated, the  para-
meter  can  be  set  to  create  multiple  sub-runs  for  a  single
run,  for  example,  by  setting .  The  final
event files will be named as , , which
is  controled  by . Note  that  because  MAD-
GRAPH5_AMC  does  not  recommend  generating  more
than one million events in a single run, the  para-
meter  in  should  also  be  set  appropriately,  as
the total number of events is the result of  multi-
plied  by .  will generate  the  correspond-
ing valid commands based on the settings and send them
to  MADGRAPH5_AMC  running  in  the  background.  To
check  the  actual  commands  before  the  beginning  of  the
run,  set , which  returns  the  generated  com-
mands instead of starting the run.

Code example 4: All the information in the table can be
accessed.

summary
g.summary()

After generating the events, the  method, i.e.,
 can be used to print the results in a table, as

shown in Fig. 2. The table includes the name of each run,
number  of  sub-runs  in  brackets,  colliding  particle  beam
information,  tags,  cross-section,  error,  total  number  of
events, and the random seed. The header displays the pro-
cess information, and the footnote shows the relative path
of the output; these are essentially consistent with the res-
ults seen on the web page.

launch
To  continue  experimenting  with  different  parameter

combinations,  the  method  can  be  used  again,  or
the loop statements in Python can be employed to gener-
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ate a series of combinations to observe the differences in
the  cross-section  under  various  conditions.  When  doing
so, it  is  recommended to set  short  label names to facilit-
ate subsequent search and analysis, as in code example 5.

Code example 5: Use a loop to scan the mass of a particle
called "nh2" and show the summary.

hml

Madgraph5.from_output
Madgraph5Run

output
MadGraph5

events

uproot

If output files are already available,  can be used
to  extract  the  necessary  information  for  subsequent  use.
The  class  method  and

 will  be  of  great  assistance,  as  shown  in
code example 6.  The former accepts  the path to the out-
put folder, which is the path entered in the  com-
mand of , as well as the path to the executable
file. The latter requires the output folder path and name of
the  run  to  access  information  such  as  the  cross  section
and error. The  method enables the retrieval of the
paths to all event files under a run, including those of the
sub-runs.  Currently,  it  supports  only  files  in  the  root
format.  can be  used  to  open  these  files  for  sub-
sequent processing.

Madgraph5.from_output
Madgraph5Run
Code  example  6:  Use   and

 to access the information. 

III.  CREATE DATASETS

<physics
object>. <observable type>

The  mass  of  the  leading  fat  jet,  angular  distance
between  the  primary  and  secondary  jets,  total  transverse
momentum of all  jets,  number of  electrons,  etc.,  demon-
strate  that  observables  are  always  connected  to  certain
physical objects. Therefore, we propose the following ob-
servable naming convention: the name of an observable is
a combination of the name of the physical object and type
of the observable,  connected by a dot,  that  is, 

.  In  this  section,  starting
from physical objects, we gradually refine this represent-
ation, eventually extending it to the acquisition of observ-
ables, construction  of  data  representations,  and  defini-
tions of cuts. 

A.    Physics objects
Physical  objects  in  DELPHES are  stored in  different

branches  and  represent  a  category  rather  than  a  specific
instance. Considering that the calculation of multiple ob-
servables involves different types and numbers of physic-
al  objects,  often  utilizing  their  fundamental  four-mo-
mentum information,  we  have  categorized  physical  ob-
jects into four types based on their quantity and category:
 

Single1.  physical objects, which precisely refer to a
specific physical object. For example:

"jet0"–  is the leading jet.
"electron1"–  is the secondary electron.

 
Collective2.  physical objects,  representing  a  cat-

egory of physical objects. For example:
"jet" "jet:"–  or  represents all jets.
"electron:2"–  represents the first two electrons.

 
Nested3.  physical objects, formed by free combina-

tions of  single  and  collective  physical  objects.  It  cur-
rently supports the combination of "FatJet/Jet" and "Con-
stituents":

"jet.constituents"–  represents all constituents of
all jets.

"fatjet0.constituents:100"–  represents the first
100 constituents of the leading fat jet.
 

Multiple4.  physical objects,  comprising  the  previ-
ous three types and separated by commas. For example:

"jet0,jet1"–  represents the leading and secondary
jets.
 

This  naming  convention  is  inspired  by  the  syntax  of
Python lists. To minimize the input cost for the user, we
discard  the  original  requirement  to  use  square  brackets
for receiving indexes or slices: for single physical objects,
the type name is directly connected to the index value; for
collective physical objects, a colon is used to separate the
start  index from the end index,  and the type name alone

 

summaryFig. 2.    Output of the  method.
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parse_physics_
object
represents the entire set of objects. The 

 method can be used to obtain the branch and the
required index values based on the name of the physical
objects, as shown in code example 7. This design makes
users  focus  on  the  physical  objects,  rather  than  on  how
the  corresponding  classes  should  be  initialized.  In Table
1, we summarize all types of physical objects along with
their initialization parameters and provide examples.

parse_physics_objectCode example 7: Use the  meth-
od to obtain the branch and slices of physics objects.

In  this  version,  physical  objects  are  merely  tools  for
parsing the user input and do not contain any information
about  the  observables.  Unlike  other  software  packages,
we  strictly  separate  the  acquisition  of  observables  from
the physical  objects.  Physical  objects  store  only  the  in-
formation on the connection between the observables and
their data sources, and not the data. 

B.    Observable

branch slices

After defining the physical objects, the task of the ob-
servables is to extract information from them. In code ex-
ample 7,  we store all  useful information from a physical
object  in  and :  the  former  refers  to  the
corresponding branch name, and the latter means specific
parts  of  array-like  data.  The  advantage  of  this  is  that
when  encountering  certain  physical  objects,  such  as  the
hundredth  jet,  which  does  not  exist,  it  returns  a  list  of

False
length zero  instead  of  an  error.  An  empty  list  will  auto-
matically  be  judged  as  when  applying  cuts,
thereby being skipped.

Mass mass m
NSubjettinessRatio taumn

m n

Size

AngularDistance

Table  2 lists  all  the  currently  available  observables.
To avoid remembering the exact  name of an observable,
its  name  is  case-insensitive and  common  aliases  are  ad-
ded. For example,  can be written as  or , and

 has  the  alias ,  where  the
values of  and  are passed as parameters to the corres-
ponding class.  For  the  transverse  momentum,  consider-
ing the  style  in  different  types  of  software,  we  have  as-
signed a greater number of aliases for its symbol repres-
entation. Moreover,  different  observables  support  differ-
ent types of physical objects. For example, the  ob-
servable supports collective physical objects, whereas the

 observable  supports  all  combinations
of multi-body objects.

parse_observable
observables read

read

awkward

None var

In code example 8, we show how to use such an ob-
servable.  First,  initialize  the  corresponding  observables
using  the  function  from  the

 module. Then, use the  method to ex-
tract  the  values  from  an  event.  As  the  returns  the
object  itself,  method  chaining  can  be  used  to  define  an
observable, directly followed by the reading of an event.
Additional  information,  namely,  the  observable  name,
shape,  and  data  type,  is  added  when  the  observable  is
printed.  Internally,  [54] is  used  for  manipulat-
ing  variable-length  jagged  arrays.  The  question  mark  in
the  data  type  indicates  missing  values  ( ).  The 
appearing in the shape indicates inconsistent lengths; for
example,  each  event  has  a  varying  number  of  jets  and
each jet has a varying number of constituents.

Size

1 AngularDistance

(n_events, var, 1)
n_events var

1

The  first  dimension  of  the  observable  value  always
represents the  number  of  events,  but  the  shape  is  gener-
ally determined  by  the  related  physical  objects.  For  ex-
ample,  the  shape  of  the  transverse  momentum and  other
kinematic  variables  is  identical  to  its  physics  obsject.
However, this also depends on the computation of the ob-
servable.  For  instance,  the shape of  the  observable
is the  number  of  physics  objects  and  the  second  dimen-
sion is always , whereas the shape of 
depends on  the  type  of  physical  objects:  when  calculat-
ing  the  distance  between  all  jets  and  the  leading  fat  jet,
we  will  obtain  an  array  of  shape ,
where  represents  the  number  of  events, 
represents a variable number of jets, and  represents the
leading fat jet; when calculating the distance between the

 

Table 1.    Types of physics objects and their examples.

Type Initialization parameters Name examples

Single branch: str, index: int "jet0", "muon0"

Collective branch: str, start: int|None "jet", "jet1:", "jet:3", "jet1:3

Nested main: str|PhysicsObject, sub: str|PhysicsObject "jet.constituents", "jet0.constituents:100

Multiple all: list[str|Physicsobject] "jet0,jet1", "jet0,jet"

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)
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(n_events, 10, var)
var

None

first ten fat jets and all constituents of all the jets, we ob-
tain an array of shape . The value
of  now  originates  from  the  number  of  constituents
and  number  of  jets;  the  two  dimensions  are  compressed
into  one.  For  events  that  do  not  have  sufficient  physics
objects, the missing values are filled with .

parse_observable read
events

uproot

Code example 8:  Use  and  to
obtain the values of the observables.  are opened
by .

The  built-in  observables  are  very  basic  and  may  not
be sufficient for every use case. Therefore, we show three
examples  of  building  your  own  observables.  In  the  first
example 9, when the needed observable is already stored

Observable hml

MET

MissingET parse_observable
register_ observable

"missinget0.met" "MissingET0.MET"
parse_observables "MET"
"met"

"MissingET"

under a certain branch, only the name of this observable
needs  to  be  declared  as  a  class  that  inherits  from

.  will search for the branch based on the
physical object name and extract the corresponding value
based on the slices. Here, we take the observable  as
an  example,  which  is  originally  stored  under  the  branch

. To use the  function, the
  function can  be  called  to  re-

gister an alias for it. Please note that this implementation
requires a physical object,  which means that only by en-
tering  or  can the

 function  normally.  Only  or
 without  a  physics  object  is  not  allowed.  As  each

event  has  only  one  missing  energy  physical  object,
 is followed by 0.

ObservableCode example 9: Inheriting from  will auto-
matically retrieve the corresponding value if the physics
object has it.

 

Table 2.    Types of observables and their supported types of physical objects.

Type Alias Single Collective Nested Multiple

MomentumX, Px momentum_x, px ✓ ✓ ✓

MomentumY, Py momentum_y, py ✓ ✓ ✓

MomentumZ, Pz momentum_z, pz ✓ ✓ ✓

Energy, E energy, e ✓ ✓ ✓

TransverseMomentum, Pt transverse_momentum, pt, pT, PT ✓ ✓ ✓

PseudoRapidity, Eta pseudo_rapadity, eta ✓ ✓ ✓

AzimuthalAngle, Phi azimuthal_angle, phi ✓ ✓ ✓

Mass, M mass, m ✓ ✓ ✓

Charge charge ✓ ✓

BTag b_tag ✓ ✓

TauTag tau_tag ✓ ✓

NSubjettiness, TauN n_subjettiness,tau_n, taun ✓ ✓

NSubjettinessRatio, TauMN n_subjettiness_ratio, tau_mn, taumn ✓ ✓

Size size ✓

InvariantMass invariant_mass, inv_mass, inv_m ✓ ✓

AngularDistance, DeltaR angular_distance, delta_r ✓ ✓ ✓ ✓

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)
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read

events uproot.open
events

awkward
_value

awkward hml
self

If a computation process has been already established
and the  physical  objects  need  not  be  considered,  we  re-
commend  referring  to  the  second  example  10.  For  this,
the  method should be overwritten by specifying the
process  for  computing  the  values  of  the  observables.

 is  the  return  value  of .  You  may
need to adjust the calculation because of  and the
underlying  array.  It  is  important  to  note  that

 must be an iterable object, such as a list or array,
to be correctly converted into an  array by .
Additionally,  should be  returned  at  the  end,  en-
abling chain calls similar to those of other observables.

readCode example 10: Overwrite the  method to specify
the process for calculating the value of the observable.

read

The  third  example  11  changes  the  initialization.  We
add constraints on the physical objects,  i.e.,  it  can be re-
lated  only  to  a  single  physics  object.  In  addition,  a  new
parameter  is  introduced  for  greater  flexibility.  The 
part is the same as that in the second example. This is the
strictest observable but also the safest one.

Currently,  the  naming  convention  is  built  upon  the
output  of  DELPHES and does not  support  other  formats
yet.  However,  considering that different analyses require
data  at  different  levels  and  in  different  formats,  we  plan
to gradually add support for other event formats in the fu-
ture versions, such as HEPMC, LHE, etc. 

C.    Representation
To  make  high-energy  physics  data  compatible  with

different  analysis  approaches,  it  is  necessary  to  convert
the  data  into  various  representations.  The  review  paper
[55] summarizes six representations of jets: ordered sets,
images,  sequences,  binary  trees,  graphs,  and  unordered

hml
sets.  Built  upon  the  observable  naming  convention,  we
extend the representation to an event. Currently,  sup-
ports the  (ordered)  set  and  image  representations.  In  fu-
ture versions,  we will  prioritize adding the graph repres-
entation and the corresponding neural networks.

Code example 11: Define an observable with constraints
on the type of physical objects and with a new parameter.

(n_events,
n_observables)

The  ordered  set  is  one  of  the  most  commonly  used
representations.  It  arranges  physics-inspired  observables
in  an  arbitrary  order  to  form  a  vector  that  describes  an
event. The vectors from all events are then assembled in-
to  one  matrix  by  event,  with  the  shape 

.  By  following  the  naming  convention,
such  a  set  can  be  constructed  in  a  straightforward  and
concise manner, as illustrated in code example 12.

SetCode example 12: Use  to represent the ordered set of
observables.

Set read

values
awkward

muon0.charge
None

The  observable  names  must  be  packaged  into  a  list
and  passed  to  the .  Next,  the  method  must  be
called  to  obtain  the  values  from  the  events.  The  values
will be stored in the  attribute. Here, it can be seen
that the  arrays are used to store the data. For ob-
servables  that  have  the  correct  physical  object  name  but
do not exist (for example, , when there are
no muons produced in the event), the value is set to .
This  approach  of  handling  missing  values  allows  us  to
follow the matrix operation sequence: first build the data
matrix, then deal with the missing values.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)
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read

Image

with_subjets

translate

pixelate

For  the  image  representation,  the  observable  names
are used to specify the method for fetching the data for its
height, width, and channel, as shown in code example 13.
The  method is used to read events as before. Here,
we  construct  an  image  of  the  leading  fat  jet,  along  with
the pseudorapidity,  azimuthal  angle,  and  transverse  mo-
mentum  of  all  its  constituents.  Considering  that  similar
preprocessing  processes  have  been  employed  in  a  large
number  of  studies,  we  add  them  as  the  methods  of  the

 class.  Because preprocessing often relates  to sub-
jets, it is necessary to add the information on sub-jets via
the  method ;  its  parameters  include  the
name of the constituents, clustering algorithm, radius, and
minimum momentum of the jet.  The  method
moves  the  position  of  the  leading  sub-jet  to  the  origin,
which reduces the complexity of the position information
and expedites  the  learning process.  Next,  the  position of
the sub-leading sub-jet can be rotated right below the ori-
gin, making  the  features  of  the  entire  image  more  pro-
nounced. Lastly, the  method is used to pixelate
the data  to  obtain  a  real  image.  Because  pixelation  re-
duces  the  data  precision,  this  step  is  removed.  Further
studies are needed to determine when this method should
be applied and the effect of the order of its application.

ImageCode example 13: Use  to represent a fat jet and
preprocess it via sub-jets.

Image
show

For convenience in displaying the images, the 
class contains the  method, which can directly plot it

norm="log"

.values

as  an  image.  Code  example  14  shows  all  the  available
parameters:  the  first  two  are  used  to  show  the  image  as
dots;  the  last  three  parameters  display  a  pixel-level  grid,
enable the grid by default,  and apply normalization over
the entire image, respectively. Figure 3 shows the image
representations  before  and  after  the  preprocessing  steps.
In  the  raw image,  the  observables  used  for  "height"  and
"width" are directly plotted as a 2D scatter image. In ad-
dition,  enhances  the  features  of  the  final
pixelated image to make them more distinct. The data can
be  accessed  via  the  property as  a  list  of  awk-
ward  arrays  (before  pixelation)  or  one  awkward  array
(after  pixelation).  These  can  be  converted  and  saved  in
formats  such  as  a  numpy  array  and  JSON files  to  allow
for their handling with common tools.

showCode example 14: Use  to plot the image as a 2d
heatmap if it has been pixelated or as a 2d scatter plot.

( uproot cut
hml

Cut
read

After  acquisition,  the  original  event  data  are  filtered
to obtain events that satisfy specific criteria. In the previ-
ous  workflow,  during  the  event  loop,  it  was  common to
manually  include  the  calculation  of  the  observables  and
then apply conditionals to filter  the events.  We note that
the array) method in  supports the  paramet-
er.  In ,  we  utilize  a  matrix-oriented  programming
style to  change  the  filtering  procedure  into  Boolean  in-
dexing; furthermore, we add the logical operation syntax
to the observable naming convention to make the defini-
tions of cuts intuitive, as shown in code example 15. 
continues  to  have  a  similar  method.  The  values
form  a  one-dimensional  Boolean  matrix,  the  length  of
which is equal to the number of events,  allowing its  dir-
ect use to filter other observables via Boolean indexing.

For  the  extend  syntax  of  the  logical  operations, i.e.,
 

Fig. 3.    (color online) Raw image and pixelated image after preprocessing.
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uproot
| and or

(pt1 > 50) ((E1>100) | (E1<90))
pt1 E1

n_events, var

how to combine multiple  conditions,  we refer  to the im-
plementation of : it uses the bitwise logical oper-
ators of the matrices, & and , to replace  and , re-
spectively,  and  adds  parentheses  to  ensure  priority.  For
example,  &  ex-
presses the condition that  is greater than 50 and  is
either greater than 100 or less than 90. The expression is
then parsed directly by Python: it is purely a matrix oper-
ation, without considering the case of the DELPHES out-
put. It cannot handle cuts such as "all jets are required to
have  a  transverse  momentum  greater  than  10  GeV,"
where  the  data  have  the  shape . It  un-
doubtedly requires users to rearrange the original data to
make  the  dimensions  of  the  matrices  consistent,  as  the
number  of  jets  is  not  necessarily  the  same  among  the
events.  This  essentially  filters  only  the  values  that  meet
the conditions, not the events that meet the conditions. In
conjunction  with  the  observable  naming  convention,  we
advocate  simplifying  the  matrix  logical  operation  syntax
to facilitate the user input.

Code example 15: Cut values are Boolean arrays that can
be used to filter other observables.

and or
|

1.  Logical  AND  and  logical  OR  are  represented  by
 and , respectively. They are automatically conver-

ted  to  bitwise  logical  operators  &  and ,  respectively,
avoiding too many parentheses.
 

2. The result of the logical expression acts on the first
dimension,  that  is,  the  dimension  of  the  events,  to  filter
the events.
 

3. The  involved  observables  must  have  the  same  di-
mensions to  ensure  the  correctness  of  the  logical  opera-
tions.

[all]4. At the end of a cut, default  represents a lo-
gical  AND  operation  on  all  values  of  all  observables  in
each  event.  It  can  be  ignored  and  need  not  be  written;

[any] represents a logical OR operation on all values of
all  observables  in  each event.  This  syntax is  suitable  for
cases where all of a certain observable or any one observ-
able in the events must meet the conditions.
 

veto5. Add support for  at the beginning of a cut for
cases where certain events need to be excluded.
 

Below,  we  demonstrate  and  explain  the  new  syntax
by referring to literature. The original text will be presen-
ted  first,  followed  by  the  corresponding  cut  in  the  next
line. We assume that the data are stored in the same units
as indicated in the description. In [56]:
 

µ±

pµT > 10 GeV
|ηµ| < 2.4

1.  Muons  are identified  with  a  minimum  trans-
verse  momentum  and  rapidity  range

...
 

muon.pt > = 10 and -2.4 < muon.eta < 2.4
 

and
[any]

Here,  we take  all  the  muons  and simplify  the  syntax  for
pseudorapidity within a certain range, which can be writ-
ten consecutively. Here,  represents the bitwise logic-
al operator of the matrix. For each event, if  is ab-
sent  at  the  end of  the  expression,  all  values  must  satisfy
the condition;
 

2.  Only  events  with  reconstructed  di-muons  having
the same sign are selected.
 

muon0.charge = = muon1.charge
 

None
False

Here,  we  only  need  to  judge  whether  the  charges  of  the
two muons are the same, without determining whether the
number of muons is two. When there are fewer than two
muons, the charge of one muon will be , and such a
judgment will be automatically treated as ;
 

W±

J pJ
T > 100 GeV

3. We identify the hardest fat-jet with the  candid-
ate jet ( ), which is required to have .
 

fatjet0.pt > = 100
 

In [57]:
 

1. C3: we veto the events if the OS di-muon invariant
mass is less than 200 GeV.
 

muon0.charge ! = muon1.charge and muon0,muon1.inv
_mass > 200
 

2. C4: we apply a b-veto.
 

veto jet.b_tag = = 1 [any]
veto [any]Use  and  to indicate that for all jets, if any

jet is b-tagged, then the event is excluded.
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3. C5: we consider only events with a maximum MET
of 60 GeV.
 

MissingET0.PT < 60
 

The case  used  (uppercase  or  lowercase)  is  incon-
sequential  because  there  is  only  one  missing  energy;
hence, it is represented by 0. The MET observable in this
case  also  refers  to  the  transverse  momentum;  hence,  it
can be represented by PT.
 

N τJ0
21 < 0.44. C8: we choose events with -subjettiness .

 
fatjet0.tau21 < 0.4

 
The  definition  of  this  observable  is  provided  by  the

DELPHES  card.  We  have  already  defined  its  parsing
method  in  the  observables  module;  therefore,  its  name
can be directly used here.

MN = 600−900In [58], the cuts of CBA-I for  GeV:
 

2.8 < ∆R( j, ℓ) < 3.81. Jet-lepton separation 
 

2.8 < jet0,lepton0.delta__mass > 200r < 3.8
 

In [59]:
 

e µ |ηℓ| < 2.5 pT,ℓ > 500
1.  The basic selections in our signal  region require a

lepton (  or ) with  and  GeV...
 

-2.5 < muon0.eta < 2.5 and muon0.pt > 500.
 

We take the example of the muon.
 

|ηℓ| < 2.5 pT,ℓ > 7GeV
2.  ...  veto  events  that  contain  additional  leptons  with

 and 
 

veto -2.5 < muon.eta < 2.5 and muon.pt >
7 [any]
 

vetoIn this  cut,  it  is  easier  to use  to exclude events
with additional leptons.
 ∣∣η j

∣∣ < 2.5 pT, j > 30GeV
3. ... and impose a jet veto on the subleading jets with

 and .
 

veto -2.5 < jet1.eta < 2.5 and jet1.pt >
30 [any]
 

In [60]:
 

pT > 15 |η| < 2.5
1.  Photon-veto:  Events  having  any  photon  with

 GeV in the central region, , are discarded.
 

veto -2.5 < photon.eta < 2.5 and photon.pt
> 15 [any]

τ |η| < 2.3
pT > 18 |η| < 2.5
pT > 20

2.  and  b-veto:  No  tau-tagged  jets  in  with
 GeV  and  no  b-tagged  jets  in  with
 GeV are allowed.

 
veto jet.tau_tag = = 1 and -2.3 < jet.eta <

2.3 and jet.pt > 18 [any]
 

min(∆ϕ(pMET
T ,

p j
T )) > 0.5 pT > 30 GeV
|η| < 4.7

3. Alignment  of  MET  with  respect  to  the  jet  direc-
tions: Azimuthal  angle  separation  between  the  recon-
structed  jet  with  the  MET  to  satisfy 

 for  up  to  four  leading  jets  with 
and .
 

jet:4,missinget0.min_delta_phi > 0.5 and
jet:4.pt >30 and -4.7 < jet:4.eta < 4.7
 

MinDeltaPhi
min_delta_phi

Users need to define the observable  in
advance and register it with the alias .
 

D.    Dataset

SetDataset ImageDataset

read read
targets

1
cuts

1
0

split

samples
targets

numpy
save

.ds
load_dataset SetDataset.load

With  the  previously  defined  data  representation  and
cuts, we can now proceed to construct the dataset. Corres-
ponding  to  the  data  representations,  we  currently  offer
two datasets:  and . Code example
16 shows the use of the dataset of an ordered set. Its ini-
tialization  requires  the  names  of  the  observables.  Next,
use  the  method  to  read  the  events.  For  this ,
we introduced two additional parameters:  is the
integer label assigned to the event, which is the target of
the convergence.  Here,  we assign  to denote the events
as  signals;  are the  filtering  criteria.  Here,  we  re-
quire  the  number  of  jets  to  be  greater  than ,  and  the
number  of  leading  fat  jets  to  be  greater  than .  When
multiple cuts are used, the result of each cut is applied to
the dataset sequentially, which means they are connected
by a logical AND. The  method can be used to split
the  dataset.  Its  parameters  are  the  ratios  for  the  training,
test, and validation sets. Here, we used 70% of the data as
the training set, 20% as the test set, and 10% as the valid-
ation  set.  Before  saving  the  dataset,  and

 can be accessed to view the stored data,  which
have  already  been  converted  into  arrays.  Finally,
use  the  method to  save  the  dataset  to  a  zip  com-
pressed file with the  suffix. Such a file can be loaded
by  the  function  or 
class method.

show

n_feature_per_line

n_samples
target

The  method  can  be  used  to  quickly  view  the
distributions  of  the  entire  dataset.  Code  example  17
shows all the available parameters: 
is  the  number  of  observables  to  display  per  line,

 is  the  number  of  events  to  display,  and
 is the label of the events to display.
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SetDatasetCode example 16: Use  to build a dataset repre-
senting each event as a set of observables.

showCode example 17: Use  to display the distribution of
observables of a set dataset.

Image

The construction process of an image dataset is simil-
ar to that of an ordered set, as shown in code example 18.
When  initializing  an ,  you  can  directly  configure
the  necessary  preprocessing  steps  in  method  chaining.
When  the  dataset  reads  the  events  later,  these  steps  will
be performed in sequence.

ImageDatasetCode example 18: Use  to build a dataset
representing each event as an image

show

n_events,height, width, channel
height, width, channel

The  method of an image dataset can be used to
display the events as an image, as shown in Example 19.
By default,  the  images  of  the  entire  dataset  are  com-
pressed  into  one  image.  If  the  original  dimensions  are

,  the  compressed
dimensions  will  be , respect-

show
Image

n_samples
target

ively. Most parameters are the same as those in the 
method  of  with  the  exception  of  two  additional
parameters:  representing  the  number  of
events  to  display,  and  representing  the  label  of
the events to display.

showCode example 19: Use  to plot the image of the data-
set.
 

IV.  APPLICATION OF THE APPROACHES

approaches

compile
fit

predict

With  well-prepared  datasets,  we  can  apply  different
approaches  to  identify  rare  new  physics  signals.  The

 module  includes  cut-and-count,  trees,  and
neural networks.  We will  gradually enhance it  in  the fu-
ture versions. The basic design principle of this module is
ensuring minimal  encapsulation to  interface with current
frameworks,  such  as  SCIKIT-LEARN  [61], TENSOR-
FLOW, and  PYTORCH.  Considering  simplicity,  we  ad-
opted  the  Keras-style  interface  design:  decide  approach
structure  at  initialization,  for  configuring  the
training  process,  for  training  the  approach,  and

 for prediction using new data. KERAS was ori-
ginally  a  high-level  encapsulation  of  TENSORFLOW.
However, after  the release of  version 3,  it  supports  mul-
tiple  backends,  thus  offering  unprecedented  flexibility,
which is  one of  the reasons for  choosing it.  Note that  to
date,  we  have  tested  only  its  compatibility  with  the
TensorFlow backend. 

A.    CutandCount
Cut-and-count  (or  cut-based analysis)  is  fundamental

and widely used when studying the effect of various ob-
servables on the final  sensitivity.  It  provides evidence to
support the discovery of new particles and verification of
new theories.

As the name suggests, it involves two steps: applying
a series  of  cuts  to  distinguish  the  signal  from  the  back-
ground  as  much  as  possible,  followed  by  counting  the
number of events that pass the cuts. The subsequent dis-
tribution, such as an invariant mass, is used to determine
the nature of the particles involved. These cuts can be ap-
plied to  the  properties  of  specific  particles,  such  as  kin-
ematic  quantities,  charge,  other  observables,  or  other
characteristics associated with simulated collision events,
such  as  the  particle  states  in  decay  chains.  Filtering  the
data  allows  focusing  on  the  areas  of  interest,  increasing
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the possibility of discovering new physics.
Applying cuts  requires  a  technique to  make the  final

signal more evident. Typically, the distribution of the ob-
servables  that  reflect  the  signal  characteristics  would  be
plotted  and  the  area  with  a  higher  signal  ratio  would  be
selected  as  the  cut  range  based  on  manual  judgment.
There are two issues here: 1) manual judgment is subject-
ive and cannot guarantee the effect of the cut; 2) the ob-
servable  distributions  observed  by  users  are  sometimes
the source  data  without  any cuts.  If  there  is  an  unavoid-
able  association between the observables,  applying a  cut
will affect the distribution of the next observable. There-
fore, a more rigorous method is to apply one cut first, plot
the distribution of  the next  observable,  and then determ-
ine the next cut.

CutAndCount

CutAndCount

CutLayer

n_bins

topology
parallel

sequential

Users  can  use  to  implement  these  two
different strategies of applying cuts. In code example 20,
we demonstrate how to initialize a  method.
The  number  of  involved  observables  must  be  specified.
Subsequently,  an  internal  is created  to  auto-
matically search for the optimal cut values. For each ob-
servable, four possible conditions are considered: the sig-
nals on the left side, right side, middle, and both sides of
the  cut.  Then,  the  user-specified  loss  function  for  each
case is calculated, and the one with the minimum loss is
selected  as  the  final  cut.  sets  the  granularity  of
the data  when searching, i.e.,  the number of  bins for  the
distribution of each observable. A higher number of bins
can  make  the  cut  more  precise  but  increases  the  cost  of
calculation, which also affects the data size and complex-
ity of its distribution. The principle here is that as long as
the  data  distributions  remain  stable,  the  number  of  bins
can  be  appropriately  reduced  without  affecting  the  final
result.  sets the order or strategy of applying the
cuts:  indicates  that  all  cuts  are  independent,
and the distributions are considered to originate from the
original data, whereas  considers the correla-
tion among the cuts, with each cut applied on the basis of
the previous one.

Code example 20: Initialize the CutAndCount approach

CutAndCount compile

CutAndCount

In  code  example  21,  we  show how to  configure  and
train the  approach. In the  method,
you can  specify  the  optimizer,  loss  function,  and  evalu-
ation  metrics.  The  optimizer  is  unnecessary  for

 because it  does  not  use  the  gradient  des-
cent  methods  internally  but  rather  finds  the  optimal  cut

run_eagerly = True

CutAndCount

True fit

epochs
callbacks

values through a search process. The loss function is used
to  evaluate  the  effectiveness  of  each  cut,  whereas  the
evaluation metrics will be used to reveal the performance
scores during the training. It is better to evaluate the per-
formances  simultaneously  after  the  training.  The  setting

 is  necessary.  By  default,  KERAS
uses a computational graph for the calculations, which is
very  efficient  for  training  neural  networks.  However,

 includes some custom calculations that are
not yet fully compatible within the computational graph;
hence, it needs to be set to . In the  method, the
samples  and  targets  of  the  training  set  must  be  input,
where the batch size should be the minimum number that
can reflect the distribution pattern of the data. If the user
dataset  is  relatively  small  and  can  fit  entirely  into  the
GPU memory, the batch size can be set to the size of the
entire training set. Moreover, the  parameter is un-
necessary,  and  the  parameter  has  not  been
implemented  yet  but  will  be  gradually  added  in  future
versions.

CutAndCountCode example 21: Configure and train the 
approach
 

B.    Trees and neural networks

GradientBoostingClassifier

Decision trees are a common method of classification,
and  several  mature  frameworks  are  available,  such  as
TMVA  [62],  XGBOOST  [63],  and  SCIKIT-LEARN.
TENSORFLOW  DECISION  FORESTS  [64]  is
also  a  good  choice,  as  it  too  adopts  the  KERAS
training  style.  Considering  our  preference  for  the  multi-
backend  support,  we  modify  parts  of  the

 code  from  SCIKIT-
LEARN to conform to the same style.

fit

Keras
"accuracy"

predict

Keras

Firstly, the original  method is enhanced to handle
the input  targets  in  a  one-hot  encoded format.  Secondly,
support  for  the  metrics,  such  as  the  commonly
used , is  provided  during  the  training  pro-
cess.  Thirdly,  the  output  of  its  method  is
changed  to  predict  the  probabilities,  aligning  it  with

.  Despite  these  changes,  many  parameters  are  not
supported yet: many of the original initialization paramet-
ers are  related  to  early  stopping,  learning  rate  adjust-
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Keras

scikit-learn
compile

ments,  etc.,  which are implemented in through the
callback functions.  Moreover,  loss functions are not uni-
formly customizable in ; hence, we do not
support  changing it  in  the  method. In  code ex-
ample 22, we demonstrate the basic usage.

hml

SimpleMLP
SimpleCNN

A starting point of  is to provide researchers with
existing  deep  learning  models  so  that  they  can  conduct
benchmark  tests  on  their  datasets  and  select  the  optimal
model.  At  this  early  development  stage,  we  offer  only
two  basic  models:  (multi-layer  perceptron)
and  (convolutional neural network). In future
versions, after  thorough  testing,  we  will  gradually  intro-
duce additional existing models to provide a larger range
of selection.

GradientBoostedDecisionTree
Code  example  22:  Basic  usage  of  the  modified

 approach.

Sequential

Model

SimpleMLP 4386
SimpleCNN 5960

(33,33,1)

In KERAS, a model can be built in three ways: 1. Us-
ing  to  stack  the  layers,  2.  Using  the Func-
tional API to  construct  more  complex  topologies,  3.  In-
heriting from to declare a subclass for greater flex-
ibility. Considering that the construction of many models
is highly  complex  and  requires  exposing  a  certain  num-
ber of hyper-parameters for tuning, we used the third ap-
proach to build the models. Fig. 4 shows the structures of
the two models.  has  parameters  and the
inputs  are  three  observables.  has  para-
meters and the inputs are images of the shape .
Both  models  are  shallow  and  simple,  resulting  in  low
consumption  of  computing  resources  during  the  training
and testing stages. 

C.    Metrics

σ

σ

After training an approach on a dataset, it is often ne-
cessary to use various metrics to assess its effectiveness.
Unlike  the  classical  accuracy  score,  which  is  commonly
used  in  classification  tasks,  in  high-energy  physics,  the
scarcity of signals shifts the focus toward the signal signi-
ficance,  denoted  by .  A higher  value  indicates  a  lower
probability that  the  observed  signal  is  a  result  of  back-
ground fluctuations alone. For instance, 3  is often con-
sidered as an evidence of a signal, indicating that there is

σ

hml S
B

approximately a 0.27% chance of the signal being a stat-
istical fluke. Further, 5  is the gold standard in high-en-
ergy physics for claiming a discovery, corresponding to a
probability  of  roughly 1  in  3.5  million that  the  observed
signal is  due to background noise.  Equation 1 is the for-
mula for calculating the significance in . Note that 
represents  the  number  of  signals,  and  represents  the
number  of  backgrounds,  which  indicates  the  number  of
simulated events  when  the  cross  section  of  the  corres-
ponding process  and  integrated  luminosity  are  not  spe-
cified. We demonstrate its use in code example 23. 

σ =
S√

S +B
. (1)

MaxSignificanceCode example 23: Use the  metric to
evaluate the performance of a trained approach.

The outputs of the built-in approaches are the probab-
ilities  for  the  signal  and  background.  By  default,  only
when  the  probability  exceeds  0.5  do  we  consider  it  as  a

 

SimpleMLP SimpleCNNFig. 4.    Structures of the  and  models.
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MaxSignificance
thresholds

class_id = 1

signal  or  background.  In ,  this
threshold can be changed by setting . By de-
fault,  data  with  are  viewed  as  the  signal
and 0 as the background. This can be changed if the tar-
gets for the signal and background in the user dataset are
different.

reset_state

In addition to significance, some studies have also in-
cluded the  background  rejection  at  a  fixed  signal  effi-
ciency as an evaluation metric. Hence, this metric was ad-
opted in our study as well and is expressed as equation 2.
The  higher  the  background  rejection  rate,  the  fewer  are
the  background  events  that  are  mistakenly  classified  as
signals. Example 24 demonstrates its use. Note that mul-
tiple calls to both the metrics will result in the values be-
ing  averaged.  Therefore,  the  method
should be called to calculate them from scratch. 

rejection = 1/ ϵb|ϵs . (2)

RejectionAtEfficiencyCode  example  24:  Use  the  
metric to evaluate the performance of the model.
 

V.  EXAMPLE: W BOSON TAGGING

To enable  users  to  gain  a  complete  understanding  of
the  entire  workflow,  this  section shows how to  integrate
various modules to complete the task of jet tagging. This
example serves merely as a proof of concept; users must
conduct a more personalized analysis on this basis. 

A.    Step 1: generate events
W+We  simulated  the  production  of  highly  boosted 

bosons that decay into two jets, resulting in a single fat jet
during event  reconstruction.  This  jet  has  distinct  charac-
teristics of mass and spatial distributions, making it easi-
er to identify using all built-in approaches.

Madgraph5 generate
output
W+

pT

In code example 25, we first import the event generat-
or  module from  using the  method
to  create  the  signal  process,  and  then  use  the 
method to save it to a designated folder. To make  bo-
sons highly boosted, we leave the decay chain unfinished
here and constrain its  range in code example 26. After

output
Diagrams

the  command is  completed,  the output  Feynman
diagrams  can  be  viewed  in  the  folder  within
the output folder.

launch
shower

detector W+

pT W+

250 350
R = 0.8 kT

W+ decay
seed

summary

Madgraph5

Then, the  method in code example 26 is used
to  start  the  simulation,  turning  on  the  and

. To boost the  boson, we set the spin mode
as  "none"  to  apply  the  following  cuts1) in  the  settings.
Following [3],  we  set  the  range  for  the  boson to

 to  GeV.  When  using  the  default  CMS  delphes
card with  and the anti-  algorithm to cluster the
jets, a fat jet is expected to originate from the decay of the

 boson. The  method is used for further specific
decays. The random seed ( ) is set to 42 to ensure the
reproducibility  of  the  results.  When the  simulation ends,
the  method is used to review the results (shown
in Fig. 5). This is akin to viewing the results on the web-
site of .

W+

Madgraph5
Code  example  25:  Generate   boson  events  using

W+Code example 26: Launch the simulation of  boson
events.

The  generation  process  for  the  background  events  is

 

Fig. 5.    Summary table of the signal (upper) and background
(lower) events.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)
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pT

pT

similar to that in code example 27, with the difference ly-
ing in the  range settings. Because the jets in this case
do  not  originate  from  the  decay  of  a  single  particle,  we
directly restrict the  range of the jets.

Madgraph5
Code example  27:  Generate  background events  using

uproot

generators
Madgraph5Run

run_01

After the event generation is complete, we begin pre-
paring  the  dataset.  First,  in  code  example  28,  we  use

 to open the root file output by DELPHES, which
stores the branches categorized according to the physical
objects.  The  module  includes

, which  conveniently  retrieves  informa-
tion about  the  run,  such  as  the  cross  section  and  gener-
ated event files. Because it searches for files produced in
all  sub-runs of a given run, even though the files for the
signal events are stored in the sub-runs,  can also
retrieve the corresponding path correctly.

uprootCode example 28: Use  to open the DELPHES
output root file.

SetDataset ImageDataset

read
Cut

In  code  example  29,  to  avoid  missing  values  of  the
desired observables, we use the previously mentioned ex-
tended logical operations to apply the cuts. For both types
of datasets, that is,  and , it is
required to have at  least  one fat  jet  and two regular  jets.
The  method supports  entering  multiple  cuts.  Thus,
there is no need to use the  class to parse the expres-
sions first. When reading the events, integer labels are as-
signed  separately  for  the  signal  and  background  events.
Before saving locally, the data are split  into training and
testing sets at a 7:3 ratio.

Code example 29: Prepare the set dataset.

ϕ η pT

with_subjets

0.3
kT R = 0.3 translate

rotate

pixelate
33×33 (−1.6,1.6)

0.1

For the image dataset, the representation of the data is
first decided,  namely,  which  observables  should  consti-
tute the images and which preprocessing steps should be
taken.  In  code example  30, , ,  and  of all  constitu-
ents  from the  leading  fat  jet  are  used  as  the  data  source
for  the  height,  width,  and  channel  of  an  image.  Before
preprocessing,  is  used  to  recluster  the
constituents to  add  information  about  the  subjets.  Be-
cause  the  distance  between  the  two  sub-jets  will  not  be
less than  according to the previous equation, it is safe
to  use  the  algorithm  with .  Then, 
and  are  used  to  translate  and  rotate  the  image,
aligning  the  information  of  the  two  sub-jets.  Finally,

 is  used  to  pixelate  the  image;  the  size  here  is
, with a range of  and an equivalent pre-

cision  of  around .  This  precision  does  not  match  the
precision in the detector card. For simplicity, we take this
fixed precision. In code example 31, we show how to pre-
pare the image dataset.

Code example 30: Construct the representation of the im-
age dataset.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)
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show

After  constructing  the  datasets,  we  count  the  signal
and background samples in code example 32 to avoid in-
troducing an artificial bias. Then, we use the  meth-
od of the dataset to display the distribution of the observ-
ables, as illustrated in Fig. 6 and Fig. 7.

Code example 31: Prepare the image dataset.

Code example 32: Count the number of signals and back-
grounds and show the distribution of the datasets.

It is observed that the number of signals and number
of background instances are approximately equal, and the
observables used  clearly  reflect  the  distinct  characterist-
ics of each, which is beneficial for our subsequent classi-
fication  tasks.  In  the  display  of  the  image  dataset,  we
show  a  merged  image  of  the  signal  and  background.  It
can be  seen  that  the  fat  jet  image  of  the  signal  promin-
ently  features  two  sub-jets,  whereas  the  sub-jets  in  the
background are less distinct. 

B.    Step 2: apply the approaches
After preparing  the  datasets,  all  the  available  ap-

proaches  are  imported  for  training.  These  approaches
learn the differences between the signal and background.
Subsequently,  a  dictionary  and  the  built-in  metrics  are
used  to  assess  their  performance,  which  will  then  be
presented as a benchmark test. First, import all the neces-
sary packages,  as  shown  in  code  example  33;  the  pack-
ages have  been  roughly  categorized  to  facilitate  the  un-
derstanding of their purposes.

The  selected  evaluation  metrics  are  accuracy,  Area
Under the  Curve  (AUC),  signal  significance,  and  back-
ground  rejection  rate  at  a  fixed  signal  efficiency.  These
metrics  are  commonly  used  in  high-energy  physics  and
help us  better  understand  the  performance  of  the  ap-
proaches. In code example 34, we define a function to re-
trieve the evaluation metrics of an approach.

The  cut-and-count  and  decision  tree  approaches  are

 

Fig. 6.    (color online) Feature distributions of the set dataset.

 

Fig. 7.    (color online) Combined images of signal (left) and background (right) events.

Jing Li, Hao Sun Chin. Phys. C 49, 093106 (2025)
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not sensitive to the scale of features.  Hence,  we can dir-
ectly  import  the  dataset  (code  example  35)  and  start  the
training  (code  example  36).  Two  different  topologies  of
the cut-and-count are used to demonstrate how the order
of applying the cuts affects the performance.

Code  example  33:  Import  necessary  packages  for  the
benchmark test.

Code example 34: Define a function to obtain the evalu-
ation metrics of a model.

MinMaxScaler
The  input  for  the  multilayer  perceptron  requires  the

use of  to scale the features within the 0-1

range,  as detailed in code example 38,  which aids in the
rapid convergence of the model. We trained the model for
100 epochs with a batch size of 128. Code example 39 il-
lustrates the training process.

Code example 35: Load the set dataset for training the
cut-and-count and decision tree approaches.

Code example 36: Train the cut-and-count approaches
with two different topologies.

Code example 37: Train the decision tree approach.

For the convolutional neural network, we employ two
different  preprocessing  methods.  One  scales  each  image
by its maximum value, whereas the other applies a logar-
ithmic transformation to each pixel value. Given the large
variations in the pixel intensity in the jet images, scaling

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, 093106 (2025)
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directly by  the  maximum  value  might  result  in  excess-
ively small pixel values, whereas logarithmic transforma-
tion preserves the information better. In code example 40
and 42, we load the image dataset and demonstrate these
two distinct preprocessing techniques.

Code example 38: Load the set dataset for training the
multilayer perceptron approach.

Code example 39: Train the multilayer perceptron ap-
proach.

Finally,  we  present  a  performance  comparison  using
code example 43. The results are shown in Table 3.
 
 

Table 3.  Comparison of different approaches.

Name ACC AUC Significance R50 R99

cnc_parallel 0.750323 0.728121 33.660892 4.005174 1.000000

cnc_sequential 0.787784 0.769440 36.557026 4.712174 1.000000

bdt 0.902011 0.955063 44.368549 117.804291 2.146139

mlp 0.900904 0.956274 44.205276 117.804291 2.124265

cnn_max 0.806827 0.867769 38.444225 17.089737 1.188322

cnn_log 0.809452 0.876692 38.732323 19.042860 1.276514

 
The  significance  column  shows  that  for  the  cut-and-

count  method,  the  sequential  topology,  which  considers
the impacts among the cuts, performs better than the par-
allel  topology.  For  convolutional  neural  networks,  the
performance of logarithmic scaling is roughly equivalent
to that  using  maximum  value  scaling.  Multilayer  per-
ceptron  and  decision  trees,  which  utilize  features  with
clear distinctions, exhibit the best performance. For more

practical problems, we can apply different approaches to
the dataset and then select the most suitable one based on
various performance metrics.

Code example 40: Load the image dataset and normalize
the pixel values with the maximum value.

Code example 41: Train the convolutional neural  net-
work approach with the maximum value normalization.
 

VI.  SUMMARY

hml

In the current era of rapid evolution of machine learn-
ing  models,  it  is  worthwhile  to  explore  methods  to  use
them  more  conveniently  in  high-energy  physics  for
searching new  physical  signals.  In  this  paper,  we  intro-
duced  the  Python package,  which  offers  a  stream-
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lined  workflow  from  event  generation  to  performance
evaluation. The  simplified  process  and  control  over  ran-
dom seeds significantly enhance the reproducibility of the
final analysis results.

"..."
Code example 42: Normalize the pixel values by using
the logarithm.  indicates the same code as in code
examples 40 and 41.

Code example 43: Compare the performances of differ-
ent approaches.

show

We  proposed  a  naming  convention  for  observables,
which  enables  users  to  easily  extract  the  required  data
from  the  events  output  by  DELPHES.  Additionally,  we
extended the  cut  expression  syntax,  originally  in  UP-
ROOT,  to  make  it  more  user-friendly  and  compatible
with  the  DELPHES  output  formats.  This  convention  is
also  utilized  in  our  dataset  construction  process,  helping
users  to  quickly  and  conveniently  build  datasets.  Based
on this naming convention, we implemented a transform-
ation from the outputs of event generators to datasets us-
able by various analysis approaches. Moreover, the 
method  included  in  the  datasets  enables  users  to  display
the data either as 1D distributions or 2D images, facilitat-
ing the adjustment of  observable selections based on the
observed differences.

We adopted  the  interface  style  of  KERAS  to  stand-
ardize traditional methods such as the cut-and-count tech-
nique and decision trees.  Furthermore,  the cut-and-count
approach supports automatic searching for the optimal cut
positions,  significantly  reducing  the  workload  for  users.
Additionally, we incorporated the commonly used evalu-
ation metrics in high-energy physics, such as signal signi-
ficance and background rejection rate at a fixed signal ef-
ficiency. These metrics help users to better understand the
performance of the models.

hml hml

We  demonstrated  the  complete  workflow  through  a
practical example, which intuitively showcased the usage
of .  is continuously being updated. We plan to in-
corporate  additional  existing  deep  learning  models  and
datasets, and extend it to graph representations of data to
further enhance its capabilities.
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