
 

Quasinormal modes of accelerating spacetime*
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s ≤ 2Abstract: We calculate the exact values of the quasinormal frequencies for massless perturbations with spin 
propagating in purely accelerating spacetime. Using two different methods, we transfer the perturbation equations in-
to hypergeometric differential equations and obtain identical quasinormal frequencies. These purely imaginary spec-
tra are shown to be independent of the spin of the perturbation and match those of the acceleration modes identified
in  accelerating  black  holes  in  the  Minkowski  limit.  This  implies  that  the  acceleration  modes  originate  from  the
purely accelerating spacetime and that the presence of black holes would deform the spectra. Additionally, we com-
pute the quasinormal frequencies of scalar, electromagnetic, and gravitational perturbations in D-dimensional de Sit-
ter spacetime and compare them with previous findings to validate our method.
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I.  INTRODUCTION

The first detection of gravitational waves (GWs) from
the merger  of  two black holes  (BHs)  [1],  along with the
release  of  the  first  image of  the  supermassive  BH in  the
galaxy  M87  [2],  has  provided  strong  evidence  that  BHs
are real  celestial  objects  rather  than  just  theoretical  con-
cepts. When a BH is perturbed, the relaxation can be de-
scribed by  a  superposition  of  exponentially  damped  si-
nusoids termed quasinormal modes (QNMs) [3–5]. Thus,
during the  ringdown stage  of  the  coalescence  of  two as-
trophysical BHs,  the  GWs  can  be  expressed  as  a  super-
posed QNM of the remnant BH. According to the no-hair
theorem, the frequencies and decay rates of these QNMs
are uniquely determined by the final BH's physical para-
meters [6]. The measurement of the QNMs from GW ob-
servations  facilitates  the  test  of  general  relativity  and
provides  insights  into  the  nature  of  remnants  formed  in
compact  binary  mergers.  This  program  is  known  as  BH
spectroscopy [7].  Moreover,  the QNMs can also be used
to  determine  the  linear  stability  of  a  perturbed  BH.  For
example,  an  analysis  of  the  QNMs  of  massless  scalar
fields  in  the  exterior  of  Reissner-Nordström-de  Sitter
(RNdS) BHs can be used to determine whether the strong
cosmic censorship conjecture is violated [8].

Recently,  the  QNMs  of  the  C-metric  have  attracted
increasing  attention  in  various  physical  contexts  [9–17].
The C-metric describes an axially symmetric and station-

ary spacetime containing two causally separated BHs that
accelerate away from each other in opposite spatial direc-
tions  under  the  action  of  conical  singularities  along  the
axis  [18–20]. This  model  may  be  useful  for  understand-
ing the behavior of moving and accelerating BHs, such as
those  resulting  from  a  BH  superkick  or  a  cosmic  string
connecting two BHs [21, 22]. These studies on the QNMs
of accelerating BHs rely on the C-metric's Petrov type D
classification, which  allows  the  separation  of  perturba-
tion  equations  for  various  test  fields  [23–26].  Notably,
QNMs  of  charged  and  rotating  accelerating  BHs  can  be
classified  into  three  families:  photon  sphere,  near-ex-
treme, and acceleration modes. Photon sphere modes cor-
respond to  peaks  in  the  potential  barrier,  while  near  ex-
treme  modes  relate  to  the  BHs'  near-horizon  geometry.
Acceleration modes depend solely on the acceleration ho-
rizon and are absent in non-accelerating spacetimes. This
new mode types were first  identified for scalar perturba-
tions  of  charged  accelerating  BHs  [10].  Later,  a  similar
phenomenon was also verified for scalar [14] and gravita-
tional perturbations [17] of rotating accelerating BHs.

In this study, we investigate the origin of the accelera-
tion modes. Given that these modes have a weak depend-
ence on the  BH's  charge  or  rotational  parameter  and de-
pend solely on the surface gravity in the Minkowski limit
rather than the BH's surface gravity, we speculate that the
acceleration modes  may originate  from purely  accelerat-
ing spacetime without a BH. Notably, pure de Sitter (dS)
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spacetime also exhibit dS modes [27–29], which become
deformed when BHs appear [8, 30–32]. Given the signi-
ficant  similarity  between  accelerating  spacetime,  which
features an accelerating horizon, and dS spacetime, which
has  a  cosmological  horizon,  it  is  reasonable  to  associate
acceleration modes with their counterpart in pure acceler-
ating spacetime.

s ≤ 2
In this study, we calculate the QNMs of massless per-

turbations  with  spin  in purely  accelerating  space-
time. By taking the Minkowski limit of the master equa-
tions describing perturbations of accelerating BHs − spe-
cifically  by  setting  the  mass,  electric  charge,  or  spin  to
zero − we can derive the equations that govern perturba-
tions  in  the  empty  accelerating  spacetime.  Two methods
are  employed  to  solve  the  perturbation  equations.  The
first method follows the approach in [27], where a direct
coordinate  transformation  shows  that  the  perturbation
equations are expressed as a hypergeometric type. QNMs
can  then  be  easily  obtained  by  imposing  appropriate
boundary conditions. This method works straightforward
for  scalar  perturbations  [10]. The  second  approach  ana-
lyzes the properties of the Minkowski limit of the Teukol-
sky-like equations  governing  various  massless  field  per-
turbations  of  spinning  accelerating  BHs  [24]. This  ap-
proach  involves  identifying  all  singular  points  and  de-
monstrating  that  the  equations  are  of  the  Fuchsian  type,
with all singular points being regular. If exactly three reg-
ular  singular  points  are  present,  the  equations  can  be
transformed into  the  standard  form  of  the  hypergeomet-
ric  differential  equations  (HDEs)  [33, 34].  By  imposing
appropriate  boundary  conditions,  we  can  derive  the
QNMs. To  validate  this  approach,  we  apply  it  to  calcu-
late dS modes and compare our results with those in [27].
We confirm that our results for dS modes of scalar, elec-
tromagnetic, and  gravitational  perturbations  are  consist-
ent with those of previous findings. An advantage of this
method  is  that  it  does  not  require  complex  coordinate
transformations to convert the equations into HDEs.

s ≤ 2

c =G = 1 (−,+,+,+)

The  remainder  of  this  paper  is  organized  as  follows:
In  Sec.  II,  we  explicitely  show  the  derivation  of  the
QNMs of massless scalar perturbations in purely acceler-
ating  spacetime  by  solving  the  Minkowski  limit  of  the
Klein-Gordon (KG) equation in the background of the C-
metric,  employing  the  two  methods  described  above.  In
Sec. III,  we  calculate  the  QNMs  of  massless  perturba-
tions  with  spin  by  solving  the  Minkowski  limit  of
the  Teukolsky-like  equations  in  the  spinning  C-metric
spacetime.  In  Sec.  IV,  we  discuss  the  application  of  the
new method to calculate dS modes of scalar, electromag-
netic, and gravitational perturbations in D dimensional dS
spacetime and compare the results with those in [27]. Fi-
nally, in  Sec.  V,  we  summarize  the  study,  and  in  Ap-
pendix A, we introduce the basics of Fuchsian equations
relevant to this study. By convention, we employ geomet-
ric units  and the metric signature . 

II.  SCALAR FIELD

Initially, we  examine  the  QNMs  of  scalar  perturba-
tions  in  purely  accelerating  spacetime.  We  consider  a
massless neutral  scalar  filed  minimally  coupled  to  grav-
ity living in the spacetime of a C-metric. The evolution of
the scalar perturbations is described by the KG equation,
which has been shown to be separable through conformal
transformation, as demonstrated in [10]. The C-metric de-
scribing a single BH can be expressed in terms of spher-
ical-type coordinates as given in [20]: 

ds2 =
1

(1−Ar cosθ)2

Å
− f (r)dt2+

dr2

f (r)

+
r2dθ2

P(θ)
+P(θ)r2 sin2 θdφ2

ã
, (1)

where 

f (r) =
Å

1− 2M
r

ã(
1−A2r2

)
, (2)

 

P(θ) = 1−2AM cosθ. (3)

A
A→ 0

M = 0
r < 1/A

A

r = 0

Here  is the parameter describing acceleration, while M
is the mass of the BH. As , this metric asymptotes
to Schwarzschild metric. As explained in [35], taking the
Minkowski  limit ,  the  metric  (1)  in  the  region

 can be  transformed  into  the  uniformly  acceler-
ated metric (also known as Rindler metric) through an ap-
propriate coordinate transformation.  Notably,  is inter-
preted as the acceleration of a test  particle located at  the
origin .

g̃µν→Ω2gµν Φ̃→Ω2Φ Ω = 1−Ar cosθ
∇µ∇µΦ = 0

Ref. [10] found that under the conformal transforma-
tion , ,  where ,  the
KG equation  becomes  separable  by  choosing
the ansatz 

Φ̃ =
∑

lm

e−iωlmteimφ ϕlm(r)
r

χlm(θ), (4)

ωlm

lm

θ = 0 θ = π

θ = π

2πC C = 1/P(π)

m = m0P(π)
m0

eim(φ+2πC) = eimφ

where  is  the  quasinormal  frequency,  and m is  the
magnetic (azimuthal) quantum number. Subsequently, we
omit the subscript  for simplicity. As seen from metric
(1),  conical  singularities  appear  along  the  axis  at  both

 and .  To  eliminate  the  conical  singularity  at
, the period of the azimuthal coordinate φ can be ap-

propriately  specified  as ,  where . Con-
sequently, the magnetic quantum number m would not be
an  integer;  instead, m must  be  of  the  form 
with  being  an  integer  [24],  given  that  one  has

.
This leads to the following set of separated equations: 
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d2ϕ(r)
dr2
∗
+
(
ω2−Vr

)
ϕ(r) = 0, (5)

 

d2χ(θ)
dz2

−
(
m2−Vθ

)
χ(θ) = 0, (6)

where 

dr∗ =
dr
f (r)

, dz =
dθ

P(θ) sinθ
, (7)

and 

Vr = f (r)
Å
λ

r2
− f (r)

3r2
+

f ′(r)
3r
− f ′′(r)

6

ã
, (8)

 

Vθ = P(θ)

Ç
λsin2 θ− P(θ) sin2 θ

3

+
sinθcosθP′(θ)

2
+

sin2 θP”(θ)
6

å
. (9)

r∗
M→ 0

Here  is  the  tortoise  coordinate,  and λ is  a  separation
constant.  Taking the  Minkowski  limit , the  separ-
ated wave Eqs. (5) and (6) governing the scalar perturba-
tions in purely accelerating spacetime are reduced to 

(
1−A2r2

) d
dr

ï(
1−A2r2

) dϕ(r)
dr

ò
+

ï
ω2−

(
1−A2r2

)Å λ
r2
− 1

3r2

ãò
ϕ(r) = 0, (10)

and 

sinθ
d
dθ

Å
sinθ

dχ(θ)
dθ

ã
+

ï
(λ− 1

3
)sin2 θ−m2

ò
χ(θ) = 0. (11)

m0

Ylm

Notably, no difference is observed between m and  in
the Minkowski  limit.  The angular  Eq.  (11)  has  the same
form as  the  equation of  the  Laplacian spherical  harmon-
ics  in  spherical  coordinates.  Therefore,  we can write
the angular equation as 

sinθ
d
dθ

Å
sinθ

dχ(θ)
dθ

ã
+
[
ℓ(ℓ+1)sin2 θ−m2

]
χ(θ) = 0, (12)

from which the separation constant λ is related to the ei-
genvalue of the spherical Laplacian operator by 

λ = ℓ(ℓ+1)+
1
3
. (13)

 

A.    Direct conversion to HDEs
We follow the steps in [27] to show that the radial Eq.

(10)  can  be  transformed  into  the  HDE  by  a  change  of
variable.  Initially,  by  introducing  two  dimensionless
quantities 

x = rA, and ω =A ω̃, (14)

Eq. (10) can be written as 

(
x2−1

) d2ϕ

dx2
+2x

dϕ
dx
+

Å
ω̃2

x2−1
+
ℓ(ℓ+1)

x2

ã
ϕ = 0. (15)

y = x2Then,  by  changing  the  variable ,  the  equation  is
transformed into 

4y(y−1)
d2ϕ

dy2
+ (6y−2)

dϕ
dy
+

Å
ℓ(ℓ+1)

y
+

ω̃2

y−1

ã
ϕ = 0. (16)

Furthermore, we make the ansatz 

ϕ = yA(1− y)Bϕ̃, (17)

where the parameters A and B are chosen as 

A =


ℓ+1

2
,

− ℓ
2
,

B = ± iω̃
2
, (18)

ϕ̃to  find  that  the  function  must  be  the  solution  of  the
HDE 

y(1− y)
d2ϕ̃

dy2
+
[
γ− (α+β+1)y

] dϕ̃
dy
−αβϕ̃ = 0, (19)

with the parameters α, β, and γ equal to 

α = A+B,

β = A+B+
1
2
,

γ = 2A+
1
2
. (20)

y = 0 1 ∞

x = 0 1 −1 ∞

One can verify that Eq. (19) indeed has three regular
singular points , ,  and ,  which correspond to the
standard form of the HDE. By contrast, Eq. (15) has three
regular singular points , , and , while  is an or-
dinary point.  The structure of  the regular  singular  points
changes with the variable transformation from x to y. The
subsequent transformation (17) is employed to obtain the
standard  form  of  the  HDE.  There  are  several  possible
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A =
ℓ+1

2
B =

iω̃
2

combinations for the values of A and B, and therefore of
α, β,  and γ. Thus,  the  solutions  of  Eq.  (A12)  can  be  ex-
pressed in several equivalent forms. In the following, we
study in detail the case  and .

r = 0

Similar  to  dS QNMs,  the  QNMs are  solutions  to  the
equations  of  motion  that  satisfy  the  following  physical
boundary conditions: (i) the field is regular at the origin,
and (ii) the field is purely outgoing near the acceleration
horizon.  Depending  on  the  parameter  values,  the  HDEs
have different solutions [27, 36]. The regular behavior at

 selects the solution of Eq. (15) to be 

ϕ = y
ℓ+1

2 (1− y)
iω̃
2 2F1(α,β;γ;y), (21)

2F1(α,β;γ;y)
y→ 1

γ−α−β = −iω̃

1− y

where  denotes the hypergeometric function.
To examine the behavior of the solution at  (the ac-
celeration  horizon),  we  utilize  the  linear  transformation
formulas  for  the  hypergeometric  functions  [36].  If  the
quantity  is not  an  integer,  then  the  rela-
tion between  two  hypergeometric  functions  with  vari-
ables y and  is 

ϕ =
Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β)

y
ℓ+1

2 (1− y)
iω̃
2

× 2F1(α,β;α+β−γ+1;1− y)

+
Γ(γ)Γ(α+β−γ)
Γ(α)Γ(β)

y
ℓ+1

2 (1− y)−
iω̃
2

× 2F1(γ−α,γ−β;γ−α−β+1;1− y), (22)

Γ(y)where  denotes  the  Gamma function.  We  can  verify
that the first term on the right hand side of Eq. (22) rep-
resents an  ingoing  wave,  while  the  second  term  repres-
ents an  outgoing  wave.  To  satisfy  the  boundary  condi-
tions of QNMs, the first  term must be discarded.  This is
achieved by imposing1)
 

γ−α = −n, or γ−β = −n, n = 0,1,2, · · · , (23)

Γ(γ−α) Γ(γ−β)
γ−α−β = −iω̃

γ−α = (ℓ+2− iω̃)/2 γ−β = (ℓ+1− iω̃)/2
(ℓ+2)/2 (ℓ+1)/2
−iω̃/2

γ−α−b

such that  or  becomes infinity. However,
from  Eq.  (20),  if  is  not  an  integer,  then
neither  nor  can
be  an  integer.  Given  that  and  are in-
tegers or half-integers, and  is neither an integer nor
a half-integer,  their sum cannot be an integer.  Hence the
condition (23) cannot be satisfied if  is not an in-
teger.

γ−α−β
γ−α−β = −n1 n1 = 1,2,3, ...

Instead,  we  must  assume  is  an  integer.  If
, where  2), we can express the

radial function (21) as 

ϕ = y
ℓ+1

2 (1− y)
iω̃
2

ß
Γ (α+β−n1)Γ (n1)
Γ(α)Γ(β)

(1− y)−n1

×
n1−1∑
s=0

(α−n1)s (β−n1)s

s! (1−n1)s
(1− y)s

− (−1)n1Γ (α+β−n1)
Γ (α−n1)Γ (β−n1)

×
∞∑

s=0

(α)s(β)s

s!(n+ s)!
(1− y)s[ln(1− y)−ψ(s+1)

−ψ(s+n+1)+ψ(α+ s)+ψ(β+ s)]}, (24)

ψ(y) = dΓ(y)/dywhere . Notably, the first term in the curly
brackets  represents  an  outgoing  wave,  while  the  second
term  represents  an  ingoing  wave.  Thus,  to  satisfy  the
boundary conditions of QNMs, we must impose the con-
dition 

α−n1 = −n, or β−n1 = −n, n = 0,1,2, · · · , (25)

γ−α−β = −n1

to retain the outgoing wave. By combining this condition
with , we can find the accelerating QN fre-
quencies are equal to 

iω̃ = ℓ+1+2n, iω̃ = ℓ+2+2n, (26)

which can also be expressed as 

iω̃ = ℓ+ ñ, ñ = 1,2,3, · · · . (27)

The result shows that the previous assumption is self-con-
sistent. We can verify that our results match those of the
acceleration  modes  for  a  scalar  field  propagating  in  the
spacetime  of  the  charged  [10]  and  spinning  C-metrics
[14]  when  taking  the  Minkowski  limit.  Therefore,  we
conclude that the acceleration modes found for accelerat-
ing BHs originate from the empty accelerating spacetime
and become deformed when BHs are present in the space-
time. 

B.    Fuchsian equations
In this subsection, we derive the QNMs of the scalar

field in the empty accelerating spacetime by using the es-
tablished connection  between  HDEs  and  Fuchsian  equa-
tions. A linear differential equation where every singular
point, including the point at infinity, is a regular singular-
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ity is called a Fuchsian equation or an equation of Fuch-
sian  type.  Particularly,  a  Fuchsian  equation  with  three
regular singular points reduces to the HDE. Appendix A
provides a  brief  review  of  the  basics  of  Fuchsian  equa-
tions  relevant  to  this  study,  referring  to  Refs.  [33]  and
[34].  Understanding  Fuchsian  equations  enables  us  to
transform an equation with three arbitrary regular  singu-
lar points into the standard form of the HDE in a system-
atic approach.

Initially,  the  radial  Eq.  (15)  can  be  expressed  in  the
form of Eq. (A1) as follows: 

p(x) =
2x

x2−1
, (28)

 

q(x) =
ω̃2x2+ ℓ(ℓ+1)(x2−1)

(x2−1)2x2
. (29)

a1 = 0 a2 = 1 a3 = −1
p(x) q(x)

We can readily identify the three regular singular points,
which  are  denoted  by , ,  and .  Using
Eqs.  (A2)  and (A3),  by  expanding  and  around
these  singular  points,  we  can  determine  the  following
coefficients: 

A1 = 0, B1 = −ℓ(ℓ+1), C1 = 0, (30)

 

A2 = 1, B2 =
ω̃2

4
, C2 =

−ω̃2+2ℓ(ℓ+1)
4

, (31)

 

A3 = 1, B3 =
ω̃2

4
, C3 =

ω̃2−2ℓ(ℓ+1)
4

. (32)

x =∞ Ar

Br Cr r = 1,2,3
Given that  is an ordinary point, the parameters ,

,  and ,  with ,  should  satisfy  the  constraint
(A8). We can verify from these expressions that the solu-
tion satisfies the required boundary conditions.

Subsequently, from the indicial Eq. (A5), we can de-
termine the  characteristic  exponents  of  each  regular  sin-
gular point, given by 

α1 = ℓ+1, α2 = −ℓ,

β1 =
iω̃
2
, β2 = −

iω̃
2
,

γ1 =
iω̃
2
, γ2 = −

iω̃
2
. (33)

One can verify that these results satisfy the constraint giv-
en by Eq. (A10). This is achieved through the transforma-
tion described in Eq. (A11), that is 

y =
2x

x+1
, ϕ =

( x
x+1

)ℓ+1
Å

x−1
x+1

ã iω̃
2

g(y), (34)

where  the  radial  Eq.  (15)  can  be  transoformed  into  the
standard  form  of  HDE,  Eq.  (A12),  with  the  parameters
given by Eq. (A13) 

α = ℓ+1+ iω̃, β = ℓ+1, γ = 2ℓ+2. (35)

r = 0
As discussed in the previous subsection, one of the solu-
tions of Eq. (15) that is regular at  is given by 

ϕ =
( y

2

)ℓ+1
(y−1)

iω̃
2 2F1(α,β;γ;y). (36)

1− y

γ−α−β = −iω̃

As previously described,  we need to change the variable
of hypergeometric function from y to  to analyze the
behavior of the solution at the acceleration horizon. If the
quantity  is not an integer, then we have 

ϕ =
Γ(γ)Γ(γ−α−β)
Γ(γ−a)Γ(γ−β)

( y
2

)ℓ+1
(y−1)

iω̃
2

× 2F1(α,β;α+β−γ+1;1− y)

+
Γ(γ)Γ(α+β− c)
Γ(α)Γ(β)

( y
2

)ℓ+1
(1− y)−

iω̃
2 (−1)

iω̃
2

× 2F1(γ−α,γ−β;γ−α−β+1;1− y). (37)

The second term on the right hand side of Eq. (37) repres-
ents an outgoing wave, which satisfies the boundary con-
dition at the acceleration horizon. To achieve this, we im-
pose 

γ−α = −n, or γ−β = −n, n = 0,1,2, · · · . (38)

γ−α−β
γ−α−β = −n1 n1 = 1,2,3, ...

One can verify that this condition cannot be satisfied, in-
dicating that we should instead assume that  is an
integer.  If ,  where , the  solu-
tion can be expressed as 

ϕ =
( y

2

)ℓ+1
(y−1)

iω̃
2

ß
Γ (α+β−n1)Γ (n1)
Γ(α)Γ(β)

(1− y)−n1

×
n1−1∑
s=0

(α−n1)s (β−n1)s

s! (1−n1)s
(1− y)s− (−1)n1Γ (α+β−n1)

Γ (α−n1)Γ (β−n1)

×
∞∑

s=0

(α)s(β)s

s!(n+ s)!
(1− y)s[ln(1− y)−ψ(s+1)

−ψ(s+n+1)+ψ(α+ s)+ψ(β+ s)]}.
(39)

Notably, the first term in the curly brackets represents an
outgoing wave, while the second term represents an ingo-
ing  wave.  Thus,  to  satisfy  the  boundary  conditions  of
QNMs, we must impose 
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α−n1 = −n, or β−n1 = −n, n = 0,1,2, · · · . (40)

γ−α−β = −n1Combining this condition with , the accel-
erating QN frequencies are equal to 

iω̃ = ℓ+n+1, (41)

which is equivalent to Eq. (27). Thus, we derive consist-
ent results from two distinct methods, although the radial
Eqs. (21) and (36) differ in these cases. 

III.  MASSLESS PERTURBATIONS OF ANY SPIN

In  this  section,  we  calculate  the  QNMs  of  massless
perturbations  of  any  spin  in  the  accelerating  spacetime.
The master equation describing massless perturbations of
the spinning C-metric due to fields of any spin has been
derived  in  [24]  by  following  the  approach  of  Teukolsky
[37]  within  the  context  of  the  Newman-Penrose formal-
ism [38].  Notably,  similar  to  the  Teukolsky equation for
the Kerr BH, the master equation can be separated into its
radial and angular parts because the spinning C-metric is
of Petrov type D. By taking the Minkowski limit, we can
obtain  the  equations  capturing  the  dynamics  of  scalar,
Dirac, electromagnetic, and gravitational perturbations in
the empty accelerating spacetime.

(t,r, θ,ϕ)
The metric of spinning C-metric expressed in Boyer-

Lindquist-type coordinates  is given by [39] 

ds2 =
1
Ω2

ß
− 1
Σ

(
Q−a2Psin2 θ

)
dt2

+
2asin2 θ

Σ

[
Q−P

(
r2+a2

)]
dtdϕ

+
sin2 θ

Σ

î
P
(
r2+a2

)2−a2Qsin2 θ
ó

dϕ2

+
Σ

Q
dr2+

Σ

P
dθ2
™
, (42)

where a is the rotation parameter, and the functions Ω, Σ,
P, and Q are defined by 

Ω = 1−Ar cosθ, Σ = r2+a2 cos2 θ,

P = 1−2AM cosθ+a2A2 cos2 θ,

Q = ∆
(
1−A2r2

)
, ∆ = r2−2Mr+a2. (43)

The master  equation describing the dynamics of  a  mass-
less field with spin weight s in this spacetime is given by 

[
(∇µ− sΓµ)

(
∇µ− sΓµ

)
+4s2Ψ2

]
ψ = 0,

s = 0,±1/2,±1,±3/2,±2,
(44)

Ψ2 = −(1+ iaA)MΩ3/(r− iacosθ)3where  is the  nonvan-
ishing Weyl scalar in the spinning C-metric background,
and a "connection vector" is introduced by 

Γt =
Ω2

Σ

ß
1

Q2
[M(A2r4+a2)+ r(1+a2A2)(∆−Mr)]

+ i
a
P

[(1+a2A2)cosθ−AM(1+ cos2 θ)]
™
,

Γr = − Ω
Σ

Å
1
2
Ω∂rQ+2AcosθQ

ã
,

Γθ =
2AΩPr sinθ

Σ
,

Γϕ =− Ω
2

Σ

ï
a∂rQ
2Q
+ i

cosθ(2P−1)
Psin2 θ

+ i
AM(cos2 θ−A2a2 cosθ+1)

Psin2 θ

ò
. (45)

Ref.  [24]  demonstrated  that  the  master  Eq.  (44)  admits
separable solutions of the form 

ψ(t,r, θ,ϕ) =
∑

lm

Ω(1+2s)e−iωlmteimϕRlm(r)S lm(θ), (46)

ωlm

lm
where  is the wave frequency, and m is the azimuthal
number.  Additionally,  we omit  the  subscript  for sim-
plicity in the following discussions. The radial equation is
then expressed as 

Q−s d
dr

Å
Qs+1 dR(r)

dr

ã
+V(rad)R(r) = 0, (47)

with 

V(rad) = −2rA2(r−M)(1+ s)(1+2s)

+
((r2+a2)ω−am)2

Q
−2is
ï
− am∂rQ

2Q

+
ωM(r2−a2)

∆
− ωrσ0

1−A2r2

ò
+2K, (48)

σ0 = (1+a2A2)where K is  the  separation  constant,  and .
By introducing 

H(r) = (r2+a2)1/2Qs/2, (49)

r∗and the "tortoise" coordinate , where 

dr
dr∗
=

Q
r2+a2

, (50)

the  radial  equation  can  be  transformed  into  the  one-di-
mensional Schrödinger-like equation 
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d2

dr2
∗

H(r)+ ṼH(r) = 0, (51)

with the potential 

Ṽ =

ñ(
r2+a2

)
ω−am

r2+a2
− iG

ô2

− dG
dr∗

− 2Q
(r2+a2)2

[
rA2(r−M)(1+ s)(1+2s)

−K −2iωrs−
ir(

(
r2+a2

)
ω−am)

(r2+a2)
], (52)

where 

G =
s
[
(r−M)

(
1− r2A2

)
− rA2∆

]
(r2+a2)

+
rQ

(r2+a2)2 . (53)

Moreover, the angular equation is given by 

1
sinθ

d
dθ

Å
sinθ

dY(θ)
dθ

ã
+VR

(ang)(θ)Y(θ) = 0, (54)

with 

V(ang)(θ) =
1−2K + s(2−σ0)

P

+
1
P2

ß
− (wcosθ−σ0s)2

sin2 θ

− (z+w−4sAM)2+ (zcosθ− sσ0)2

− (AM cosθ−1)2+1−σ0+A2M2

+4s(σ0−1)cosθ(2sAM−w)
™
, (55)

Y(θ) =
√

PS (θ) z = aω+ sMA w = −m+2sMAwhere , , and .
M = a = 0Taking  the  Minkowski  limit, ,  the  angular

equation reduces to 

1
sinθ

d
dθ

Å
sinθ

dY(θ)
dθ

ã
+

ï
s−2K − (scosθ+m)2

sin2 θ

ò
Y(θ) = 0.

(56)

sYℓm
Comparing  this  equation  to  that  of  the  spin-weighted
spherical harmonics  [40] 

1
sinθ

∂

∂θ

Å
sinθ

∂

∂θ
sYℓm

ã
+

ï
ℓ(ℓ+1)− s2− (m+ scosθ)2

sin2 θ

ò
sYℓm = 0, (57)

we can immediately find that 

2K = s+ s2− ℓ(ℓ+1). (58)

Thus,  the  separation  constant  of  the  angular  equation  in
the  Minkowski  limit  is  known,  and  the  QN  frequencies
can be obtained solely by considering the radial equation.
In this limit, the radial equation (51) simplifies to 

(
1−A2r2

)2 d2H(r)
dr2

−
(
1−A2r2

)
2rA2 dH(r)

dr

+

Å
ω2+

2isω
r
− ℓ(ℓ+1)

r2
+ ℓ(ℓ+1)A2− s2A2

ã
H(r) = 0,

(59)

which  in  terms  of  the  dimensionless  quantities  (15)  can
be expressed in the form of Eq. (A1) 

d2H
dx2
+

2x
x2−1

dH
dx
+

Å
− ℓ(ℓ+1)

(x2−1)2 x2

+
2isω̃

x (x2−1)2 +
ω̃2− s2+ ℓ(ℓ+1)

(x2−1)2

ã
H = 0. (60)

 

A.    Fuchsian equation

0 1
−1

In the following analysis,  we show that  Eq. (60) is  a
Fuchsian equation with three regular singular points , ,
and , which can be readily transformed into the stand-
ard form of the HDE. From Eq. (A1), we know 

p(x) =
2x

x2−1
, (61)

 

q(x) =− ℓ(ℓ+1)
(x2−1)2 x2

+
2isω̃

x (x2−1)2

+
ω̃2− s2+ ℓ(ℓ+1)

(x2−1)2 . (62)

0 1 −1

p(x)
q(x)

We can verify  that  the  three  points , ,  and  are  the
regular singular points of the equation, and the infinity is
an ordinary point.  Furthermore,  we can expand  and

 around  each  regular  singular  point  as  Eq.  (A2)  and
Eq.  (A3),  respectively,  with  the  expansion  coefficients
given by 

A1 = 0, B1 = −ℓ(ℓ+1), C1 = 2isω̃, (63)
 

A2 = 1,

B2 = −
1
4

(s− iω̃)2,

C2 =
1
4
(

s2− ω̃2−4isω̃+2ℓ(ℓ+1)
)
, (64)
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and 

A3 = 1,

B3 = −
1
4

(s+ iω̃)2,

C3 =
1
4
(
−s2+ ω̃2−4isω̃−2ℓ(ℓ+1)

)
. (65)

a1 = 0
a2 = 1 a3 = −1
The  three  regular  singular  points  are  labeled  as ,

,  and .  Subsequently,  from  the  indicial  Eq.
(A5),  we  can  determine  the  characteristic  exponents  of
each regular singular point, which are given by 

α1 = ℓ+1, α2 = −ℓ,

β1 =
1
2

(−s+ iω̃), β2 =
1
2

(s− iω̃) ,

γ1 =
1
2

(s+ iω̃), γ2 =
1
2

(−s− iω̃). (66)

Applying the transformation given in Eq. (A11), which is
expressed as 

y =
2x

x+1
,

H =
( x

x+1

)ℓ+1
Å

x−1
x+1

ã 1
2 (−s+iω̃)

g(y), (67)

the  radial  Eq.  (60)  can  be  transformed  into  the  standard
form  of  HDE  Eq.  (A12),  with  the  parameters  given  by
Eq. (A13): 

α = ℓ+1+ iω̃,

β = ℓ+1− s,

γ = 2ℓ+2. (68)

y = 1

1− y
γ−α−β

The  subsequent  analysis  is  parallel  to  the  scalar  field
case; therefore, we present only the main steps. Imposing
regularity at  the  origin  of  the  accelerating  spacetime  se-
lects the hypergeometric function as the appropriate solu-
tion to  the  HDE.  To  examine  the  behavior  of  this  solu-
tion at the acceleration horizon, namely, , we need to
change the variable in the hypergeometric  function from
y to .  Depending  on  the  values  of  the  parameter

,  the  resulting  expression  can  have  different
forms, corresponding to either Eq. (37) or (39). To satis-
fy the  boundary  condition  that  the  field  is  purely  outgo-
ing  near  the  acceleration  horizon,  condition  (25)  must
also be imposed, leading to 

iω̃ = n+ ℓ+1. (69)

s = −2

We obtain the same QN frequency as that in the previous
section. Notably, the spectra are purely imaginary and in-
dependent of the spin of the perturbations. Moreover, the
result  for  matches  that  of  the  acceleration  modes
of  gravitational  perturbations  in  the  spinning  C-metric
[17] after taking the Minkowski limit. 

B.    Direct conversion

y = x2

Similar to the analysis of the scalar field in the previ-
ous section, the radial equation (60) can be converted in-
to  the  standard  form of  the  HDE through an appropriate
transformation; however,  this  process  is  more  complic-
ated than the case of the scalar field. A direct approach is
to make the change of variable , which leads to 

4y(y−1)
d2H
dy2
+ (6y−2)

dH
dy
+

Å
−ℓ(ℓ+1)

y

+
2isω̃

√
y · (y−1)

+
ω̃2− s2+ ℓ(ℓ+1)

y−1

å
H = 0. (70)

s = 0
y = x2

(0,1,−1) (0,1,∞)

s , 0
√

y
y = 0

In  the  case  of  the  scalar  fields ,  via  the  change  of
variable , the  regular  singular  points  of  the  equa-
tion  change  from  to .  The  equation  can
then  be  converted  into  the  form  of  the  HDE.  However,
for ,  due  to  the  appearance  of  the  term  in  the
equation,  the  point  is  no  longer  a  regular  singular
point,  further  complicating  the  situation.  Nevertheless,
the similar  issue was encountered in dS spacetime and a
coordinate transformation was proposed [41]: 

z =
1− x
1+ x

, (71)

which may be useful in this study. Applying this change
of variable, the radial equation (60) becomes 

d2H(z)
dz2

+
1
z

dH(z)
dz

−
Ç(

s2− ω̃2
)

(z−1)2+2isω̃
(
z2−1

)
+4zℓ(ℓ+1)

4z2(z−1)2

å
×H(z) = 0. (72)

(0,1,−1)
Notably, the regular singular points for this equations are

, making it natural to transform the equation into
the  standard  form  of  the  HDE.  However,  with  the  new
coordinate z, the  positions  of  the  origin  of  the  accelerat-
ing spacetime  and  the  acceleration  horizon  are  inter-
changed, which  complicates  subsequent  analysis.  To ad-
dress this issue, we introduce 

y = 1− z, (73)
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y = 0
y = 1

such that the origin remains at  and the acceleration
is at . Thus, Eq. (73) becomes 

d2H
dy2
+

1
y−1

dH
dy

−
Ç(

s2− ω̃2
)

y2+2isω̃y(y−2)+4(1− y)ℓ(ℓ+1)
4y2(y−1)2

å
×H = 0. (74)

H(y)Consider the ansatz for , 

H(y) = yA(1− y)BH̃(y), (75)

where 

A =


ℓ+1,

−ℓ,
B =


1
2

(−s+ iω̃),

1
2

(s− iω̃),

(76)

H̃(y)we  get  that  the  function  must  be  a  solution  of  the
HDE 

y(1− y)
d2H̃
dy2
+
[
γ− (α+β+1)y

] dH̃
dy
−αβH̃ = 0, (77)

with the parameters given by 

α = A+B+
s+ iω̃

2
,

β = A+B− s+ iω̃
2

,

γ = 2A. (78)

A = ℓ+1 B =
1
2

(−s+ iω̃)

There  are  four  equivalent  choices  for A and B, and the

one  with  and  yields  exactly  the
same parameters as those of the HDE in Eq. (68). Given
that  the  two  HDEs  are  identical,  their  QNM  spectra  are
also expected to be identical. 

IV.  DE SITTER MODES

In this  section,  we  apply  the  transformation  tech-
niques of HDEs and Fuchsian equations with three regu-
lar singular points to calculate the dS modes, demonstrat-
ing the validity and convenience of this method. We con-
sider scalar,  electromagnetic,  and  gravitational  perturba-
tions  in D dimensional  dS  spacetime.  As  shown  below,
our results are identical with those presented in [27]. 

A.    Scalar field
For  simplicity,  we  consider  only  a  massless  scalar

field  minimally  coupled  to  gravity  living  in  the  pure  dS
spacetime. The QN frequencies are represented in the ra-
dial part of the master equation [42], which is given by 

x(1− x)
d2R
dx2
− 1

2
[(D+1)x− (D−1)]

dR
dx

+
1
4

Å
ω̃2

1− x
− ℓ(ℓ+D−3)

x

ã
R = 0. (79)

x = r2/L
ω̃ = ωL

a1 = 0
a2 = 1 ∞

p(x) q(x) a1

a2

In  this  and  in  the  subsequent  subsections,  and
, where L is the radius of the dS space and D is the

spacetime  dimension.  We  can  observe  that  Eq.  (79)  has
three regular singular points, which are labeled by ,

,  and .  By  rewriting  the  radian  equation  in  the
form of Eq. (A1), we can expand  and  around 
and  as  Eq.  (A2)  and  Eq.  (A3),  with  the  expansion
coefficients given by 

A1 =
D−1

2
,

B1 = −
ℓ(D+ ℓ−3)

4
,

C1 =
−(D−3)ℓ+ ω̃2− ℓ2

4
, (80)

and 

A2 = 1,

B2 =
ω̃2

4
,

C2 =
(D−3)ℓ− ω̃2+ ℓ2

4
. (81)

From Eqs.  (A5)  and  (A6),  which  are  identical,  we  de-
termine the  characteristic  exponents  at  each  regular  sin-
gular point, which are given by 

α1 =
ℓ

2
, α2 =

1
2

(3−D− ℓ),

β1 =
iω̃
2
, β2 = −

iω̃
2
,

γ1 = 0, γ2 =
D−1

2
. (82)

Moreover, through the transformation, Eq. (A11), the ra-
dian  equation  can  be  converted  into  the  standard  HDE
with  the  parameters  given  by  Eq.  (A13).  Comparison
with the scalar field analysis in dS spacetime [27] shows
that both the transformations connecting the radial  equa-
tion to the HDE and the resulting HDEs are identical (see
Eqs.  (46)–(48)  of  [27]).  This  clearly  implies  that  the
QNM spectra in both cases are identical. 
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B.    Electromagnetic field
For  electromagnetic  fields  moving  in  the D dimen-

sional  dS  spacetime,  the  separation  of  the  equations  of
motion  has  been  studied  in  [43].  Depending  on  the
choices of gauge for the electromagnetic field, two sets of
physical solutions to the field equations arise, referred to
as  physical  modes  I  and  II.  Correspondingly,  there  are
two sets of radial equations and QNM spectra [27].

The radial equation of physical mode I is given by 

d2R(I)

dx2
+

ï
D+1

2x
− 1

1− x

ò
dR(I)

dx

+
1
4

ï
ω̃2

x(1− x)2
− (ℓ−1)(ℓ+D−2)

x2(1− x)
− 3(D−2)

x(1− x)

ò
×R(I) = 0. (83)

a1 = 0 a2 = 1 ∞

p(x) q(x) a1 a2

Notably,  this  equation  also  has  three  regular  singular
points , ,  and . Consistent  with  the  previ-
ous approach, we can express this equation in the form of
Eq.  (A1)  and expand  and  around  and  as
Eqs. (A2) and (A3), with the expansion coefficients giv-
en by 

A1 =
D+1

2
,

B1 = −
1
4

(ℓ−1)(D+ ℓ−2),

C1 =
1
4
(
−D(ℓ+2)+ ω̃2− ℓ2+3ℓ+4

)
, (84)

and 

A2 = 1,

B2 =
ω̃2

4
,

C2 =
1
4
(
D(ℓ+2)− ω̃2+ ℓ2−3ℓ−4

)
. (85)

From indentical Eqs. (A5) and (A6), the characteristic ex-
ponents at each regular singular point are given by 

α1 =
ℓ−1

2
, α2 =

1
2

(−D− ℓ+2),

β1 =
iω̃
2
, β2 = −

iω̃
2
,

γ1 =
D−2

2
, γ2 =

D−2
2

. (86)

We compare these results with those in [27], demonstrat-
ing  that  both  the  transformations  connecting  the  radial
equation to the HDE and the resulting HDEs are identic-
al (see Eqs. (7)–(10) of [27]). This implies that the result-
ing QNM spectra are also identical.

The radial equation of physical mode II is given by 

d2R(II)

dx2
+

D(1− x)+ x−3
2(1− x)x

dR(II)

dx

+
1

4x(1− x)

ï
ω̃2

1− x
− (ℓ+1)(D+ ℓ−4)

x

ò
R(II) = 0. (87)

a1 = 0 a2 = 1 ∞

p(x) q(x)
a1 a2

Similar to physical  mode I,  this equation has three regu-
lar singular points , , and . Consistent with
the previous approach, we can express the equation in the
form of  Eq.  (A1)  and then expand  and  around

 and  as Eqs. (A2) and (A3), with the expansion coef-
ficients given by 

A1 =
D−3

2
,

B1 = −
1
4

(ℓ+1)(D+ ℓ−4),

C1 =
1
4
(
−D(ℓ+1)+ ω̃2− ℓ2+3ℓ+4

)
, (88)

and 

A2 = 1,

B2 =
ω̃2

4
,

C2 =
1
4
(
D(ℓ+1)− ω̃2+ ℓ2−3ℓ−4

)
. (89)

From indicial Eqs. (A5) and (A6), the characteristic expo-
nents at each regular singular point are given by 

α1 =
ℓ+1

2
, α2 =

1
2

(−D− ℓ+4),

β1 =
iω̃
2
, β2 = −

iω̃
2
,

γ1 = 0, γ2 =
D−3

2
. (90)

Similar  to  the  physical  mode  I,  both  the  transformations
connecting the radial equation to the HDE and the result-
ing HDEs are exactly the same as those in [27] (see Eqs.
(22)–(24)  therein).  This  implies  that  the  resulting  QNM
spectra would be identical. 

C.    Gravitational perturbations

(D−2)

In dimensions higher than four, the gravitational per-
turbations  of D dimensional  dS  spacetime  are  classified
into  three  types  based  on  their  tensorial  behavior  on  the

 sphere:  tensor,  vector,  and  scalar  types  [44].  By
contrast,  in  four  dimensions,  gravitational  perturbations
consist  of  only  the  tensor  type.  The  radial  equations  of
these  perturbations  in  this  background  can  be  uniformly
expressed as [45] 
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d2RG

dx2
+

1−3x
2x(1− x)

dRG

dx

+
1

4x(1− x)2

ï
ω̃2+ α̃(1− x)− β̃(β̃+1)(1− x)

x

ò
×RG = 0, (91)

α̃ β̃where  and  are introduced by 

α̃ =



(D−2)D
4

, tensor type,

(D−4)(D−2)
4

, vector type,

(D−6)(D−4)
6

, scalar type,

(92)

and 

β̃ =
2ℓ+D−4

2
. (93)

a1 = 0
a2 = 1 ∞

p(x) q(x) a1 a2

This  equation  has  three  regular  singular  points ,
,  and .  Consistent  with  previous  approaches,  we

can express the equation in the form of Eq. (A1) and then
expand  and  around  and  as Eqs. (A2) and
(A3), with the expansion coefficients given by 

A1 =
1
2
,

B1 = −
1
4
β̃(β̃+1),

C1 =
1
4
(
α̃− β̃2− β̃+ω2

)
, (94)

and 

A2 = 1,

B2 =
ω̃2

4
,

C2 = −
1
4
(
α̃− β̃2− β̃+ω2

)
. (95)

From indicial Eqs. (A5) and (A6), the characteristic expo-
nents at the three regular singular points are given by 

α1 =
1+ β̃

2
, α2 = −

β̃

2
,

β1 =
iω̃
2
, β2 = −

iω̃
2
,

γ1 =
1
4

Ä
1+
√

4α̃+1
ä
, γ2 =

1
4

Ä
1−
√

4α̃+1
ä
. (96)

Additionally, both the transformations connecting the ra-

dial equation to the HDE and the resulting HDEs are ex-
actly  the  same  as  those  in  [27]  (see  Eqs.  (34)–(36)
therein).  Therefore,  the  QNM spectra  in  these  two cases
would also be identical. 

V.  SUMMARY

s ≤ 2
This  study  investigated  the  QNMs  of  perturbations

with spin  in purely accelerating spacetime to exam-
ine the  origin  of  the  acceleration  modes  recently  dis-
covered for  scalar  and  gravitational  perturbations  of  ac-
celerating  BHs  [10, 14, 17].  The  perturbation  equations
were obtained by taking the Minkowski limit of the mas-
ter equations describing various types of perturbations of
accelerating  BHs.  We  employed  two  methods  to  obtain
the QNM spectra by solving the radial part of the perturb-
ation  equations.  The  first  method  involves  a  change  of
variable to convert the radial equation into the form of the
standard HDEs. This approach is effective for scalar per-
turbations,  such as  those describing dS mode in  pure  dS
spacetime  [27]. However,  for  other  types  of  perturba-
tions,  the  operation  becomes  more  complicated.  The
second  method  utilizes  the  simple  connection  between
Fuchsian  equations  with  three  regular  singular  points–of
which  the  radial  perturbation  equations  are  an  example–
and  HDEs.  Both  methods  were  shown  to  yield  identical
QNM spectra.

Notably, the resulting QNM spectra of the purely ac-
celerating  spacetime  are  imaginary  and  independent  of
the spin of the perturbations and match those of the accel-
eration  modes  of  accelerating  BHs  after  taking  the
Minkowski  limit.  This  correspondence  implies  that  the
acceleration modes  originate  from  the  purely  accelerat-
ing  spacetime  and  become  deformed  in  the  presence  of
BHs.  A  similar  situation  arises  in  the  case  of  dS  modes
[8, 30–32], which were first calculated in pure dS space-
time  and  then  identified  within  the  scalar  QNMs  of
Schwarzschild-dS BHs [30]. Additionally, we applied the
second method to  compute  the  QNMs of  scalar,  electro-
magnetic, and gravitational perturbations in D dimension-
al dS spacetime and obtained results identical to those re-
ported  in  [27],  ultimately  verifying  the  validity  of  this
method.

Given  that  acceleration  modes  are  closely  linked  to
the  acceleration  parameter  and  exhibit  robustness  to  BH
parameters,  investigating  their  observability  may  reveal
signatures of acceleration of BHs within GW signals, po-
tentially supporting the detection of moving or accelerat-
ing BHs. 
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APPENDIX A: SOME BASICS OF FUCHSIAN
EQUATIONS

Given  a  second-order  linear  ordinary  differential
equation 

f ′′(x)+ p(x) f ′(x)+q(x) f (x) = 0, (A1)

ar (r = 1,2, · · · ,n) ∞
ar

p(x)

where   and  are  regular  singular
points. Moreover, given that  is a regular singular point,
it must also be a first-order pole of . Therefore, we have 

p(x) =
n∑

r=1

Ar

x−ar
+φ(x), (A2)

Ar p(x) x = ar φ(x)
x→∞ φ(x)

x =∞
φ(x)

where  is the residue of  at , and  is ana-
lytical  in  complex  plane.  When ,  approaches
zero,  as  is the  regular  singular  point  of  the  equa-
tion. This implies that  can be set to zero.

q(x)Based on similar analysis,  can be expanded as 

q(x) =
n∑

r=1

ß
Br

(x−ar)2 +
Cr

x−ar

™
, (A3)

with 

n∑
r=1

Cr = 0. (A4)

ar ar ,∞

When  considering  the  series  solution  of  Eq.  (A1),  the
coefficient of the lowest power of x satisfies the indicial
equation.  The roots  of  this  equation determine the char-
acteristic exponents, which in turn specify the form of the
solution.  For  each  regular  singular  point  ( )  of
Eq. (A1), the corresponding two characteristic exponents
satisfy the following indicial equation: 

ρ2+ (Ar −1)ρ+Br = 0 (r = 1,2, · · · ,n). (A5)

x =∞Moreover, if the point at infinity  is a regular singu-
lar point, its characteristic exponents obey the equation 

ρ2+

Ç
1−

n∑
r=1

Ar

å
ρ+

n∑
r=1

(Br +arCr) = 0. (A6)

From these two equations, we can obtain a key constraint
in this case: 

∑
roots of all indicial equations = n−1. (A7)

n = 2
For  example,  for  the  HDE,  the  sum  of  all  characteristic
exponents is one, as .

x =∞
Ar Br Cr

However,  if  is  an  ordinary  point  rather  than  a
singular point of Eq. (A1), the parameters ,  and 
satisfy the following equations: 

n∑
r=1

Ar = 2,
n∑

r=1
Cr = 0,

n∑
r=1

(Br +arCr) = 0,
n∑

r=1

(
2arBr +a2

rCr
)
= 0.

(A8)

,∞ ∞
For Fuchsian equations with three regular singular points,
denoted by a, b, and c ( , thus  is an ordinary point),
the equations can expressed in the following form based
on the preceding relations: 

d2 f
dx2
+

ß
1−α1−α2

x−a
+

1−β1−β2

x−b
+

1−γ1−γ2

x− c

™
d f
dx

+

ß
α1α2(a−b)(a− c)

x−a
+
β1β2(b− c)(b−a)

x−b

+
γ1γ2(c−a)(c−b)

x− c

™
× f

(x−a)(x−b)(x− c)
= 0, (A9)

α1 α2 β1 β2 γ1 γ2where ( , ), ( , ), and ( , ) are the correspond-
ing characteristic exponents of the regular singular points
a, b, and c. From Eqs. (A5) and (A8), we find 

α1+α2+β1+β2+γ1+γ2 = 1. (A10)

Through the following transformation: 

y =
(b− c)(x−a)
(b−a)(x− c)

,

f =
( x−a

x− c

)α1
Å

x−b
x− c

ãβ1

g, (A11)

Eq.  (A9)  can  be  converted  into  the  standard  form  of
HDE, 

y(1− y)
d2g
dy2
+
[
γ− (α+β+1)y

] dg
dy
−αβg = 0, (A12)

whose  parameters  are  related  to  those  of  the  Fuchsian
equations, given by 

α = γ1+α1+β1, β = γ2+α1+β1, γ = 1+α1−α2. (A13)

The  detailed  derivation  of  these  equations  using
Riemann's P-functions can be found in [33].
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