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Abstract: We  analyze  the  recent  data  from  the  BESIII  collaboration  on  the  state  in  the  and
 decay channels. The quantum number and mass of the  state allow us to exploit the universal fea-

ture of the very near-threshold  scattering in the S wave. The analysis of  and data separately,
as  well  as  the  combined  analysis  of  these  data  together,  all  support  the  conclusion  that  is  an  extremely
weakly bound charm meson molecule.
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I.  INTRODUCTION
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The  meson  (quark  antiquark)  and  baryon  (three
quarks) constitute  the  traditional  configuration  of  a  had-
ron.  Whether  other  configurations  exist, e.g., the  multi-
quark state or hybrid state of multiquarks and gluons, re-
mains  an  interesting  question.  Since  the  discovery  of

 by  the  Belle  collaboration  in  2003  [1],  many
such  exotic  states have  been  detected  in  experi-
ments. Their structures are difficult to accommodate with
simple  quark  models  and  thus  arouse  great  interest  in
their inner structures in our community. Tremendous pro-
gress has been made in the past two decades (e.g., see re-
views  [2−6]).  It  is  now  mostly  regarded  as  a  tetraquark
state  or  molecule.  In  Ref.  [7], it  was  shown  that  the  in-
variant mass  spectrum data  are  not  sufficient  to  determ-
ine the inner structure of ; thus, its properties also
need to  be  analyzed  by  considering  various  decay  pat-
terns.  Recent  studies  have  considered  strong  decay
[8−10] and radiative decay [11, 12]. In 2023, BESIII pub-
lished their data on  and  in the region of

 [13]. The new data prompted us to reexamine the
existing analysis of .

X(3872)
JPC = 1++

3871.64±0.06
D0D̄∗0 mth =

The  quantum  number  of  is  known  to  be
 [14],  with J, P,  and C representing  the  spin,

parity,  and  charge  conjugation,  respectively.  Its  mass  is
 MeV  [14].  Its  extreme  proximity  to  the

 mass  threshold  ( 3871.69  MeV)  suffices  to
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√
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consider only the S-wave  scattering, where  ac-
tually  refers  to  the  combination  of 

.  We  will  adopt  the  universal  assumption  to
treat the low-energy  scattering, in which the scatter-
ing length  dominates  over  all  other  terms  in  the  expan-
sion of the amplitude [15−18]. In this way, we will exam-
ine  whether  the  simpler  method  used  in  Ref.  [17]  can
work for the new BESIII data on  [13]. In particu-
lar,  this  new  dataset  concerns  the  mass  distribution  of

 but  not  of ,  as  in  previous  analysis  [17].
This  constitutes  our  main  motivation  and  theoretical
framework. Note that the accidental nearness of the mass
values between  and  may invalidate the per-
turbative treatment of pions. However, the authors in [19]
demonstrated  that  the  much  weaker  (vertex com-
pared  to  the  one)  together  makes  the  perturbation
theory work.  In addition,  we include the effect  of the fi-
nite  width due to  the small  binding energy.  To con-
sider  the  inelastic  effect, e.g.,  the  scattering  between

 and ,  the  scattering  length  is  extended  to
be  complex-valued.  This  treatment  has  been  extensively
used and has also been verified to work successfully, e.g.,
in  processes  involving ,  where  the  annihilation  effect
is strong [20−22]. Then, the formalism of energy-depend-
ent  event  distribution can be established from the 
scattering amplitude with the scattering length as the only
free parameter. By fitting to the new BESIII data [13], we
can fix the parameter and deduce the relevant physical in-
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X(3872)
D0D̄0∗
formation behind it.  The interpretation of  as the

 bound  state  (or  as  the  charm  meson  molecule)  is
consistent with the new BESIII data.

J/ψπ+π− D0D̄0π0

The  remainder  of  this  paper  is  organized  as  follows.
We present the derivation of our formalism for the event
distribution of the  and  processes in Sec.
II. In  Sec.  III,  we  present  the  fit  results  and  our  discus-
sion,  where  both  the  separate  and  simultaneous  fits  are
performed. We close with a summary in Sec. IV. 

II.  FORMALISM: SCATTERING
AMPLITUDE AND DECAY RATE

D0D̄0∗
As mentioned  above,  we  consider  the  universal  fea-

ture of the near-threshold  scattering in the S wave.
In  nonrelativistic  quantum  mechanics,  the  amplitude  for
pure elastic scattering between two stable particles can be
written as 

f (E) =
1

−γ+ κ(E)
, (1)

γ = 1/a µ = 966.6
D∗0 D̄0

κ(E) =
√
−2µE− iϵ ϵ = 0+

D0D̄0∗

E < 0 κ(E) E > 0
κ(E) −ik k > 0

iϵ

where  is  the  inverse  scattering  length, 
MeV  is  the  reduced  mass  of  and ,  and

 with .  Here, E is  defined as  the
total energy of  relative to their mass threshold. For

,  is  a  real  and  positive  number.  For ,
takes the value  with . The correct choice of

the sign of  ensures this point,  and Eq. (1) agrees with
the common scattering length approximation. Eq. (1) ful-
fills the unitarity constraint for the single-channel system
provided that γ is real-valued: 

Im f (E) = | f (E)|2
√

2µE, E > 0, (2)

E < 0
f (E)

γ > 0
γ < 0

which  is  just  the  optical  theorem  up  to  some  kinematic
factors.  For  the  case  of , i.e.,  below  the  two-body
threshold,  one  will  encounter  a  pole  in ;  we  stress
that  a  bound  state  occurs  if  and a  virtual  state  oc-
curs  if .  The  former  is  found  in  the  first  Reimman
sheet, and the latter is found in the second sheet.

D0D̄0∗

J/ψπ+π−

γ = γre+ iγim

To  consider  the  inelastic  scattering  between 
and ,  the value of γ is  taken to be complex, i.e.,

. A similar treatment has been performed for
proton–antiproton  scattering  [20−22].  In  this  case,  the
imaginary part of the amplitude becomes 

Im f (E) = | f (E)|2(γim− Imκ(E)). (3)

γim

γim > 0

This  can  be  understood  as  the  unitarity  fulfilled  by  the
multichannel system. The imaginary part of γ, , is pro-
portional  to  the  inelastic  cross-section,  and  thus .
By a more explicit  derivation, we note the unitarity con-
dition 1) 

Im f (E) ≥
√

2µE| f (E)|2, E > 0, (4)

−Imκ(E) =
√

2µE E > 0
γim > 0 −Imκ(E)

Im f (E)
Epole = −γ2/(2µ) γ > 0

Im f (E)

X(3872)

where  for .  Compared  with  Eq.
(3),  one  naturally  obtains .  Term  is pro-
portional  to  the  elastic  scattering  cross-section;  cf.  Eq.
(2).  Notably,  term  also  includes  the  contribution
of the pole (or bound state) at  for ,
i.e.,  this  pole  contributes  a  delta  function  to .
Physically,  this  can  be  attributed  to  the  formation  of  the

 resonance.
X(3872) D0D̄∗0

D∗0

D∗0

D∗+

D∗0 Γ∗0 = (0.066±0.015)
κ(E) κ(E) =

√
−2µ(E+ iΓ∗0/2)− iϵ

γim→ 0 Γ∗0→ 0
D∗0

D0D̄0π0 D0D̄0γ D̄0D+π− D0D−π+

E > 2.2 MD∗0 −MD+ −Mπ− = −2.2

The  proximity  of  the  mass  and 
threshold  requires  the  inclusion  of  the  finite  width;
this  has  been stressed in  previous analyses  [7, 16]. Con-
sidering the isospin symmetry of strong coupling, the 
width can be predicted by the known  width.  Below,
we use the  width as  MeV. Vari-
able  will then be . In the
limits  of  and ,  we  return  to  the  simplest
case. Because we consider a width of , the ultimate fi-
nal states are  and  or  and 
if  MeV because  MeV.

f (E)We obtain scattering amplitude  as 

f (E) =
1

−(γre+ iγim)+
√
−2µ(E+ iΓ∗0/2)

. (5)

D0D̄∗0

f (E) Epole = −EX − iΓX/2

This  equation  should  be  accurate  within  1  MeV  of  the
 threshold (cf.  the  pion  exchange  scale  of  approx-

imately 10 MeV mentioned in the introduction). The pole
of  is  with 

EX =
γ2

re−γ2
im

2µ
,

ΓX =Γ∗0+
2γreγim

µ
. (6)

−γ/µ = −(γre+ iγim)/µ

EX ΓX

X(3872)
ΓX ≪ 2EX

ΓX/(2EX)

γre < 0 EX ΓX

The  residue  at  this  pole  is .
However, the definitions of the binding energy and width
may be problematic.  and  can be understood as the
binding energy and width only in the case of  as a
narrow resonance ( ),  whose line shape behaves
like a (nonrelativistic) Breit–Wigner shape. If  is
not small, this interpretation does not hold. Additionally,
for  the  virtual  state  case  ( ),  variables  and 

Xian-Wei Kang, Jin-Zhe Zhang, Xin-Heng Guo Chin. Phys. C 49, 073103 (2025)

S (E) = 1+2i f (E) S S † ≤ 1 a(q) f (E)
pp̄

γim = Imγ > 0

1) The S-matrix element is expressed by , and  leads to Eq. (4). The  in Ref. [20] plays the role of  here. For a practical calcula-
tion, e.g., the  potential in chiral effective field theory, the imaginary part of the scattering length in Refs. [20, 21] is negative for all, as it should be, which coincides
with here  (γ is the inverse scattering length).
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only specify a pole on the second Riemann sheet of com-
plex  energy E but have  no  other  precise  physical  inter-
pretation.

EX ΓX

f (E)

ΓX → 0
pp̄

ΓX → 0 Emax Γfwhm

Emax | f (E)|2

Variables  and  cannot  be  directly  measured  in
the experiment. They specify the pole position of  in
the complex E plane. In the first Riemann sheet, we refer
to the pole as  the bound state  in the sense of ,  as
has  also  been  done  for  scattering  [7].  In  the  second
sheet,  we  refer  to  it  as  the  virtual  state  in  the  sense  of

.  Instead,  the pair  of  variables  and  are
the  observables  in  an  experimental  measurement  of  the
line  shape.  The  peak position  of  can be  ob-
tained by 

2µEmax+γre

(
µ
»

E2
max+Γ

2
∗0/4−µEmax

)1/2

+γim

(
µ
»

E2
max+Γ

2
∗0/4+µEmax

)1/2
= 0, (7)

Γfwhm = E+−E− E±
and  the  full  with  at  half  maximum  is  given  by

,  with  solved by  the  following  equa-
tion: 

| f (E±)|2 =
1
2
| f (Emax)|2 . (8)

J/ψπ+π−

X(3872) | f (E)|2
X(3872)

J/ψπ+π−

For  the  decay  mode  of , the  energy  depend-
ence in the  region is derived solely from ,
which corresponds to  the  propagator  of  the  res-
onance. We then have the line shape in the  chan-
nel [17]: 

dΓ̂SD

dE
=

µ2ΓX

2π(γ2
re+γ

2
im)
| f (E)|2 , (9)

D0 D̄∗0

D0D̄∗0

| f (E)|2

ΓX ≪ 2EX

[−2EX ,0]
dΓ̂SD/dE

where  "SD"  represents  a  short  distance,  because  in  this
decay  mode,  and  should  approach  each  other
within a  small  distance,  unlike  the  constituent  that  de-
cays  to ,  where  there  is  a  large  root-mean-square
separation.  The  factor  in  front  of  is  chosen  such
that one will have the correct normalization for a narrow
resonance case. If , the line shape in the region

 is  approximately  a  Breit–Wigner  line  shape,
and the integral of  over this region is approxim-
ately 1.

D0D̄0π0For the decay mode of , the line shape is giv-
en by [17] 

dΓD0D̄0π0

dE
∝ | f (E)|2×

(»
E2+Γ2

∗0/4+E
)1/2

. (10)

D∗
This  equation  was  obtained  in  Ref.  [17]  by  considering
the  propagator  and  three-body  phase  space  integral.
As derived in Refs.  [17] and [7], Eq. (10) will  be accur-

| f (E)|2

−Imκ(E) D0D̄0π0

ate once the signal occurs within approximately 1 MeV of
the threshold. Reference [16] gave a more elegant way to
obtain  the  additional  factor  followed  by  by noti-
cing the expression of the optical theorem in Eq. (3). The
imaginary  part, ,  contributes  to  the  en-
ergy distribution. We can express the following complex
variable by choosing the appropriate branching cut: √

−2µ(E+ iΓ∗0/2)

=
√
µ

ï(»
E+Γ2

∗0/4−E
)1/2
− i

(»
E+Γ2

∗0/4+E
)1/2
ò
.

(11)

By introducing the appropriate factor, we get 

dΓD0D̄0π0

dE
∝ dΓ̂SD

dE

Ç √
E2+Γ2

∗0/4+E√
E2

X +Γ
2
∗0/4−EX

å1/2

. (12)

E = −EX

J/ψπ+π−

D0D̄0π0

At ,  the last  factor decreases to 1.  Equations (9)
and  (12)  represent  the  line  shapes  for  the  and

 channels, respectively.
J/ψπ+π− D0D̄0π0

γre > 0
γre < 0 J/ψπ+π−

D0D̄∗0

D0D̄∗0

D0D̄0π0

D0D̄∗0

D0D̄∗0

D0D̄∗0

X(3872)

The  line  shapes  for  the  and  chan-
nels  differ  for  the  bound  state  ( )  and  virtual  state
( ) cases if X is sufficiently narrow. For the 
channel,  if X is  a  bound  state,  the  line  shape  shows  the
Breit–Wigner shape below the  threshold,  whereas
there  would  be  only  a  cusp  at  the  threshold  for  a
virtual  state.  For  the  channel,  if X is  a  bound
state,  the  line  shape  shows  a  Breit–Wigner  shape  below
the  threshold  and  a  threshold  enhancement  above
the  threshold.  However,  there  would  be  only  a
threshold  enhancement  above  the  threshold  for  a
virtual state. For an intuitive picture, see Figs. 2 and 3 in
Ref. [16]. However, the increase in the width of X would
provide  more  smearing  of  the  line  shape.  Therefore,  the
precise  measurement  of  the X width  [23, 24]  in  addition
to mass measurement is crucial for determining the nature
of the exotic  state. 

III.  FIT RESULTS AND DISCUSSION

M(J/ψπ+π−) M(D0D̄0π0)
X(3872)

γre

X(3872)
X(3872)

X(3872)

In this  section,  we analyze recent  data  on the  invari-
ant mass distributions of  and  for
the  resonance  from  the  BESIII  collaboration
[13]. We discovered that those data can be rather well de-
scribed  in  our  analysis.  When  only  the  scattering  length
approximation  of  the  scattering  amplitude  is  used,  a
bound or virtual state can be generated. In all the fits, 
takes  positive  values,  indicating  the  interpretation  of

 as a bound state. This constitutes our main con-
clusion on the nature of . In terms of the concept
of  compositeness,  can  be  interpreted  as  a  pure
bound state with a compositeness of 1 [7, 25−28]. 
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J/ψπ+π−A.    Fit results of 
The background contribution is parameterized as 

B(E) = aE+b, (13)

− D0D̄∗0

where a and b are the  fitting  parameters.  We  have  ex-
amined several higher-order polynomials for parameteriz-
ing  the  background  term,  but  they  do  not  considerably
improve the fit quality. In the region we considered, i.e.,

100 MeV below the  threshold to 100 MeV above
the  threshold,  the  linear  line  is  sufficient  to  describe  the
background.

R(E′ ,E)
J/ψπ+π−

To determine the mass resolution, the BESIII collab-
oration  has  performed  a  careful  Monte  Carlo  study  for
both  channels  [13].  As  a  result,  resolution  for

 is described by 

R(E
′
,E) =

1√
2πσ

exp
Å
− (E′ − (E+dE))2

2σ2

ã
, (14)

dE = 0.96(E+mth)− (3.52
σ = 2.07(E+

mth)− (6.11
D0D̄∗0

where  the  mass  shift  is  MeV)
and  energy-dependent  mass  resolution  is 

 MeV). Note that we define E as the energy re-
lative to the  threshold.

J/ψπ+π−

∆ = 5
Ei

The  event  number  as  a  function  of  the  in-
variant  mass  in  an  energy  bin  of  width  MeV
centered at  is written as 

Ni(E) =
∫ Ei+∆/2

Ei−∆/2
dE

′
∫ ∞

−∞
dER(E

′
,E)

×
ñ

(BB)J/ψπ+π−
dΓ̂SD

dE
+B(E)

ô
, (15)

γre γim (BB)J/ψπ+π−

dΓ̂SD/dE (BB)J/ψπ+π−

with the signal term given by Eq. (9). We have five para-
meters  in  total: , , ,  and a and b in  the
background term, which can be fitted to the experimental
data. For a narrow resonance case, where the typical line
shape resembles a Breit-Winger one, the integration over

 is approximately 1. In this case,  can
be interpreted  as  the  corresponding  experimental  effi-

e+e−→ γX X→ J/ψπ+π−

BB

ciency multiplied by the product of the event number for
 and  the  branching  fraction  of ;

otherwise, it is just an overall normalization constant. 
corresponds to the terminology of "yield" used in our pre-
vious analysis [7].

γim

−2
γim , 0 γim = 0

γim γim

γim = 0

γim = 0
D0D̄0π0

γim = 0
J/ψπ+π−

ΓX

Γ(X→ J/ψπ+π−) = (3.5±
0.9) Γ(X→ D0D̄0π0) = (45±21) Γ(X→ D0D̄∗0) =
(34±12) J/ψπ+π−

D0D̄0π0 D0D̄∗0

Γ(X→ D0D̄∗0)/Γ(X→
J/ψπ+π−) = 11.77±3.09

Γ(X→ D0D̄0π0)/Γ(X→
J/ψπ+π−) < 1.16

D0D̄0π0

D0D̄∗0

D0D̄0π0 D0D̄∗0

γre = 35.0
ΓX ≪ 2EX (BB)J/ψπ+π−

e+e−→γX→ γ(J/ψπ+π−)

We use the maximum log(likelihood) method for the
fit. The results are given in Table 1 and Fig. 1. The uncer-
tainties  for  the  parameters  correspond  to  those  produced
by  the  MIGRAD  method  in  the  MINUIT  package  [29].
The fits  are  rather  good.  We explore two types of  fit:  in
one case, we leave  free, and in the other case, we fix
it to 0. Their fit qualities are essentially the same from a
pragmatic perspective,  although the log(likelihood) of
the  case is smaller than that of  by 1 from a
purely academic viewpoint. Moreover, the uncertainty of

 is  too  large,  which  indicates  that  cannot be  de-
termined well by the data. In other words,  works
sufficiently well for the current data. To reduce the num-
ber  of  parameters,  we  prefer  to  choose .  This
choice  is  also  adopted  in  the analysis  below,  as
well  as  in  the  simultaneous  fit.  Best  fit  implies
that  the  contribution  of  inelastic  channel  to
width  is negligible. This point seems to be favored by
the  current  PDG  [14]  values 

%, %, 
%, i.e., the partial width of  accounts for

1/10  of  that  of  (or ),  although  there  are
large uncertainties.  A direct measurement of BESIII col-
laboration  yields  a  value  of 

 [30]. One must be cautious in un-
derstanding  the  ratio  of 

 at  the  90% confidence  level  reported  in
the  same  reference  [30],  where  represents  the
non-  three-body  decay.  This  again  demonstrates
that  mostly derives from . Additionally, for
the  best  fit  parameter  MeV,  condition

 is satisfied, and  can be regarded as
the yield in the channel of .

EX ΓX Emax Γfwhm

γre γim

Quantities , , ,  and  were also  calcu-
lated, with the results shown in Table 1. Their central val-
ues were obtained from the central values of  and .
The uncertainties were obtained by incorporating the un-

 

J/ψπ+π− γim = 0
γim BB −2 −1

Table 1.    Results of our data analysis for the  mode from the BESIII collaboration [13]. Both cases of fixing  and set-
ting  as a free parameter are shown.  is dimensionless. a is in units of MeV , and b is in units of MeV . All others are in units
of MeV.

Parameter γre γim (BB)J/ψπ+π− 103a b

Fit results
35.0±10.3 0 74.4±9.6 8.3±1.0 1.4±0.1

22.6±17.4 4.7±4.2 70.2±15.6 8.1±1.0 1.3±0.1

Calculated results

−EX ΓX Emax Γfwhm

−0.63+0.32
−0.43 0.066±0.015 −0.63+0.32

−0.43 0.066±0.015

−0.25+0.26
−0.55 0.29+0.51

−0.21 −0.27+0.25
−0.56 0.29+0.51

−0.20

Xian-Wei Kang, Jin-Zhe Zhang, Xin-Heng Guo Chin. Phys. C 49, 073103 (2025)
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γre γim

γre γim

γre > 0 EX

ΓX

Emax ≈ −EX Γfwhm ≈ ΓX

γim = 0
D∗ Γfwhm = Γ∗0 =

ΓX = (0.066±0.015)

certainties of  and . More explicitly, we discretized
 and  (if  not  zero)  into  hundreds  of  values  within

one standard deviation and calculate the resulting quantit-
ies  from  these  numbers.  The  maximum  and  minimum
values were  chosen.  Thus,  asymmetric  uncertainties  ap-
peared. For this bound state below threshold ( ), 
and  can  be  interpreted  as  the  binding  energy  and
width,  respectively;  thus,  and 
within  uncertainties.  In  the  case  of ,  the X width
only  derives  from  the  width,  and  thus, 

 MeV. 

D0D̄0π0B.    Fit results of 
The background contribution is parameterized as 

B(E) = cE+d, (16)

J/ψπ+π−

R(E′ ,E)

where c and d are  the  fitting  parameters.  Higher-order
polynomials are also explored but do not significantly im-
prove  the  fit  quality.  Similar  to  the  above  case,
the  experimental  energy  resolution  is  given  by
[13] 

R(E
′
,E) =

1√
2πσ

exp
Å
− (E′ − (E+dE))2

2σ2

ã
, (17)

dE = 0.092 σ = 13.9(E+mth)−
(53.0

γim = 0 D0D̄∗0

with  mass  shift  MeV  and 
 MeV).  In  Ref.  [17],  the  energy  resolution  used

therein was considered to be too crude an estimate, result-
ing  in  as  an  artifact;  thus,  the  analysis  is
only for  illustrative  purposes.  Here,  the  resolution  func-
tion was carefully examined by the BESIII collaboration

with a Monte Carlo method.
D0D̄0π0

D0D̄0π0

D0D̄∗0

D0D̄∗0 D̄0D∗0

D∗0

D0D̄0π0

dΓ/dE
dΓ/dEexp

D0D̄0π0

J/ψπ+π−

Another very important point is that the  data
in  Ref.  [13]  used  here  and  those  used  in  Refs.  [7, 17]
should be understood differently. In the latter, the 
event  near  the  threshold  was  assumed  to  derive
from the  or  pair, namely, a mass constraint
from the mass of  was considered. The former corres-
ponds  to  a  true  invariant  mass  distribution.
Therefore, in Ref. [17],  Eq. (22) for  and Eq. (25)
for  are different,  and  the  authors  also  men-
tioned that the measurement of a true  spectrum is
preferable to  clarify  whether  consistent  resonance  para-
meters  can  be  achieved  compared  with  those  from

.
D0D̄0π0

∆ = 3
Ei

The event number as a function of the  invari-
ant mass in an energy bin of width  MeV centered at

 can be written as 

Ni(E) =
∫ Ei+∆/2

Ei−∆/2
dE

′
∫ ∞

−∞
dER(E

′
,E)

×
ï
(BB)D0D̄0π0

dΓ̂SD

dE

Ç √
E2+Γ2

∗0/4+E√
E2

X +Γ
2
∗0/4−EX

å1/2

+B(E)
ò
.

(18)

γre (BB)D0D̄0π0

c, d
dΓ̂SD/dE (BB)D0D̄0π0

e+e−→ γX X→ D0D̄0π0

γim

γim

−2

γim

Emax ≈ −EX

We have four parameters in total: , , and the
 terms in the background. In the case that the integra-

tion over  is approximately 1, parameter 
can be interpreted as the corresponding experimental effi-
ciency multiplied by the product of the event number for

 and  the  branching  fraction  of ;
otherwise,  it  is  just  a  convenient  constant.  was fixed
to 0 as the lowest possible value. We used the maximum
log-likelihood method for the fit. The results are given in
Fig. 2 and Table 2. As shown in Fig. 2, the experimental
data are well reproduced with this simple model. We also
explored  the  fit  while  leaving  free,  which  prefers
some  negative  values  that  can  indeed  maximize  the

log(likelihood).  However,  as  we  have  mentioned,
these  values  are  unphysical,  which  violates  the  optical
theorem.  This  situation  agrees  with  the  findings  in  Ref.
[17], where the best fit parameter of  in Table 2 is not
a positive value but 0 with a positive uncertainty. In Ta-
ble 2, we also find . 

C.    Simultaneous fit

γre

γre (BB)J/ψπ+π− (BB)D0D̄0π0 a, b, c, d
γim

In this section, we perform a simultaneous fit with the
inclusion of the two datasets above. In this way, paramet-
ers, e.g.,  specifying the  pole  position of  the X reson-
ance, can be more constrained.  We have seven paramet-
ers in total: , , ,  and the 
terms in the background.  was fixed to 0, as discussed
in  Sec.  III.  B.  We  used  the  maximum  log-likelihood

 

J/ψπ+π−

γre + iγim = 35.0
γre + iγim = (22.6+ i4.7)

Fig.  1.    (color online) Invariant  mass  distribution  for  the
 decay channel. The data were obtained from the BE-

SIII collaboration [13]. The solid line represents our fit result
for  MeV.  The  dashed  line  represents  our  fit
result for  MeV.
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Emax ≈ −EX

Γfwhm = Γ∗0 = ΓX = (0.066±0.015)
γim = 0 γre (8.2±5.6)

(29.5±14.8)

method for the fit. The results are given in Fig. 3 and Ta-
ble  3,  which  are  our  preferred  results  compared  with
those in Secs. III. A and III. B. The experimental data are
reproduced  rather  well.  Again,  we  find  that 
and  MeV  because

.  The  preferred  takes  a  value  of 
MeV, indicating a  very loosely  bound state  with  a  bind-
ing  energy  of  0.03  MeV.  The  corresponding  scattering
length  is  fm.  This  is  a  very  large  scattering

3S 1

ΓX ≪
2EX (BB)J/ψπ+π− (BB)D0D̄0π0

length (recalling the scattering length of 5.4 fm for nucle-
on–nucleon  scattering  in  the  wave),  which  justifies
the  applicability  of  the  current  approach.  Because 

 is not fulfilled,  and  cannot be
understood as yields. They are only appropriate normaliz-
ation constants; thus, we cannot obtain more information
from their ratio. 

IV.  SUMMARY

X(3872) J/ψπ+π− D0D̄0π0

J/ψπ+π−

D∗0

f (E)

J/ψπ+π−

D0D̄0π0

J/ψπ+π− D0D̄0π0

γre = (8.2±5.6)

In 2023, the BESIII collaboration published new data
on the  state from  and  invariant
mass  distributions.  This  stimulated  our  present  analysis
by  considering  the  universal  feature  for  an S-wave
threshold  resonance,  where  only  the  scattering  length
term is kept in the effective range expansion. To consider
the inelastic  effect  due to  channels  such as  and
the finite  width effect,  we extend traditional  scatter-
ing  amplitude  to the  form of  Eq.  (5).  By  consider-
ing the appropriate normalization condition, we obtained
the  line  shapes  in  Eqs.  (9)  and  (12)  for  and

, respectively.  Considering  the  experimental  res-
olution and background, we obtained our final theoretical
Eqs. (15) and (18) for describing the data. We considered
the  separate  fits  for  and  as  well  as  the
simultaneous  fit,  which  provides  a  better  constraint  for
the parameters. For the simultaneous fit, we show the res-
ults  in Fig.  3 and Table  3.  The  best  fit  value  is

 MeV,  and  the  resulting  pole  position  is

 

D0D̄0π0 BB
−2 −1

Table 2.    Results of our data analysis for the  decay channel from the BESIII collaboration [13].  is dimensionless. c is in
units of MeV , and d is in units of MeV . All others are in units of MeV.

Parameters γre (BB)D0 D̄0π0 c d

Fit results 11.3±9.4 5.2±4.4 0.01±0.002 0.1±0.02

Calculated results
−EX ΓX Emax Γfwhm

−0.07+0.06
−0.16 0.066±0.015 −0.07+0.06

−0.15 0.066±0.015

 

D0D̄0π0Fig.  2.    Invariant  mass  distribution  for  the  decay
channel. The  data  were  obtained  from  the  BESIII  collabora-
tion [13]. The line represents our fit result.

 

J/ψπ+π− D0D̄0π0Fig. 3.    Invariant mass distributions for the  and  modes in a simultaneous fit. The data were obtained from the BESIII
collaboration [13]. The lines are our fit results.
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(−0.03− i0.03)
D∗0

X(3872) D0D̄∗0

MeV,  with  the  width  solely  deriving  from
constituent width .  We conclude that the new BESIII
data imply that  is a loosely bound state of 
or is called by a charm meson molecule.

D+D̄∗−

D0D̄∗0 D+D̄∗−

As an extension, we can include the coupled-channel
effect from  in the future, namely, considering the
scattering between neutral  and charged , al-
though the latter is far from the former by 8 MeV. In this
manner, we can describe the line shape over a larger en-
ergy region.  In  addition,  many  new  results  may  be  ob-

cc̄
X(3872)

tained  once  these  effects  are  included.  For  example,  in
Ref. [7], a scenario of the simultaneous bound and virtu-
al state appearing in the adjacent second and third sheets
was  obtained,  which  indicates  a  large  portion  of  the 
component in the configuration of . 
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