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Abstract: This paper uses the gravitational decoupling method (GD) via minimal geometric deformation (MGD) to
discuss the understanding of strange deformed stars (SS) in modified f(77) gravity theory. By adopting the Buch-
dahl ansatz and the quadratic polytropic equation of state (EOS), we derive deformed SS models by assuming that
the energy-momentum components of the deformed fluid obey p = @8 and p, = @{. This approach leads to different
classes of exact solutions. The study of physical viability tests ensures that the proposed configurations adhere to
realistic constraints. Furthermore, the impact of relevant parameters is analyzed for the three scenarios: GR, f(7),
and f(7°)+ MGD. In addition, observational constraints are used to make comparisons, including GW190814, neut-
ron stars (NSTRs) PSR J1614-2230, and PSR J1903 + 327, with mass ranges of 2.5 -2.67Mg, 1.97+0.04M, and
1.667 £0.021 Mg, respectively. Remarkably, we observe from the M —R curves that NSTRs with masses ranging
from 2.4 to 3.5M; correspond to a range of radii from 9.80t8:8% to 13.01f8:8{km for different values of the paramet-
ers a, f, y and ;. Interestingly, for the p= @8 solution, higher values of a produce NSTRs with smaller masses and
smaller radii, while the p, = ®i solution gives larger masses and larger radii, which supports the existence of
massive NSTRs within modified gravity theory /(7).
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I. INTRODUCTION

The construction of gravitational modifications, spe-
cifically extended theories of gravity, is motivated by
both theoretical and observational factors. These modific-
ations aim to encompass general relativity as a special
case, but generally possess a more intricate and expans-
ive structure [1]. One motivation is rooted in the non-
renormalizability of general relativity (GR). It is hoped
that by exploring more intricate extensions of GR, the is-
sue of renormalizability could potentially be addressed
and improved [2, 3]. Another motivation stems from the
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observed properties of the Universe, particularly the need
to account for its two accelerated phases: one occurring
during early times known as inflation, and another dur-
ing late times referred to as the dark energy era. In con-
structing gravitational modifications, the conventional ap-
proach involves starting with the Einstein-Hilbert action
and subsequently extending it through various methods
[4]. However, an alternative approach is to begin with the
torsional formulation of gravity, specifically the Telepar-
allel Equivalent of GR (TEGR) [5, 6], and introduce
modifications accordingly. This leads to theories such as
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f@) gravity [7-9], f(T,Ts) gravity [10], f(7,B) grav-
ity [11, 12], scalar-torsion theories [15—17], etc. On the
other hand, if we extend the gravitational action by intro-
ducing terms of the form f(R) or f(7"), where f'is a non-
linear function, the resulting theories of gravity based on
curvature or torsion exhibit substantial disparities. These
theories are all inspired by the fundamental nature and
principles of the gravitational field (see Refs. [12—14] for
detailed reviews).

The extensively studied f(R) gravity, which relies on
curvature, has been the subject of thorough examination
in the previous decades [18]. One of the standout fea-
tures of f(R) gravity is that its equations of motion in-
volve fourth-order derivatives of the metric, which makes
it fundamentally different from GR's second-order equa-
tions. This difference isn't just mathematical—it leads to
modified versions of the Friedmann equations that can
explain the accelerated expansion of the universe without
needing to introduce dark energy [19]. When it comes to
how theory is developed, researchers take a few different
paths. The most common is the metric formalism, where
the equations are derived by varying the action with re-
spect to the metric alone [18]. Another approach is the
metric-affine formalism (also known as the Palatini form-
alism), where both the metric and the connection are
treated as separate variables [20]. There is also a more
flexible hybrid formalism [21, 22], which blends ideas
from both methods to create a broader framework for un-
derstanding how gravity might work beyond Einstein’s
theory. An extension of f(R) gravity is f(R,7) gravity,
where the Lagrangian depends on both the Ricci scalar R
and the trace of the EMT 7~ [23]. The 7-dependence may
stem from quantum effects or models of interacting dark
energy [24]. This coupling leads to non-conservation of
the EMT and introduces an extra force, causing test
particles to deviate from geodesic motion. For more on its
applications, see [25]. In cosmology, f(R,7") gravity has
been applied to the reconstruction of various models [26],
including those based on holographic dark energy [27],
and to describe both matter-dominated and accelerated
phases [28]. Studies have also addressed scalar perturba-
tions [29], dynamical systems [30, 31], and higher-di-
mensional scenarios such as 5D models and thick brane
solutions [32, 33]. A notable generalization involves in-
cluding the contraction R,,7*”, which reduces to f(R)
gravity when 7 =0 [34, 35]. Astrophysically, f(R,T)
gravity and others have been explored in the context of
dark matter [36] and compact objects [37—48].

In sharp contrast to f(R) gravity, the equations of mo-
tion in the torsion-based f(7) theory consist solely of the
standard second-order derivatives of the tetrad fields,
without the presence of higher-order derivatives. The
properties of the f(77) theory have been extensively ex-
plored in the cosmological domain, as evidenced in nu-
merous works; see, e.g., Refs. [9, 49-55]. Constraints on

the theory have also been derived by analyzing the mo-
tion of planets in the Solar System, as indicated by relev-
ant Refs. see, e.g., [57, 58]. However, investigations con-
cerning static spherical symmetry, particularly in relation
to stellar structure, are comparatively less abundant [59,
60]. The intrinsic characteristics of the theory of f(7°)
have been thoroughly examined, as documented in
Refs.[61, 62]. Notably, an important challenge en-
countered in the early formulations of the theory is the
absence of Lorentz invariance. This implies that the equa-
tions of motion generally do not exhibit invariance when
different metric-compatible tetrad choices are made. This
topic has been extensively discussed in the literature; see,
e.g., Refs [63, 64]. Considerable efforts have been made
in recent years to address and understand this problem.
Several promising advances have been achieved through
various approaches, including the Hamiltonian formal-
ism [65], the null tetrad approach [66], the Lagrange mul-
tiplier. formulation [67, 68], and the covariant formula-
tion [16, 69]. These approaches have provided valuable
insights and solutions to resolve the issue of Lorentz in-
variance in the f(7") theory.

In the theory of GR, the study of nonrotating stars is
facilitated by employing static spherical symmetry and
solving the well-known Tolman-Oppenheimer-Volkoff
(TOV) equations. These equations provide the frame-
work for constructing models of such stars. To fully char-
acterize a star model, a matter model is also required, of-
ten utilizing a perfect fluid subject to an EOS. The en-
ergy density and pressure of the fluid can occupy the en-
tire space. However, if they vanish strictly outside a fi-
nite spherical radius, the models represent compact stars
enveloped by a vacuum. The phenomenology of these
solutions is well understood within the framework of GR,
offering a comprehensive understanding of their proper-
ties and behavior. The most notable achievements encom-
pass the establishment of existence proofs for solutions
involving certain classes of equations of state [70, 71],
the derivation of upper bounds on the ratio of stellar mass
to surface radius, which serves as an indicator of the com-
pactness of compact objects [72, 73], and the exploration
of the relationship between the curves describing the stel-
lar mass to surface radius and the dynamical stability of
the models [74].

In considering f(7°) gravity as a more realistic frame-
work for modeling stars, despite the success of f(R) grav-
ity in explaining inflation and dark energy, a compelling
motivation arises from the unique features and implica-
tions of f(7") gravity specifically related to compact ob-
jects. By incorporating torsion, which is a geometric
quantity associated with the intrinsic angular momentum
of matter, f(7") gravity introduces additional effects and
interactions that allow for a more accurate representation
of highly dense and strongly gravitating objects such as
stars. This inclusion of torsion enables f(7°) gravity to
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capture the intricate dynamics and behavior of stars with
greater precision than f(R) gravity. Consequently, the
modified field equations of f(7") gravity may yield dis-
tinct predictions regarding the structure, stability, and
mass-radius relation of stars. Focusing on f(7) gravity
facilitates the exploration of torsion-related effects that
play a significant role in the behavior of stars, thereby of-
fering a more comprehensive and realistic description.
Moreover, the suitability of f(7) gravity in the modeling
of stars is further reinforced by its consistency with relev-
ant observational data, theoretical coherence, mathemat-
ical simplicity, and foundational aspects. These factors
strengthen the argument for adopting f(77) gravity as an
effective tool for understanding the properties and beha-
vior of compact stellar objects. Notably, modified theor-
ies of gravity that incorporate torsion have been investig-
ated in various applications. The study of relativistic stars
was initially conducted by [59], while compact stars with-
in a specific f(7) model for an isotropic fluid with a
polytropic EOS were presented by [75]. Subsequently,
the authors extended their analysis to include boson stars
[76]. These studies exemplify the wide range of applica-
tions and the potential of f(77) gravity in comprehending
the properties and behavior of compact stellar objects.
Building upon these motivations, our paper introduces a
groundbreaking contribution by introducing a novel ex-
act solution for an anisotropic spherical model within the
framework of f(77) gravity. To accomplish this, we ex-
ploit the well-known methodology -of gravitational de-
coupling (GD) via the minimal geometric deformation
(MGD) approach. This approach, combined with the util-
ization of a polytropic fluid source, allows us to accur-
ately capture the intricate dynamics of the system. Addi-
tionally, we employ a well-behaved ansatz known as the
Buchdahl metric ansatz for the radial component of the
metric function. By incorporating these established tech-
niques, we can derive a comprehensive and robust solu-
tion that significantly enhances our understanding of the
behavior and properties of the system in the context of
f(T) gravity.

Recent investigations have incorporated the concept
of GD into the Einstein-Gauss-Bonnet (EGB) framework.
Similarly to its role in the standard 4D classical gravity
theory, GD facilitates the anisotropization of seed solu-
tions, thus providing a mechanism to study the effects of
anisotropic stresses in compact objects. The MGD meth-
od [77] was employed to model a compact star in 5D
EGB gravity [78]. This approach demonstrated that the
combined effects of the decoupling parameter and the
EGB constant result in higher neutron star masses. Build-
ing on this, the extended MGD methodology [79] was
utilized to derive an exact solution for a compact star
within the 5D EGB gravity framework by [80]. There has
been extensive research on modeling compact objects,
such as NSTRs and strange stars, using MGD and com-

plete geometric deformation (CGD). For a comprehens-
ive overview of the applications of GD in astrophysics,
the readers are referred to these references and the works
cited within [81—85]. In particular, some pioneering stud-
ies on GD are also highlighted in these references
[86—90].

The paper is organized as follows: It begins with a
concise overview of the mathematical framework of f(77)
gravity with an additional source in Section II. Section III
then addresses the minimally gravitationally decoupled
solution in f(7°) gravity. The expressions for the model
parameter, derived from the smooth matching conditions
at the stellar surface, are discussed in Section IV. Section
V presents the deformed strange star models and their rel-
evance to astrophysics. The mass-radius relation for min-
imally deformed strange star models and their astrophys-
ical relevance are explored in Section VI. The stability of
our constructed deformed strange star model is discussed
in Section VII via the adiabatic index and the HZN stabil-
ity criterion. The measurement of the mass of a deformed
anisotropic strange star via various planes is analyzed in
Section VIII. The paper concludes with final remarks in
Section IX.

II. THE MATHEMATICAL FRAMEWORK OF
f(T) GRAVITY WITH ADDITIONAL SOURCE

The fundamental presumptions of f(7") gravity will
now be discussed in this section. A vierbein field e;(x*),
i=0,1,2,3, that serves as an orthonormal basis for the
tangent space at every point x* within the manifold is
used as the dynamical object in teleparallelism. Every
vector e; can be characterized in a coordinate basis by its
components ¢/, i.e., ¢; = ¢'d, where ©=0,1,2,3. We as-
sume a particular convention and terminology: the Greek
indices represent the coordinates of the space-time mani-
fold, while the Latin indices indicate the components of
the tangent space corresponding to the manifold (space-
time). For any given space-time metric, we express the
line element as follows: ds* = g, dx"dx"=n;e,eldx"dx’,
where n; =(-1,+1,+1,+1) is known as the Minkowski
metric. Unlike general relativity (GR) which employs the
Levi-Civita connection without torsion, Teleparallelism
utilizes the Weitzenbock connection 7%, = e},d,¢,, [91]
which possesses a curvature-less torsion-based geometry.
The torsion tensor can be defined as:

Ty =V =V iy = €40, — 06y M
The general relativity is a metric theory of gravity and is
torsion-free, that is 7, = 0. A common convention is to
denote U, as a 4-dimensional space-time manifold
equipped with both metric and torsion. Manifolds pos-
sessing a metric but lacking torsion are denoted as V,
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[92]. In many calculations, torsion often emerges in lin-
ear combinations, as seen in the contortion tensor,
defined as:

1
Ky = =5 (T4 =T =T, ). @

We also introduce the skew-symmetric tensor S *”
has the following form

S

v 1 v ayv v Q
= (K 8T =6 T ). 3)

The teleparallel Lagrangian, which serves as the tor-
sion scalar, can be formulated using these quantities as
[93]:

T=8"7",
1
= (T T 42T T, =477, ). (@)
In this framework, the torsion tensor 7, encapsu-

lates all the information of the gravitational field, similar
to how Riemann curvature tensor gives rise to the
curvature scalar R in GR. Consequently, the torsion scal-
ar 7 emerges from the torsion tensor-in a parallel man-
ner. In the teleparallel equivalent of General Relativity
(TEGR), the action is expressed as 7. However, the
concept behind f(77) gravity is to extend 7 into a func-
tion f(7). This mirrors the approach seen in GR, where
the Ricci scalar R in the Einstein-Hilbert action is gener-
alized into a function f(R) that defines f(R) gravity [94].
The E-H action can be expressed as :

A= [ Vg ST+ L+ L], (5)
167

where, we have considered G =c¢ =1 in the geometrized
units and g = det(g,,). Ly denotes the Lagrangian dens-
ity governing matter fields, linked to the energy mo-
mentum tensor (EMT) T,,, while £, represents the Lag-
rangian density pertaining to the novel gravitational sec-
tor, often termed the "® gravitational sector" ©,,. This
additional gravitational contribution consistently facilit-
ates adjustments to matter fields within the f(7") gravity,
and it can be integrated as part of the effective EMT
T3 =T, +a ©,,. Here, a denotes the coupling constant
that characterizes the interaction between the matter
fields and the gravitational sector ®. By varying the ac-
tion (5) with respect to the vierbein, one can get the equa-
tion of motion as :

S 0T frr + e_lau(eeﬁspﬂv)fT - ef\TZASprT

1 .
+ e = dret {1, ). (6)

4 eff 4 v af azf
Where, {T,)}" =T, +0), fr = 77 and fro = 377
The equations of motion within f(7")-gravity can be
reformulated utilizing the covariant derivative formalism
as follows.

eff

T 1
Guofr + 8, VT e (= g = 15 (D

2T

In this context, the Einstein tensor, denoted by G,,,
enables the reformulation of Equation (7) within the
framework of GR and the field equations associated with
f(T) gravity as

b

G, =
v 167Tf7'

(T + T,

®)

here, 771 represents a tensor incorporating adjustments
arising from the torsion scalar, which is expressed as fol-
lows:

-1
T = @(4Slpvvlf7'r +Rfr =S, Vifrr +T)gy). (9

Now, the effective EMT in an anisotropic fluid distri-
bution can be characterized as:

v eff e e e e e
{Tp } = (IO ft + p[ff)wer{p - plff6€ + (prff —P; ff)(vv(vp
(10)

In this context, p°™ represents the effective energy
density, p°" denotes the fluid pressure along the radial
direction relative to the four-velocity vector of time like
U, (referred to as radial pressure), and p°T signifies the
orthogonal pressure to U? (known as tangential
pressure). U, represents the four-velocity vector in the
time-like direction, while <V, indicates the unit space-like
vector aligned with the radial coordinate direction. There-
fore, we characterize dense matter using an anisotropic
fluid, with the components of effective EMT given by
(—p™, pe, pef™, i) . The effective components in the
EMT can be written as,

eff _

oM =pta®), pf=p —a®, pfT=p-ae0d (11)

Regarding the effective term, the appropriate anisotropy
factor is,
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AT = piT— pi = (p,— pr) + (O] - ©3) = Ar +ahe. (12)
It's notable that within the current anisotropic compact
stellar system, there exist two distinct forms of anisotrop-
ies: T,, and ©,,. Furthermore, another form of aniso-
tropy, Ae, becomes relevant due to GD, which plays a
distinct role in transformation processes. Now, let us em-
phasize the interior of a spherically symmetric static flu-
id distribution, where the following line element spe-
cifies the space-time as :

dS? = —e™dr + BVdr? + r*(d6* + sin*0d¢?).

(13)
This  expression yields the distance formula
dS? = g;dx'dx’, where x' = (t,r,0,¢) represents the com-
ponents of four-dimensional space-time, and A(r) and
B(r) denote the static metric potentials along the time and
radial coordinates, respectively. The expression for the

torsion scalar and its derivative, expressed in terms of the
radial coordinate, 7, is given by

T'(r) = ? {ﬂﬂ_:ﬁ_ <ﬂ,+%> <B+%>} /(1)

Now, for the metric (44), the tetrad matrix could be
written as

o
e =

(e%e%r,rsin@). (16)

Substituting the aforementioned tetrad field (16) and
incorporating the torsion scalar along with its derivative
into Eq. (6), it is possible to explicitly calculate the equa-
tions of motion for an anisotropic fluid in f(7") gravity in

the following way:

1 -B(r)
ar_ S !
Srp" ==L 4 fy [7(r)- 72]’ (18)
c f T | g [A() (A 1
== fo [T B2 (22

X (ﬂ’(r)—zs'(r))H.

(19)
The field equations discussed above (17-19) directly

yield the equivalent field equations in GR when consider-
ing f(7)=7 . However, in the context of f(7") gravity,
an additional non-diagonal quantity emerges as follows:

cot®

?T'f(rfr =0. (20)

Now, from the above Eq.(20) we get:

e Casel:7'=0 =9 =constant =7, i.e. 7 is inde-
pendent of » and hence 7, fr+ remains constant.

* Case II : fr =0, which gives fas a linear function
of two model parameters ¢; and ¢ that is,

JI)=4T +4&.

The linear functional mentioned above has been suc-
cessfully employed in various other scenarios within
f(T) gravity. Our objective now is to address the solu-
tion of the f(7) gravity field equations (17-19) in the
functional form f(7) = {17 +¢,. To achieve this goal, we
aim to utilize the well-known methodology known as GD
via the MGD approach, employing a polytropic fluid
source.

Now, inserting equation (14) and the form of f(7") in-
to (17-19) we can obtained the equation of motion as fol-
lows:

-B(r)
anp = C o [~24 42000 + L) V2B ()], @1
4r
-B(r)
ampi = S 26 - P0QG + L)+ 2 A, (22)
4r?
-8(r)
4rpT = o [~ QA )+ (B ()= A )
+ 207 R (r) = 26re™” | (23)

Now, one can derive the conservation equation by re-
quiring the effective stress-energy tensor to exhibit con-
tinuity, i.e. the divergence of the effective stress-energy
tensor equals zero (V,— 7] = 0) , which gives,

A’ d p:ff

“ S (A - L STy =0, 04
dp, A 2
—-—r =S e+ (pi-pr)
ael A 2
+ad—r‘— 5 a(®8—®})—;a(®§—®}) =0.
(25)

It is important to note that equation (24) corresponds
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to the familiar Tolman-Oppenheimer-Volkoff (TOV)
equation governing the decoupling system [95—97]. The
TOV equations, derived from gravitational theory, serve
to model the structure of spherically symmetrical objects
that are in hydrostatic equilibrium. We observe that the
perfect-fluid equations for f(7°) gravity are formally re-
gained as @ — 0. Thus, we aim to utilize the GD under
the MGD technique concerning the proposed compact
star model to obtain the solution for the system of equa-
tion (21-23). We will observe that through this approach,
the system will transform such that the equations of mo-
tion linked with the source ® will meet to an effective
"quasi- f(77) system". Now let us implement the geomet-
ric deformation that undergoes by the perfect fluid geo-
metry namely :

A(r) — G(r)+ad(r), (26)

B(r) — —log[H(r)+ ay(r)]. 27

Here, ® and y(r) represent the geometric distortions
experienced by the temporal and radial metric compon-
ents, respectively. Among all the options outlined in Egs.
(26) and (27), there exists a particular one known as the
MGD, for which ®(r) — 0, thus the metric in (26) and
(27) is minimally deformed by,

A(r) = G(r), (28)

B(r) = —log[H(r)+ ay(r)]. (29)

It is important to emphasize that the expression in Eq.
(29) is a linear combination of the inverse radial metric
component g;; in terms of a pure ideal fluid sector along
with a contribution from the source ©,,. Let us now in-
sert the components of equation (28) and (29) into the
field equations (21-23). Consequently, the system is split
into two sets:

* The normal field equations for a perfect fluid (a = 0)
in gravity f(7°), where the components of the systems are

{p.prpiG(r), H(r)}.

1
P = 55 [20 =200 H () + HO)+ Lor’ ] (30)
Pr= s |- 2 HOOG () + D)+ 2 +4r°) (31)
1
P = 35 [20PH(NG ()44 (G (1) +2)

X (H(rG'(r)+ H'(r) =241 (32)

* Another set of equation corresponding to the source
0,, that has the components {p, Drs p,,G(r),w(r)}is given
by,

4!

) =~ 5 (v () +u)]. (33)
_é, /
O =g 3 () (rG'(r)+1)]. (34)
el= 3_22;» 2rp(NG" (1) + (G (r) +2)
X (VNG (1) +y/ ()] (35)

Under such circumstances, if we consider that there ex-
ists no transfer of energy-momentum between the perfect
fluid (7,,) and the source ©,,; their interaction is solely
gravitational, then Eq.(25) explicitly yields,

dp, A 2
5 Pt =~ (p=p) =0, (36)
el A 2
d—rl— 5 (@3—@})—;(@)3—@}):0. (37)

These are referred to as the improved TOV equations
for pure f(7") gravity and the @ gravitational sector res-
ulting from V,7#" = 0. and V,0"” = 0 respectively. Sever-
al notable characteristics are related to the system (33-
35). The primary similarity between it and conventional
spherically symmetric field equations in f(7") gravity for
an anisotropic system characterized by an EMT @,,;
{p=0{,p, =01,p, =03} and its conservation equation is
that they exhibit significant similarity. Furthermore, the
active gravitational mass function for two systems may
be expressed as:

My (r) = / r47r?zp(?)d7’; Me(r) = / r4ﬂ?2®8(?)d7’ (38)
0 0

In the framework of f(7") gravity, the pertinent mass
functions for the sources T,, and ©,, are denoted as
Mq(r) and Me(r), respectively. Subsequently, within the
context of minimally deformed spacetime, the interior
mass function can be represented as

M) = My )= ), (39)
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III. MINIMALLY GRAVITATIONALLY DE-
COUPLED SOLUTION IN f(7) GRAVITY

This section will examine the two sets of equations
(21-23) and (33-35) about the sources T, and ©,,. The
EMT T,, indicates an anisotropic distribution of fluid
matter; hence, ©,, might enhance the overall anisotropy
within the system, so facilitating the repulsion against
gravitational collapse. Furthermore, an analysis of the
second set of equations reveals that the resolution of the
O sector is contingent upon the solution of the first sys-
tem of equations. Therefore, it is advisable to resolve the
original system first. The field equations are denoted by
Eqs. Equations (21-23) are significantly non-linear, con-
sisting of three equations and five unknowns
{p, Drs p,,G(r),H(r)}. To ascertain precise answers, one
may separately choose any two of these variables. A
method for obtaining precise solutions entails selecting
one metric potential and imposing an extra assumption
(such as a particular equation of state or embedding con-
dition) to ascertain another metric potential. In our
present work, we examine the quadratic polytropic equa-
tion of state defined as:

pr=yp T +Bp+x (40)

Here, y, B, and y represent constant parameters possess-
ing appropriate dimensions, while n indicates the poly-
tropic index. It should be noted that the polytropic EoS
(40) can represent the EOS of the MIT bag when specific
parameters are assigned, such as y=0,8=1/4, and
x =—48,/3, where B, represents a constant in the bag
[99]. Thus, the parameter y assumes a significant role in
revealing the nature of the contribution within the MIT
bag model. Due to the high non-linearity in finding an ex-
act solution, here we consider a polytropic index n=1.
Under this choice, the EoS (40) is quadratic and the quad-
ratic yp* representing the neutron liquid in a Bose-Ein-
stein condensate form. Meanwhile, the linear terms,
Bo +x, come from the free-quarks model inherent in the
popular MIT bag model for g=1/4, and y =-48,/3.
Consequently, these NSTRs are likely characterized as
"hybrid stars."

1 1
6= 14z, {23(1 T B

log(—A — Br?)
2BA-1)

B+ 1) +4B*y; +8BL(2B+ 2yl + 1)+ v +4x) —4ABL(3B+ 6Byl + 3yl + 1) + 3632y§$} +

{261108(Br? + 1) (A%(2B+ By{i +24) — 2A(B+Y(3BL + 5) +9By() ) }} +G

X {A4(2(ﬁ+ D& +y8 +4x) =247 2B+ D) +2BL B+l + D +y4 +4y) +A%(2
1
A1

Now, substituting the expression of density and radi-
al pressure from equations (21)-(22) into the EoS (40) we
get

a4 H(r)(rG' (r) + 1) + 484, r* (rH' (r) + H(r))
—¥Q2¢ = 24(rH' (r) + H(P) + (1) = 280"

—2{2r4—4r4/\/—4ﬁ§1r2—4§1r2=0. (41)

There are two unknowns in equation (41) namely
G(r) and H(r) correspond to g, and g, components, re-
spectively. Consequently, there are two ways to find the
exact solution, either by considering a suitable metric po-
tential along, the temporal components or a radial direc-
tion.

For the present study, we consider a well-known an-
satz Buchdahl metric for H(r) as [102]:

0<A<l. (42)

Where, 4 is dimensionless and B is the parameter
without dimension of the metric function km™. The met-
ric function and its radial derivative exhibit non-singular-
ity at the center of the stellar structure, fulfilling the ne-
cessary condition i.e.

HO)=1 and 0,H(r) =0. (43)

The most interesting characteristic of the Buchdahl
solution is that the inner Schwarzschild solution may be
retrieved for A=0, but for A=1, the hypersurfaces
{t = constant} are flat. Moreover, assuming C = —-A/R? al-
lows for the retrieval of the Vaidya and Tikekar [103]
solution, and for A = -2, one obtains the Durgapal and
Bannerji [105] solution. Numerous authors [104, 106,
107] later demonstrated that it constituted a feasible phys-
ical solution and illustrated its applicability in classifying
some previously established exact solutions.

Now, for the known H(r) we have a first-order non-
linear differential equation in G(r) (41) for which we can
obtain the solution for another metric potential G(r) as,

{A%Br + 1 (L2B+y6+2)+4) - 8(A- DBy - 16(A- 2By} (Br + 1)}

1
(44)
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Here, G represents an arbitrary constant of integra-

(A= 1)BZ,(Br? +3) &

45
tion. By employing the expressions for G(r) and H(r), we A(Br? +1)? 2’ “45)
derive the expressions for p, p,, and p, as follows.
1 2 2\2 2 2 252 2 2\2
pr= 0B {43 (3+Br*)Y’y(; —4ABQ3 + Br){, (1 + BB+ 2B(3 + Bri)yli + (1 + Br')*ys,)
+A2 ((23(3 + B +(1+BrrY L) (2(1+ BB+ 2B(3 + Bri)yl + (1+BriYys) +4(1 + Brz)“)()} , (46)

_l{ A+ Br?
Pr= gl a2A— 1)1 + B2y

{ —16(A—1)B*(3=2A+Br*(TA=9)+3(-2+ A)B>r*)y{; = 4B(~1+ Br*)(1 + Br* Y’ (9By4

+AQ(=1+A)B+(A-6)Byl; +2(-1 +A)y()) + AX(A - 1)1+ Brr) X (L2 + 2B+ v5) +4x) + Pﬂ(r)} )

where,

(47)

Fi(r) = (A2(GLQ@B+y6 +2)+ B'r @'y + 4 + Lr)\Qyd + QB +yds +2) + 4B (L (2B + ¥4 +2)
+4x) + Lt (5B +5yL + 1)+ 6yLirh) +2B2(18yL] + 3r' (L 2B+ v +2) +4x) + 247 (1B + Tyl = 1))
+4B({1(3B+3yL — D)+ r (LB +yH +2) +4x)) +4x) +4ABL, (- (B + 1 3B+ (B+ 1)Br* - 1)

—2Byli(Br* +3)* = {yLo(Br? +3)(Br* + 1)’ })) + 4B*y(}(Br* + 3)2).

The given equations (45-46) provide the full space-
time geometry for the initial solution. However, to ad-
dress the @ sector, it is necessary to determine the solu-
tion for the second set of equations (33-35). To solve the
second set of equations, we propose utilizing well-estab-
lished techniques, specifically: (i) mimicking the density
constraint, where p =), and (ii) mimicking the radial
pressure constraint, where p, =®]. These well-known
techniques are physically motivated and thoroughly elab-
orated in ref [77]. Furthermore, there are a few other
well-known recent techniques to solve the second set of
equations are given as: mimicking the seed density with
the dark matter density profile, mimicking the mass func-
tions of the seed system and new source, linear equation
of state between -sector etc. But here we shall use the
p=0) and p, = @} procedure to solve the f-sector.

A. Mimicking the density constraints i.e. (0 = ©))
To address the solution of ®-sector, we replicate the

(48)

seed density to @) i.e. p = ®). From the equation (21) and
(33) we get an ordinary differential equation in the de-
formation function y(r) as;

dy(r)
dr

Y(r) 1

r

e [24“1 {rH'(n+H(r) -1} - rzgz] .

(49)

By using the known metric function H(r) from (42) we
solved the above first order and first degree differential
equation to get the deformation function as,

Ci

r*(6(A—1)Bl; + ABL? + AL

¥ == 247, (3B +3)

(50)

where C; is the integrating constant which is set to be
zero for the sake of a non-singular solution.

Now, utilizing the above deformation function (50),
we get the solution of ® sector from (34-35) as,

0 = [4ABr2(1 + B’ +4(-1+ AP B (3 + Brr)y(  + 4(=1+ AABr(1+ B Y Li(1+ 38+ 3y

+ B+ B+ y0) AN+ B {46+ (B + 1) (L 2B+ 75+ 2 +40)}] %

6(A - I)BC] +AB§2}’2 +A§2
24427, (B2 +1)" (A+ Br?)’

D
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64(A—2)r”2y*B> 96(A— 1)r2yl*B3
(Br2+1) (Brr+1)*

3

1 612 2 >
= 288BLP 40, {72(34?1” +{(ABLr +6(A - 1)BE, +A§2){ -
16(A—-2)y?B>  16(A—1)yl?B? A-1)!
(( = jf; - (( o j{f; : ((Brz +)1)2 [8P4/(9By) +AQ(A~ DB+ (A~ 6)By(; +2(A~ 1)y5)B]

A-1)"!
+ ﬁ [4219BYL1 + AQA = D +(A=6)Byd1 +2(A~ 1)y5))B] + ®zz(r)} :

(52)

B. Mimicking the pressure constraints i.e. (p, = O})

In this technique, next, we are mimicking the radial pressure p, to ®! i,e, p, = ®!. Therefore from the Eqs (22), (34)
and utilizing (44) we get the deformation function as,

1
T AX(1+BP)

X {y(A +Br?) (Z(A — 1)B r(Br* +3) + Al r(Br* 4+ 1)2) : }} / (53)

w(r) = 2BAT'FP(Br* + 1)(A + Br*) (2B (1 - A)Y(Br* +3) = AL (Br* + 1))

1
F3(r)

Where,

Fo(r) = 447 (A= 1By 3 (B +3) 444/ (B +1)° (ABP (38+ BRB+yL +1)
+3y0 +2) + A= Bri(Brr +3)(B+vL)) +Art (Br + 1)4(42(2/3 +y5 +2) +4y).

Using the above deformation function (53) we have determined the other solution of ® components as ®) and 3 as
given below:

Q) = lﬂi [42(Br + 12 { = 2472(1 + BT (A= DB (B + 5)(A + Br) (A(B(Br* + 1)* + 2By(y(Br* +3) + ya(Br* + 1)?)
11

- 2Byl (Br* + 3)) {£+ 44,(Br* + 1)X(ABP(3B+ BrX(B+yLs + 1)+ 3yl +2) + A= Brr(Br® + 3)(B+v42)) + Opo(r)]

_é’ 1 ; )
02 = 4; {% {88(1 P (B +1)* (A+Br)(~NB- N>y —x)(1+Br) 4( —16(A—2)B>

vt (B +1) =24By{ 1 x (A- D) =2BA-1)"" (Br' + r)z(A(2(A —1DB+(A-6)By +2
(A= 1)y5)+9By) +(A- 1) x (B + 1)3(A(2(A —1)B+(A—6)Byl, +2(A—1)yl,) +9B

AYA-1)!
ST ISeRE)

+4BL(B+yL+ 1) +3Bri (LB +yl +2) +4y) +4x) —AY (LB +yl +2) + B (4y(]
= (F(G@B+yL+2) +4y)) +40 P (B+yL+ 1)) +4B(L1(AB+4yH +2) + P (LB +vd
+2)+4y)) +4x) + A’B(44, (3B+2Br 2B+ 2yl + )+ 3yl + 1) — (rP(Brr = 1)(L(28

Y0 +HA—-2)Byl (Br +1)° +4A - 1By, x (B + 1)) +

+y(+2)+4x)) +4ByL; (Brr +6)) —4AB* (i (rP(3B+ 6Byl + 3yl + 1) + 9y + 36B3}/§12r2} + @22(1’)} , (54)

For the long expression we have given the detailed

) ©®%(r) in the Appendix.
expression of P, (1), @n(r), Y11, L, Owp(r), i3, N and
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IV. MATCHING CONDITION: EXTERIOR
SPACE-TIME

An essential phenomenon in the study of stellar distri-
butions involves the continuity conditions at the surface
of the star (at r = Ry) between the interior (where r < Ry)
and exterior (where r > Ry) regions of space-time geo-
metries. According to the analysis conducted by [59],
when considering the off-diagonal component as presen-
ted in equation (20), the viable solutions within the
framework of f(7") gravity are confined to the following
two scenarios: 7' =0, fr =0 which have been dis-
cussed in the previous section. They examined the con-
strained scenario where fry =0 or 7' =0, applying it to
spherically symmetric static distributions with a diagonal
tetrad as background formalism. Birkhoff's theorem states
that within a spherically symmetric vacuum, the Schwar-
zschild metric represents the most comprehensive solu-
tion according to the Einstein field equations. The
Schwarzschild metric describes the gravitational field
surrounding a spherical mass, under the assumption that
the mass possesses zero electric charge, zero angular mo-
mentum, and there is no universal cosmological constant.
Now we will briefly explain how an outer space-time
metric for f(7") gravity could be determined. For the va-
cuum case, the EMT 7, =0 so, in that case
p=0,p,=0,p,=0. The first system of field equations
(21),22 and (23) turns out to be,

A +8 =0, (55)
& _

LT (56)
ém {ﬂ +(”:‘ +%(ﬂ’—8’))}:0. (57)

Now, by integrating w.r.t  from the Eq.(55) one can
get the form of the metric potential as

A(r) = =B(r) + by. (58)

For the Schwarzschild solution A(r),B(r) —» 0 as
r — oo which represents the flat space-time, constants b
must be zero. Now, for anti De-Sitter space-time metric

(AdS,), €™ = \/1+% and €=

——". Therefore,

2 1+5
1 rx
Ar) = 7m0+—0am1ﬂw=—§m0+gxwmm im-
ply Alr) = ln(;) and B(r) = —ln(g) as r — oo that is, in

this limit, A(r)+ B(r) =0 which gives constant =
a similar result to the previous case as A(r) =

0, gives
—-B(r).

Now, by using Eq.(55) and (56) we get,

L,2_

2e780 , 1
Gt ——(A0+). (59)
r 52 _ i -8(r)
Y2 "dr<re ):
2
e B 1y 5 N const. ’
6{1 r
Ry
_ {, const.\ -1
eg,,_(1+671 =) (60)

In the limit of small r values, the Newtonian approx-
imation yields a constant value equal to 2M, where M
represents the active gravitational mass. Furthermore, one
can note that the above space-time solution will represent
the Schwarzschild anti-De-Sitter solution if we consider

14
271 and const.= -2M

the cosmological constant A =
then,

2M AP

8= (&) 1_1—7—7

(61)
Considering the preceding discussion, we select the
Schwarzschild anti-de Sitter (SAdS,) metric within the
framework of f(7") gravity for describing the outer re-
gion of space-time as,

2M AP

2 2

+ rX(d6* + sin*0d¢?).
(62)

Moreover, the following line element provides the in-
terior metric encompassing the geometric distortion as:

ds? = —ed + [H(r) + ay(n)] ™ dr* + r*(d6* + sin*6d¢*).

(63)

According to Israel-Darmois condition [108, 109], for
the sake of ensuring a stable configuration, it is neces-
sary to smoothly connect the inner manifold dS? (63)
with the outer manifold dS?2 (62) at the boundary X. This
entails employing a well-established continuity equation,
which ultimately determines the first and second funda-
mental forms across the surface £ by integrating both
geometries at this boundary. Regarding the first funda-
mental form, the representation of the inner geometry
through the metric tensor g,,, derived from dS? and dS?
on the interface, can be described as follows:
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gt_t|r:7€; = gmr:?{; s (64)

8rrlr=rs = &7k - (65)

Taking into account Eq.(63) and Eq.(62), it takes an ex-
plicit form as follows:

M ARS
H(Rz)'*‘alﬁ(Rz):( _727;_ 32

), (66)

2M ARE

GRs) — (120 %5y 67

G ©7)

Alternatively, the second fundamental form assumes
the following expression:

Pyl = [p(r) —a®)(n)]; =0. (68)

To compute the numerical values of the constants, we
utilize equations (66),(67) and (68) to determine the un-
specified parameters, including the constant &, mass
(M), and polytropic constant y.

V. DEFORMED STRANGE STAR MODELS AND
THEIR RELEVANCE TO ASTROPHYSICS

In this section, our focus will be on examining the
physical viability of our deformed strange star models
and their significance in the context of astrophysics. Spe-
cifically, we aim to analyze the behaviors of various ther-
modynamic variables, including effective energy density,
effective radial and effective tangential stresses, and the
effective anisotropic parameter. By scrutinizing these as-
pects, we aim to assess the relevance of these models in
explaining astrophysical phenomena for both solutions:
solution ITI A [®) = p] and solution III B [®! = p,]. The

0.030
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0.020

0.015

Fig. 1.

effective energy density exhibits a consistent decreasing
trend as a function of the radial coordinate, reaching its
maximum value at the center of the self-gravitating ob-
ject. This observation is demonstrated in Figs. 1 and 5.
Notably, both figures illustrate that the effective energy
density remains regular at every interior point of the con-
figuration for all three scenarios: GR (a =0.0, 4 =1.0,
£ =00 [km7?])-left panel, f(7) (e=0.0, ¢ =038,
£ =2%10"° [km™])-middle panel, and f(7)+MGD
(=02, £,=08,'¢, =2x10° [km™])-right panel. The
primary distinction between Figs. 1 and 5 lies in the vary-
ing magnitudes of the three scenarios, despite having the
same fixed parameters. We observe that in the scenario of
GR, a higher core effective density is present with (.
However, in the scenario of f(77), a decrease in the mag-
nitude of ¢, and the presence of £, lead to a lower core
effective density. Conversely, in the f(7)+MGD scen-
ario, the inclusion of a enhances the effective density in
the central regions of the star, resulting in a concentra-
tion of matter in central, concentric shells. However, as
one moves away from the center towards the surface lay-
ers of the star, variations in a, ¢, and ¢, have no notice-
able impact on the stellar effective density. In Figs. 2 and
3 along with 6, and 7, we present the distribution of ef-
fective radial and tangential pressures with respect to the
radial coordinates. These figures allow us to analyze the
variations in effective radial and tangential pressure
among the three scenarios. In the solution presented in III
A—(Figs. 2 and 3), where the initial condition is @Y = p,
we can clearly see that the effective radial and tangential
pressures in the central region are higher compared to the
f(T) scenario. Furthermore, when the f(7°)+MGD scen-
ario is considered, incorporating the MGD leads to even
lower effective radial and tangential pressures. This ob-
servation strongly suggests that the presence of MGD has
a confining and compacting effect on the fluid particles,
particularly in the central regions of the star. In the solu-
tion presented in III B—(Figs. 6 and 7), where the initial
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(color online) The density profile [p(r)] in [km™2] along to the radial distance r of the stellar model for solution III A

[@) =p] in context of GR (a =00, £ =1.0, & =0.0 [km’z]) -left panel, f(7) (a =00, =08, »=2x10"6 [km’z]) -middle panel, and
f(T)+MGD (a =02, ;1 =08, »Hr=2x10"° [km'z])-right panel. The fixed values of the constant parameters are: A =-1.5, B =0.006,

y=10, 8=0.33, and R= 11 km.
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Fig. 2.
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(color online) The radial pressure profile [pf()] in [km2] along to the radial distance 7 of the stellar model for solution III A

[©9 =p] in context of GR (a =00, {1 =10, &, =00 [km‘z]) -left panel, f(7) (a =00, {1=08, H=2x10" [km‘z]) -middle panel, and

FT)+MGD (@=02, =08, & =2x 107 [km?]) -right panel.
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Fig. 3.
solution IIT A [@)
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(color online) The effective tangential pressure profile [p¢T(r)] in [km~2] along to the radial distance r of the stellar model for
=p] in context of GR (=00, &1 =10, & =00 [km™])-left panel, f(7) (¢=0.0, & =038, £ =2x10" [km™])-

middle panel, and £(7)+MGD (=02, =08, £ =2x107 [km2])-right panel.
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Fig. 4.
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(color online) The effective anisotropy profile [A®(r)] in [km™2] along to the radial distance 7 of the stellar model for solution

I A [©) = p] in context of GR (a =00, =10,%=00 [km’z]) -left panel, f(7) (a =00, {1 =08, & =2x10"° [km’z]) -middle panel,
and f(7)+MGD (a/ =02, =08, 5 =2x10"5 [km"z]) -right panel.

condition is ®] = p,, we observe a similar pattern to the
effective density. Specifically, in the case of GR, we find
that the effective radial and tangential pressures in the
central region are higher compared to the f(7") scenario.
Furthermore, when we include the MGD in the
f(T)+MGD scenario, the effective radial and tangential
pressures increase even further. This indicates that the
presence of MGD has a relaxing effect on the fluid
particles, with this effect being particularly pronounced in
the central regions of the star. Importantly, in both solu-
tions, the effective radial and tangential pressures remain

continuous throughout the star and exhibit a monotonic-
ally decreasing trend with increasing radial coordinates. It
is worth noting that the effective radial component of the
pressure at the stellar surface disappears, which is a signi-
ficant characteristic observed in these solutions. Figs. 4
and 8 illustrate the trend of the effective anisotropy para-
meter, A(r), for three distinct scenarios with the same
fixed parameters in both solutions. It is worth noting that
the presence of the MGD leads to a significant increase in
the anisotropy within the stellar body compared to the
cases of GR and f(7"). Specifically, when comparing the
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(color online) The effective density profile [p*"(+)] in [km™] along to the radial distance r of the stellar model for solution III

B [©! = p,] in context of GR (a =00, 1 =10, & =00 [km"z]) -left panel, f(7) (a =00, ] =08, &, =2x10"° [km"z]) -middle panel,

and f(7)+MGD (a =02, =08, 5 =2x107° [km‘z]) -right panel.
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Fig. 6.
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(color online) The effective radial pressure profile [ pf(r)] in [km™] along to the radial distance r of the stellar model for solu-

tion I1I B [@! = p,] in context of GR (a =0.0, {1 = 1.0, & =0.0 [km™2 J) -left panel, £(7) (a' =0.0, {1 =08, & =2x10"5 [km™2 J) -middle
panel, and f(7)+MGD (a =02, =08, 5 =2x10"° [km‘z]) -right panel.
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Fig. 7.
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(color online) The effective tangential pressure profile [ psT(r)] in [km2] along to the radial distance r of the stellar model for

solution III B [0} = p,] in context of GR (=00, £ =1.0, £ =00 [km™])-left panel, f(7) (a=0.0, £ =08, £ =2x10 [km™])-
middle panel, and f(7)+MGD (a =02, =08, 5 =2x10"° [km‘z]) -right panel.

scenarios of GR, f(77), and f(7") + MGD, we observe that
the inclusion of MGD causes the anisotropy parameter to
double. This finding highlights the pronounced impact of
MGD on the anisotropic nature of the system, indicating
that the presence of MGD significantly enhances the an-
isotropy within the stellar body. The observed amplifica-
tion of anisotropy serves to reinforce the stability of the
star's surface layers. The presence of the MGD plays a
crucial role in inducing greater anisotropy within the stel-
lar fluid by introducing a larger disparity between the ra-
dial and tangential stresses. This enhanced anisotropy, fa-

cilitated by MGD, can be attributed to various physical
processes taking place within the stellar interior. These
processes include phase transitions, the transport of neut-
rinos and electrons, as well as dissipation. Each of these
mechanisms contributes to the overall increase in aniso-
tropy. Phase transitions occurring within the stellar interi-
or can result in changes to the EoS, affecting the balance
between radial and tangential stresses. Neutrino and elec-
tron transport processes also influence the pressure distri-
bution, leading to variations in anisotropy throughout the
star. Dissipative effects, such as viscosity or heat conduc-
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(color online) The effective anisotropy profile [A®f(r)] in [km™2] along to the radial distance r of the stellar model for solution

I B [} = p,] in context of GR (=00, i = 1.0, & =0.0 [km™2])-left panel, f(7) (@=0.0, {1 =0.8,4 =2x 107 [km™?]) -middle panel,
and f(7)+MGD (a=02, {1 =08, £ =2x107 [km™])-right panel.

tion, can further contribute to the development of aniso-
tropic stresses. It is intriguing to observe that the effect-
ive anisotropy, initially starting at zero at the center of the
star, gradually grows in magnitude as we move towards
the outer boundary. This increasing anisotropy is accom-
panied by a positive value of A(r), indicating a repulsive
force arising from radial stresses overpowering trans-
verse stresses within the star. The mounting anisotropy
and the resultant repulsive force play a significant rolein
enhancing the stability of the star's surface layers. They
become crucial in counteracting the inward gravitational
force, thereby contributing to the overall stability of the
compact object. This interplay between increasing aniso-
tropy, repulsive forces, and the counterbalance of gravita-
tional forces is instrumental in maintaining the stability of
the star's surface layers and ensuring the resilience of the
compact object.

VI. MASS-RADIUS RELATION FOR MINIM-
ALLY DEFORMED STRANGE STAR MOD-
ELS AND THEIR RELEVANCE TO ASTRO-

PHYSICS

Pulsars are NSTRs that can emit periodic and strong
electromagnetic signals as pulses arising from their high
magnetic fields and rotational property. The large rota-
tional frequencies exhibited by pulsars suggest that they
possess a high degree of compactness. Typically, pulsars
are found in binary systems, where a massive neutron star
is accompanied by a companion star. By applying
Kepler's third law, these binary systems can be used to
measure the mass of the pulsar through the analysis of
time delays in the observed pulses [110, 111].

Determining the radii of NSTRs is a challenging and
complex task, as compared to measuring their masses.
This difficulty arises due to various observational para-
meters involved in the process [112, 113]. However, re-
cent advancements have provided new avenues for estim-
ating neutron star radii. One method involves studying

the tidal deformability factor, which is associated with the
detection of gravitational waves [114]. Another approach
utilizes: measurements obtained from NICER (Neutron
star Interior Composition Explorer) on hotspots located
on the surfaces of NSTRs [115, 116]. These recent break-
throughs have opened up promising avenues for advan-
cing our understanding of neutron star radii, offering new
possibilities for precise measurements in the future.

In this study, we have developed a framework utiliz-
ing the well-known Buchdahl metric in f(7") gravity to
construct models of pulsars. A key aspect of our analysis
is the investigation of M —R curves, as depicted in Fig-
ures 9, 10, and 11. These curves represent different val-
ues of a, f3, y, and ¢;, for both Solution III A (®) = p) and
Solution III B (®] = p,). It is worth noting that the mass-
radius curves are obtained using the quadratic polytropic
EOS in conjunction with the TOV equation. This combin-
ation allows us to explore the relationship between mass
and radius for pulsars within the context of our f(7)
gravity framework. Figures 9, 10, and 11 also showcase
the horizontal bands representing the selected pulsars.
The M —R curves that intersect with constraints such as
the black hole formation but do not intersect with the ho-
rizontal bands of pulsars can be excluded when measur-
ing radii. This exclusion criterion facilitates the predic-
tion of the radii listed in Tables 1, 2, and 3.

In Figures 9 and 10, corresponding to Solution III A
(@) =p), the M—R curves exhibit a gradual increase to-
wards a maximum peak, followed by a sharp decrease
and subsequent constancy for larger radii. This pattern
highlights the variation in radius for a range of different
masses of NSTRs. Remarkably, we observe that NSTRs
with masses ranging from 2.4 to 3.5 M, correspond to a
range of radii from 9.80*)07 to 13.01700 km, determined
by the values of the involved parameters a, £, y, and ¢;.
The intermediate part of the M—R curves indicates a
smaller change in the radii. As the values of a, £, and y
increase, the peak of the M—R curves shifts downward
and to the left horizontally. This suggests that higher val-
ues of a, f, and y result in NSTRs with smaller mass and
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smaller radii. In contrast, as the value of /; increases, the
peak of the M —R curves shifts upward and horizontally
to the right. This implies that higher values of ¢; corres-
pond to NSTRs with larger mass and larger radii. Clearly,
the M —R curves associated with higher values of ¢; and
lower values of @, f and y can be linked to a stiffer EOS,

which supports the existence of massive NSTRs.
Moreover, in Figure 11, corresponding to Solution III
B (@®] =p,), we observe a similar trend in the M-R
curves. They gradually increase towards a maximum
peak, followed by a rapid decrease and subsequent con-
stancy for larger radii. In particular, NSTRs with masses
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Table 1. M- R curve and prediction of radii for different values of a and f for p = €Y.
Predicted R [km]
Objects M/Mg a B
0 0.25 0.50 0.75 1.0 0.3 0.33 0.36 0.39 042
PSRJI1903+327 1.667+0.021 11.61*03 1136700 11.15%003 10.94*00% 10744002 11217003 11187093 11157903 11.137092 11.10*503
PSR J1614-2230  1.97+0.04 12.14700¢ 11.87:50¢ 11.58+003 11.2870%% 10.94*09%  11.66700° 11.637002 11601003 11577008 11.5470%%
GW190814 25-2.67 12967000 12,60t 12.17709%  11.50739%3 - 12.327008  12.26+007 12.20700¢  12.13*503 12.05709)
Table 2. M -R curve and prediction of radii for different values of y and ¢, for p = ®].
Predicted R [km]
Objects MM y 141
10.0 12.5 15.0 17.5 20 0.6 0.7 0.8 0.9
PSRI1903+327  1.667+0.021 11.20*09%  11.195700%  11.19*003  11.186*302 11184092 9.80*002  10.40*093  10.947003  11.467003
PSRJ1614-2230  1.97+0.04 11677008 11.66*00¢  11.647007 11617003 "11.59*0%% 1015200+ 11787091 11.3570¢  11.90*002
GW190814 25-267 12357090 12317008 1227+00%  12.22709° 7 12167303 10437007 11.17+000 11.837002  12.447002
Table 3. M —R curve and prediction of radii for different values of a and ¢; for p, =@].
Predicted R [km]
Objects M/Mg o 4]
0.2 0.3 0.4 0.5 0.25 0.30 0.35 0.40 045

PSRJI1903+327  1.667+0.021 10.18709%  10.97+091 11474001 11.88*0%1 - 1020799 11417000 12267000 13.00%09!
PSR J1614-2230  1.97+0.04 - 10731595 11.4139000  11.87:001 - - 11201595 12217900 13.012091
GW190814 2.5-2.67 - - - 11714593 - - - 11754013 12.897003

ranging from 2.4 to 3.5M, exhibit a range of radii from
9.80*992 to 13.01%)51km, which is determined by the val-
ues of the parameters involved a and ¢;. This observa-
tion supports the existence of NSTRs while excluding the
variations of £ and y. We find a similar behavior for both
parameters, albeit with slight differences in magnitude.
As the values of a and ¢, increase from 0 to 0.5 and from
0.25 to 0.45, respectively, the peak of the M —R curves
shifts upward and towards the right horizontally. This in-
dicates that higher values of a and ¢; correspond to
NSTRs with larger masses and larger radii. This conclu-
sion aligns with our findings from the first solution,
where higher values of a and ¢, were also associated with
a stiffer EOS, supporting the existence of massive
NSTRs.

In earlier research work that used variational meth-
ods and EOSs for nucleonic matter, similar types of
M — R curves that exhibit a significant mass around 3 M,
can be observed, compared to the M —R curves depicted
in Figures 9, 10, and 11. An example of such research is
the study conducted by [117], which investigated the
scenario of the R*> model. The findings of this study re-
vealed that the curve M — R in the scenario of the R?> mod-
el adheres to the general relativistic limit of approxim-
ately 3 M,. Moreover, the upper limit of the causal mass

was found to closely align with the general relativistic
causal maximum mass and to fall within the region of the
mass gap. Furthermore, they also delved into the concept
of strange stars in the context of modified gravity, with a
specific focus on the secondary component of the
GW190814 event. In a separate study, [118] explored the
possibility of supermassive compact stars characterized
by masses ranging from approximately 2.2 to 2.3 M, and
radii of approximately 11 km within the framework of
axion R? gravity. In their investigation, [119] explored
static NSTRs using various inflationary models com-
monly utilized in cosmology. Through the utilization of
the MPA1 EOS, the authors found that the maximum
masses of NSTRs fell within the mass gap region. In par-
ticular, these maximum masses exceeded 2.5 M, while
still remaining below the causal limit of 3 M,,.

VII. STABILITY ANALYSIS

A. Stability analysis via adiabatic index

To determine the stability of an anisotropic neutron
star in hydrostatic equilibrium, it is crucial to analyze the
adiabatic index. This index plays a key role in under-
standing the stability characteristics of the star's configur-
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ation. In this context, [120—122] established the adiabatic
stability criterion, I'=(1+ 5)(0%)3 indicating that T
1;rzmst exceed 4/3 for stars with isotropic pressures. Here,
represents the speed of sound, and the subscript S

dr
refers to a constant specific entropy. Herrera and col-

leagues found that this criterion could be modified due to
anisotropy and dissipative effects such as heat flow. Con-
sequently, the adiabatic index for a collapse scenario in
an anisotropic setting is modified accordingly as [123]:

rKPP:
4lp,

4 A
I'>-|(1+

s 69
sy (69)

In the given expression, the term represents the

rp.l
modification to the stability condition due to anisotropy

rKpp,
where p, # p,. Meanwhile, the final term ﬁ accounts
for the relativistic adjustment.

It has been shown that dissipative effects, such as the
star's internal heat flow, can impact the adiabatic index.
Consequently, a critical value for the adiabatic index

(Teit) was proposed, dependent on two factors: (i) the

0.007 0.008 0.009 0.010

Central density (p.) [km‘z]

0.005 0.006

M
compactness (4 = f) of the stellar model and (ii) a meas-

ure of the deviation from hydrostatic equilibrium (quanti-

fied by the amplitude of the Lagrangian displacement

from equilibrium). The critical adiabatic parameter is ex-
—u

3 [124, 125]. To ensure stability

against radial perturbations, I' must be greater than I'.;
[124]. However, it has been observed that for stable neut-
ron stars, including white dwarfs and supermassive com-
pact objects, I" ranges between 2 and 4. For matter obey-
iilg a polytropic equation of state (EOS), I' is greater than

pressed as Teit = 3t

3
ral pressure. From Fig. (14), it is evident that our models

meet the Chandrasekhar stability criterion, as the adiabat-
ic index (I')increases and remains above 2 throughout the
strange star models. In particular, an increase in the f(7")
coupling constant {; appears to make the configuration
less stable. This is evident from the left panels of (Figure)
for the solution @) = p,. However, an opposite trend can
be observed for the solution ®] = p, in the right panel of
Fig. (14). It shows that increasing the model parameter {;
results in the stability of the stellar core.

Furthermore, we performed a comprehensive analys-

and is influenced by the ratio of central density to cent-

160

150]
0.005

0.007 0.008 0.009 0.010

Central density (p.) [km'z]

0.006

Fig. 12. (color online) Graphical analysis of mass and % w.r.t central density (p.) for different values of the model parameter for the

solution p = ©.
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solution p, =@!.
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pr =0©] respectively.

is presented in a Table 4 by varying the model parameter
£ and the gravitational coupling constants . It should be
noted that increasing the MGD constant o appears to re-
duce the stability of the configuration for both solutions,
0) = p, and O] = p,. However, in any case, it does not vi-
olate the limit I' > [

B. Stability analysis via Harrison-Zeld ovich-Novikov
criterion

In the previous study, Chandrasekhar introduced a
method to evaluate the stability of a stellar system when
exposed to radial perturbations. However, in this ap-
proach, Harrison-Zeldovich-Novikov's. (HZN) stability
criterion involves examining the perturbation along the
physical parameters such as the metric functions, pres-
sure, and density. Based on the HZN stability criterion
[126, 127], the following constraints are established:

dM

dp.
am

dp.

> (0 = Stable configuration

<0 = Unstable configuration

In this context, we analyze stability for the solution
p=0) and p, =0} in the Fig.(12) and Fig.(13) respect-
ively. In the left panel of the graph, we present the mass
profile as a function of the central density p.. It is evid-
ent that mass is monotonically increased while central
density grows. Moreover, For a given central density of
the anisotropic star, lower values of model parameter {;
lead to an increase in the total mass M of the system.
Next, By varying the f(7) model parameter ¢, for both
models, we examine the rate of changes of total mass
with respect to p. in the right panel of Fig(12) and (13).
The results show that the rate of change of mass with
central density is positive and exhibits a linear trend
across the entire stellar region. Therefore, the current an-
isotropic star model meets the stability condition.

Chin. Phys. C 49, (2025)
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(color online) Graphical analysis of adiabatic index for different values of the-model parameter for the solution p = ©) and

Table 4. Numerical values of adiabatic index for model
parameter ¢; and MGD constant o at the core of the stellar re-

gion.

Model-I (p = ©]) Model-II (p, = ©1)

4| r & r
0.2 2.224 0.2 2.031
0.4 2.104 0.4 2.049
0.6 2.065 0.4 2.055
0.8 2.058 0.8 2.057
1.0 2.056 1.0 2.059

a r a r
0.05 2.276 0.05 2.415
0.10 2.038 0.10 2.279
0.15 1.845 0.15 2.149
0.20 1.694 0.20 2.031
0.25 1.567 0.25 1.935

VIII. EQUI-MASS DIAGRAMS FOR THE MEAS-
UREMENT OF MASS

In this section, we determine the mass of the aniso-
tropic star using equi-mass diagrams on various planes,
specifically B, —«, B,—8, B,—v, B,— {1, and B, —R. The
focus of this discussion is on the mass distribution con-
cerning the constraints imposed by the Bag parameters B,
where Bg = —37)(. From Fig.(15), it is evident that within
the range of [55-90] MeV/fm’, for a given B,, an in-
crease in o corresponds to an increase in the NSTRs
mass. However, there is no significant change when the
MGD coupling constant ¢ is fixed and the Bag parameter
B, is varied. This analysis strongly indicates that higher
coupling constants result in more massive compact stars.
Conversely, when « € [-1,0], it leads to a low-mass star,
similar to a white dwarf (WD).

Next, we consider the B,—8, B,—vy, and B,—¢
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Fig. 15. (color online) The equi-mass diagram for B, —«, B;—8, B;—v, By — {1, and B, —R planes where B, = —37)( in MeV/fm®.

planes, where the mass of the NSTRs is predominantly

heimer-Volkoff (TOV) limit of 2.1, M,, for a neutron star.

distributed within the range of [2.35-2.6]M,. It is ob-
served that for a given B,, an increase in /3, y, or ¢; res-
ults in an increase in the star's mass. However, in these
three analyses, the mass exceeds the Tolman-Oppen-

Furthermore, no significant changes are observed when
the constrained vy,8,¢; is kept constant and the Bag para-
meter B, is varied.

Finally, we analyzed the B,—R planes, observing

-19
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variations in the mass distribution across a wide range of
[1.75-3.25]M,. For a fixed B,, variations in the radius R
result in the formation of stars ranging from low-mass
WD to high-mass NSTRs. Specifically, stars with radii
between 9 and 10 km correspond to low-mass stars.
However, when the radius exceeds 10 km, the star sur-
passes the Tolman-Oppenheimer-Volkoff (TOV) limit of
2.1M,, forming massive NSTRs. In this analysis, the
maximum mass observed is 3.25M, for a radius of 13
km.

IX. CONCLUSION

In this section, we present a concise summary of our
findings in the following sequence:

1. In our recent study, we explored anisotropic stars
utilizing GD through the MGD approach within the
framework of f(7") gravity.

2. After implementing the MGD to the metric poten-
tial A(r) and B(r), we obtained two systems of equations,
one corresponding to the seed system and the other to the
® sector.

3. We consider a suitable polytropic EoS for the in-
terior matter distribution of a compact star, particularly a
neutron star or quark star, which reduces to the MIT bag
model in the appropriate limit. Furthermore, by employ-
ing the well-established Buchdahlansatz, we solved the
seed system of equations for our constructed compact star
model.

4. In the second system, the deformation function
Y(r) is obtained by the technique mimicking the physical
constraints, resulting in two separate sectors: p = ©) and
p, = 01}, each leading to distinct classes of solutions.

Following the steps outlined above, the results have
been thoroughly classified and discussed in detail through
various tables and figures. We have analyzed the three
most critical features of the model: matter density, effect-
ive radial pressure, and effective tangential pressure. Ad-
ditionally, we investigate the role of the anisotropy factor,
AT, within the stellar sphere. It is well-established that
any compact object representing the interiors of stars
should be free from physical or mathematical singularit-
ies in its primary physical characteristics. The maximum
values of matter density and pressure should occur at the
center of the configuration and should monotonically de-
crease with the radial coordinate towards the surface.
These novel characteristics are essential for describing
real objects such as white dwarfs, NSTARS, and even
quark stars. Here, we highlight some of the key features
of our findings:

* From Figs. 1 and 5, it can be observed that the ef-
fective energy density consistently decreases with in-
creasing radial distance, achieving its peak value at the
core of the self-gravitating object. Importantly, these fig-
ures show that the effective energy density is regular
throughout the entire interior of the configuration across
all three scenarios: GR, f(77), and f(7)+*MGD. For the
GR scenario, the core effective density is higher with ;.
In f(7") gravity, reducing {1 and introducing 2 de-
creases the core density. Conversely, in the f(7)+MGD
model, adding a boosts the central density, concentrating
matter in concentric shells. However, beyond the core,
variations in a, /1, and £, don't affect the effective dens-
ity of the star's outer layers. Apart from that, it can be ob-
served that the effective energy density doesn't show any
singularity and gives finitely bound values throughout the
stellar region, indicating a viable behavior of the stellar
system.

* For the @) = p solution, (IIl A) including (Figs. 2
and 3), we can observe that the effective radial and tan-
gential pressures for the GR case are higher in the central
region compared to the f(7) scenario. Additionally, in
the f(7)+MGD scenario, the inclusion of MGD results
in even lower effective radial and tangential pressures.
This finding strongly indicates that MGD has a confining
and compacting effect on the fluid particles, particularly
in the central regions of the star. A similar pattern could
be observed in the solution p, = ®} (Il B) in (Figs. 6 and
7). This suggests that the fluid particles are influenced by
the presence of MGD, with this impact being especially
noticeable in the star's central regions. Additionally, it
can be observed that the radial pressure and tangential
pressure remain free from singularities and maintain fi-
nite values throughout the stellar region, indicating a
stable and viable behavior of the stellar system.

* Another important physical quantity is the aniso-
tropic factor of a stellar system, which can be measured
by AT = p¢— p¢ff, The contribution to the equilibrium of
an NS/QS mechanism depends on the sign of A°T, i.e.,
whether pff > pff or p¢f < pf. We have graphically ana-
lyzed the behavior of the anisotropic factor in Figs. (4)
and (8). Interestingly, the effective anisotropy, starting at
zero at the star's center, gradually increases towards the
outer boundary. This rise, marked by a positive A(r), in-
dicates a repulsive force from radial stresses exceeding
transverse stresses. This growing anisotropy and repuls-
ive force are key to stabilizing the star's surface layers,
counteracting the inward gravitational pull, and enhan-
cing the overall stability of the compact object. It is note-
worthy that the inclusion of MGD results in a substantial
increase in anisotropy within the stellar body when com-
pared to the scenarios of GR and f(7). Specifically, an
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analysis of the GR, f(7), and f(7)+MGD scenarios re-
veals that the presence of MGD causes the anisotropy
parameter to double. This observation underscores the
significant influence of MGD on the system's anisotropic
characteristics, demonstrating that MGD markedly en-
hances the anisotropy within the stellar body. The ampli-
fied anisotropy observed with MGD contributes to the re-
inforcement of the star's surface layer stability. The intro-
duction of MGD plays a pivotal role in increasing aniso-
tropy within the stellar fluid by creating a greater dispar-
ity between radial and tangential stresses.

* The analysis examines the impact of three relevant
scenarios —- GR, f(7"), and f(7°) + MGD — on the prop-
erties of NSTRs, using observational constraints from
GW190814 with a mass range of 2.5-2.67M,, as well as
the NSTRs PSR J1614-2230 with a mass of
1.97+0.04M, and PSR J1903+327 with a mass of
1.667+0.021 M,. The M—R curves show that NSTRs
with masses ranging from 2.4 to 3.5M, correspond to a
range of radii from 9.807093 to 13.01%)51km, determined
by the values of the parameters a, f, y, and ¢; in the two
sectors, with higher values of a, f, and y resulting in
NSTRs with both smaller mass and smaller radii, and
higher values of {; corresponding to NSTRs-with larger
mass as well as larger radii. Clearly, the M —R curves as-
sociated with larger values of ¢, for p = @] and p, =0},
and smaller values of o for p=0) (and larger for
p,=0)), B, and y can be linked to a stiffer EOS, which
supports the existence of massive NSTRs within the mod-
ified f(7") gravity theory.

* An analysis of stability using the anisotropic gener-
alization of the Chandrasekhar adiabatic index and the
HZN stability criterion demonstrated that our models are
stable. Additionally, the stability is further improved by

(A=Br)(1+Br)’

the perturbation of the decoupling constant o and the
model parameter ;.

* Finally, we determined the mass of the anisotropic
star using equi-mass diagrams on various planes, spe-
cifically B,-«a, B,—8, B,—v, B,—{, and B,—R. This
discussion focuses on the mass distribution concerning
the constraints imposed by the Bag parameters B, where
B, = —%TX. It is observed from the Fig.(15) that for a given
B,, an increase in a, B, y, {; and R results in an increase
in the star's mass. However, in the analyses of B,-p,
B,—v, and B, —{; plane, the mass exceeds the Tolman-
Oppenheimer-Volkoff (TOV) limit of 2.1, M, for a neut-
ron star. Additionally, no significant change is observed
when the constrained «,y,8,{,R is held constant and the
Bag parameter B, is varied. In this analysis, we obtained
the maximum mass 3.25M,, in the case of B, — R plane.

Thus, our results have provided significant insight in-
to the complex relationship between anisotropy and the
gravitational effects of f(7°) gravity, enhancing our un-
derstanding of pulsars and their fundamental physical
processes.
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APPENDIX

Pl = = X (36B2y42 —4ABL (1+38+ 6Byl +3yL) + A*
X (L2 +2B+v0) +4x) =24 2BL(1+B+75) + 62 +2B+70) +40) + AZEB Y + H(2+ 28
(A+Br?)™!
+y0) +8BL(1+2B8+2y0) +4X))} * S BR) {8ABr*(Br + 1)’ +4(A— 1)’ B*>y(ir* X (Br* +3)
X (Br’ +3)* +4A(=1+A)Br’(1+ Br)* (14 3B+ 3y{ + B (1 +B+y0)) + &' A (1 +Br2)3<8_{1 +(Brr+1)
X P(GQB+yH+2)+40)) X Fi(r)} - 44,
A-1)"!
On(r) = (5 [P (LB 4 +2)+ 40" - 2B B+ 7E)

+ D+ HQB+yL+2) +AAT + (AB YL +8BQ2B+ 2yl + i+ L(2B+y4 +2) + 4)A” - 4BL,

A-1"

X (3B+6BYL + 3yl + DA+36BY(DB] + A X (LQRB+YH+ D) +40) — s (L2

(Br2 +A)
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