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Abstract: The Circular Electron Positron Collider (CEPC) is a large-scale particle accelerator designed to collide
electrons and positrons at high energies. One of its primary goals is to achieve high-precision measurements of the
properties of the Higgs boson and is facilitated by the large number of Higgs bosons that are produced with signific-
antly low contamination. The measurements of Higgs boson branching fractions intobb/cc/gg and t7/WW*/ZZ*,
where the W or Z bosons decay hadronically, are presented in the context of the CEPC experiment, assuming a scen-
ario with 5600 fb™' of collision data at a center-of-mass energy of 240 GeV. In this study the Higgs bosons are pro-
duced in association with a Z boson, with the Z boson decaying into a pair of muons (u*u~), which have high effi-
ciency and resolution. To separate all decay channels simultaneously with high accuracy, the Particle Flow Network
(PFN), a graph-based machine learning model, is considered. The precise classification provided by the PFN is em-
ployed in measuring the branching fractions using the migration matrix method, which accurately corrects for detect-
or effects in each decay channel. The statistical uncertainty of the measured branching ratio is estimated to be 0.55%
in theH — bb final state and approximately 1.5% — 16% in the H — c¢/gg/tt/WW*/ZZ* final states. In addition,

the main sources of systematic uncertainties in the measurement of the branching fractions are discussed.
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I. INTRODUCTION

The discovery of the Higgs boson by the ATLAS and
CMS collaborations at the Large Hadron Collider (LHC)
in July 2012 [1, 2] marked a significant breakthrough in
particle physics, providing deeper insights into the Stand-
ard Model (SM). While the SM has been successful in de-
scribing the fundamental building blocks of matter and
their interactions, several unanswered questions remain,
such as the origin of dark matter and the inability to uni-
fy all fundamental forces. As a promising gateway to new
physics, precise measurements of the Higgs boson’s
properties are essential for testing the SM and uncover-
ing potential hints of physics beyond the Standard Model
(BSM).

CSTR: 32044.14.ChinesePhysicsC.49053001

In comparison with the LHC, which relies on high-en-
ergy proton-proton (pp) collisions, a lepton collider of-
fers more energy control and significantly lowers pileup
contamination (average number ofppinteractions per
beam crossing), serving as a Higgs factory. Several
lepton colliders have been proposed for reconfirming the
discovery of a Higgs-like particle and studying the prop-
erties of the Higgs boson with high precision, including
CLIC [3], FCC-ee [4], and ILC [5]. Among the afore-
mentioned colliders, the Circular Electron Positron Col-
lider (CEPC) [6, 7] was proposed by the Chinese High
Energy Physics Community in 2012. It is designed to op-
erate at a center-of-mass energy of 240 GeV to 250 GeV
with an integrated luminosity of 5600 fb'. The main
Higgs production process in CEPC will be via associated
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production with a Z boson, e*e” — ZH, where the Z bo-
son is expected to undergo further decay.

According to theoretical predictions, the branching
fractions of the decay of a 125 GeV Higgs boson into bb,
cc, gg, T, WW*, andZZ* are 57.7%, 2.91%, 8.57%,
6.32%, 21.5% and 2.64%, respectively [8—10]. The Higgs
boson decay into bb, WW*, andZZ* was studied by the
ATLAS Collaboration using a 13 TeV pp Run 2 dataset
collected at a center-of-mass energy of 13 TeV with a lu-
minosity of 139 fb' at the LHC. The branching fractions
were measured to be 0.53+0.08, 0.257+0:9%, and 0.028+
0.003, respectively [11].

The work presented here focuses on the determina-
tion of the branching fractions of the Higgs boson decay-
ing into a pair of b-quarks or c-quarks, gluons, 77, WW*,
or ZZ* in associated Z(u*u~)H production, where the W
or Z bosons decay hadronically, at the CEPC with a cen-
ter-of-mass energy of 240 GeV and integrated luminosity
of 5600 fb'. The branching fraction measurements for
H — bb/cc/gg/tT/WW*/ZZ* will be conducted simultan-
eously considering the major background sources. Since
the dominant decay modes of WW* and ZZ* are hadronic,
all the six processes primarily produce final states with
jets, making it challenging to distinguish them. This diffi-
culty can be overcome by employing the Particle Flow
Network (PFN) [12], which is used for jet tagging, due to
its ability to distinguish these processes. In contrast with
traditional jet tagging methods based on QCD theory,
which measure branching fractions channel by channel,
PFN separates all channels in a single implementation
with high accuracy.

This paper is organized as follows: Section II
provides a brief description of the collider and Monte
Carlo (MC) simulations. Event selection requirements are
detailed in Section III. Section IV discusses the modeling
using PFNs, with their performance evaluated in Section
V. The procedure for determining the branching fractions
is explained in Section VI, followed by the results in Sec-
tion VII, where the measurements and their associated
statistical and systematic uncertainties are discussed. A
brief summary of the study is given in Section VIIIL.

II. CEPC DETECTOR AND SIMULATION
SAMPLES

The CEPC is a circular electron positron collider with
a total circumference of 100 km. Its center of mass en-
ergy could reach the Z pole (91.2 GeV), the WW
threshold (161 GeV), and the Higgs factory (240 GeV).
The CEPC detector employs a highly granular calori-
metry system to separate the particle showers, and a low
material tracking system to minimize the interaction of
the final state particles in the tracking material. It con-
tains a vertex detector with a high spatial resolution, a
Time Projection Chamber (TPC), a silicon tracker, a silic-

on-tungsten sampling Electromagnetic Calorimeter
(ECAL), and a steel-Glass Resistive Plate Chambers
(GRPC) sampling Hadronic Calorimeter (HCAL). The
CEPC detector magnet is an iron-yoke-based solenoid
that provides an axial magnetic field of 3 T at the interac-
tion point. The outermost part of the detector is a flux re-
turn yoke embedded with a muon detector, which identi-
fies muons inside jets. Further details can be found in
Ref. [7].

The signal and background events are both generated
using the MC generator Whizard 1.95 [13] and Pythia6
[14] for fragmentation and hadronization. The response
of the CEPC detector is simulated using a Delphes-based
software suite for fast detector simulation [15] according
to the performance of the baseline detector in the CEPC
CDR [7]. The resolution of the impact parameter in the
r¢plane is obtained as

10

& ——————5— um. 1
p(GeV)sin*?6 Hm M

0',~¢=5

The resolution of particle transverse momenta is

1x1073 ~

o1 =2x107o
rr psin

The energy resolution of photons is

o 0.16
“E-00le——re, 3
E VE(GeV) ®)

and that of neutral hadrons is:

o 0.50
£ 0030 ———. 4
E VE(GeV) @

In this analysis, Higgs production via theZH process
is considered to be the dominant process with Z decaying
to a pair of muons and Higgs boson decaying in pairs of
bb/cc/gg/tT/WW?*|ZZ* is the signal process. Addition-
ally, the inclusive decays of H - WW* and H — ZZ* are
considered. The backgrounds originate from processes
with two-fermion and four-fermion final states. The two-
fermion background processes include /I, vv, and ¢g, re-
ferring to final states with leptons (/), neutrinos (v), and
quarks (g). The four-fermion background includes (ZZ),,,
(ZZ), (ZL)y, (WW)y, (WW),, (WW)g, (SZ), (SZ)g,
SW), (SW)g, (mix),, and (mix);, referring to final states
with leptons (/), hadrons (%), and semi-leptons (s/). Table
1 presents the cross sections of the signal processes. Ta-
ble 2 provides a summary of the detailed decay modes of
the two-fermion and four-fermion backgrounds along
with their cross sections.
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Table 1. Cross sections for the Higgs production via theZH process, where Z boson decays to a muon pair and the Higgs boson de-
cays to bb/cc/gg and 77/WW*/ZZ*, with the W or Z bosons decaying hadronically.

Process Higgs decays Cross section/fb
H—bb 3.91
H— cc 0.20
H— gg 0.58
ZH process
H—-> 17 0.42
H— Www* 1.46
H—ZZ* 0.18

Table 2. Detailed decay modes for two-fermion (I, vv and ¢g) and four-fermion ((ZZ),, (Z2);, (ZZ)g, (WW),, (WW);, (WW)g, (SZ);,
(S2Z)s1, SW)i, (SW)y, (mix), and (mix);) backgrounds and their cross sections.

Category Name Decay modes Cross section/fb
ete” s ete” 24770.90
1 ete” > utus 5332.71
ete” > 1t 4752.89
ete” > vV, 45390.79
Vv ete” s vy, 4416.30
Two-fermion background ete” - v, 4410.26
ete” > uii 10899.33
ete” > dd 10711.01
99 ete” >t 10862.86
ete” = 55 10737.84
ete~ — bb 10769.78
Z — c¢,Z — dd/bb 98.97
7ZZ — dddd 233.46
Z2)
ZZ — uiiuit 85.68
Z — uii,Z — s5/bb 98.56
Z-optu, Z - utu 15.56
A S VA S ot & 4.61
(Z2), AT WTRVASAA 19.38
Z-thr Z o ptu 18.65
Z -1, Z > vy 9.61
Z—-utu~,Z—dd 136.14
Four-fermion background
Z - utu,Z - uii 87.39
Z > w,Z—dd 139.71
(Z2)51
Z > vv,Z = uil 84.38
Z—-ttr,Z—dd 67.31
Z - 11,7 > ui 41.56
WW — uubd 0.05
WW — ccbs 5.89
(WW)n WW — ccds 170.18
WW — cusd 3478.89
WW — uusd 170.45

Continued on next page
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Table 2-continued from previous page

Category Name Decay modes Cross section/fb
(WW), WW — 4leptons 403.66
W — uv,, W — qg 242343
(WW)g _ _
W — 19, W — qq 2423.56
ete™,Z —ete” 78.49
ete , Z - utu 845.81
ete”,Z— v 28.94
(SZ)
ete ™, Z—>1rr 147.28
viv ., Z - utu 43.42
viv ., Z -1ttt 14.57
ete ,Z—dd 125.83
Four-fermion background ete”,Z —> uii 190.21
SZ)s -
vty ,Z—>dd 90.03
viv©,Z = uii 55.59
eve, W — v, 436.70
(SW)
eve, W = 1v; 435.93
SW)g eve, W = qq 2612.62
ZZ|WW — ccss 1607.55
(mix),
ZZIWW — uudd 1610.32
ZZIWW — upv,vy, 221.10
(mix); ZZ|WW - 1t1veve 211.18
SZ/SW — eev,v, 249.48

III. EVENT SELECTION

The following criteria are applied to select events for
further analysis. Each event must contain at least two
tracks with opposite charges reconstructed as a muon pair
(u*u). The muon candidates in each event must be isol-
ated by satisfying EZ . <4E, +12.2GeV [16], where Eopn
is the sum of energy within a cone (cos6f.oe > 0.98)
around the muon. When more than two muons are selec-
ted, the muon pair with an invariant mass closest to the Z
boson mass, corresponding to a Z-mass window of 75
GeV to 105 GeV, is chosen as the Z candidate. The in-
variant mass of the recoil system, M, against the Z bo-
son candidate is defined as

er;lcml — \/( \/E_E‘qu _Elf)z _(Plﬁ +Plf)2 , (5)

where /s =240 GeV, while E and P represent the en-
ergy and momentum of the muons, respectively. Using
this equation, M;«" must fall within the Higgs mass win-
dow of 110 GeV to 150 GeV. To further reduce the two-
fermion background, the polar angle of the muon pair
system must be in the range of |cos6,+,-| < 0.996.

Figure 1 shows the invariant mass distribution of the
selected muon pair, and Fig. 2 presents the invariant mass

distribution of the muon pair recoil system for both sig-
nal and background events after the isolation and muon
pair criteria have been applied. In both distributions, a
high signal efficiency of more than 90% is achieved,
while the background contributions are significantly sup-
pressed by the applied mass window selections.

Table 3 presents the event selection efficiencies for
various signal and background processes, detailing the ef-
ficiency at each selection step relative to the previous re-
quirement. In addition, the total efficiency is defined as
the ratio of the number of events satisfying all selection
criteria to the total number of events expected from the
considered process (signal or background). For signal
processes, a high efficiency of over 80% is observed. In
contrast, two-fermion background processes, primarily //,
exhibit a total efficiency of around 0.3% and other contri-
butions are negligible. Four-fermion backgrounds, such
as (ZZ),, (ZZ)y, and (WW),, have total efficiencies of
3.3%, 1.3%, and 2.1%, respectively, while (ZZ),,, (WW),,,
and (WW), are found to be negligible.

IV. MODELING WITH PARTICLE FLOW
NETWORKS

Machine learning algorithms, particularly those with
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Fig. 1.  (color online) Invariant mass distributions of the
muon pair for signal and background events after applying the
muon pair and isolation selection criteria. The signal is well
preserved, maintaining a high efficiency exceeding 90%,
while background contributions are largely suppressed. Sig-
nal events are normalized to 1000 times the expected yields,
and background events are normalized to their expected yields
in data with an integrated luminosity of 5600 fb™".
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Fig. 2.  (color online) Invariant mass distributions of the
muon pair recoil system for signal and background events
after applying muon pair and isolation selection criteria. The
signal is well preserved, retaining an efficiency of over 90%,
while background contributions are significantly suppressed.
Signal events are normalized to 1000 times the expected
yields, and background events are normalized to their expec-
ted yields in data with an integrated luminosity of 5600 fb™".

Table 3. The cutflow selection efficiency for the signal and background processes, relative selection efficiency after each require-
ment was applied, and total selection efficiency for each process.
H — bb H—cc H—gg H— 17 H— WW* H— 77"
Simulated events 1.00x10°  1.00x10° 1.00x10°  3.72x10° 1.00x 10° 1.00x 10°
Muon pair 94.45% 94.24% 94.17% 94.94% 94.91% 94.43%
Isolation 91.47% 92.76% 93.31% 94.47% 93.77% 93.99%
Z-mass window 96.28% 96.41% 96.41% 92.95% 93.03% 95.28%
H-mass window 99.64% 99.66% 99.65% 98.98% 98.88% 99.36%
lcosf,+,-| < 0.996 99.66% 99.66% 99.66% 99.64% 99.65% 99.65%
Total efficiency 82.59% 83.70% 84.14% 81.95% 81.58% 83.72%
I} vy qq Z2), (Z2), Z2)y (WW), (WW), (WW)g
Simulated events 120x108  3.03x107  3.03x107  3.00x10°® 1.00x107  2.60x107  250x107  2.00x107  3.00x 10’
Muon pair 11.95% 0 0.05% 0.08% 46.21% 18.91% 0.00% 11.03% 0.16%
Isolation 91.67% 0 0.40% 2.60% 74.09% 66.49% 0 96.46% 3.68%
Z-mass window 41.82% 0 0 0 67.68% 71.45% 0 34.48% 17.75%
H-mass window 6.55% 0 0 0 14.52% 15.02% 0 57.50% 36.76%
|cosf,+,-| < 0.996 90.62% 0 0 0 98.83% 99.56% 0 98.85% 99.15%
Total efficiency 0.27% 0.00% 0.00% 0.00% 3.32% 1.34% 0.00% 2.09% 0.00%
82y SZ)q (SW), EW)y (mix); (mix);
Simulated events 8.18x107  3.20x10° 3.49%10°  1.05x107 1.29% 107 1.17x 107
Muon pair 9.92% 0.02% 0 0.00% 0.00% 29.38%
Isolation 44.68% 0 0 0 0 60.77%
Z-mass window 18.46% 0 0 0 0 13.78%
H-mass window 31.71% 0 0 0 0 35.94%
|cosf,+,-| < 0.996 90.02% 0 0 0 0 62.79%
Total efficiency 0.36% 0.00% 0.00% 0.00% 0.00% 0.19%
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strong momentum in data analysis, improve their per-
formance as they gain more experience from observation-
al data or interactions with their environment. In particle
physics, several neural network models, such as PFNs,
Particle Net [17], and Particle Transformer [18] have
demonstrated excellent performance in tasks such as
event classification and jet tagging.

Inspired by point clouds and DeepSet theory [19],
Ref. [12] introduced Energy Flow Networks (EFN) and
developed PFNs that can accommodate inputs of all in-
formation at particle level. This end-to-end learning ap-
proach eliminates the dependency on jet clustering and
ely isolation. In the DeepSet conception, permutation in-
variance and equivariance are essential for handling un-
ordered sets of data. The EFN relies on summation, a
symmetric operation that ensures invariance across the
elements in a set. PFN defines the mapping F(3_, @(p;))
for event encoding. In the map, p represents particle fea-
tures such as rapidity or transverse momentum, and ®(p)
is a latent space representation of these features. The
function /' maps the encoded representations to the net-
work's output. The architecture of the PFN model is
defined by the number of layers and neurons within both
Fand ®.

In configuring the PFN model, after evaluating vari-
ous configurations, parameters yielding the best perform-
ance were chosen. The function ®(p) consists of three
layers, where the layers have 64, 64, and 50 neurons, re-
spectively. In addition, the function F also contains three
layers with 64, 64, and 40 neurons, respectively. The
fully connected layer is directly used in both @ and F.
Each layer uses the ReLU activation function [20] and
adam optimizer [21]. The SoftMax activation function is
applied to the output layer.

Based on the selection criteria discussed in Section
111, the training process involves a twelve-classification
task. The signal includes six distinct Higgs decay chan-
nels, while the background contains one two-fermion
background class (/) and five four-fermion classes
((Z2),, (ZZ)g4, (WW),, (SZ); and (mix);). During the train-
ing procedure, 300,000 events are fed to the model whose
weights are all equal to 1. The data is split into training,
validation, and test sets in an 8:1:1 ratio. The PFN is an
end-to-end neural network designed to directly utilize the
information of the particles to classify events. The train-
ing variables include the energy of the particle, mo-
mentum, the azimuth angle ¢, cosf, where 6 is the polar
angle, particle identification number (PID), and impact
parameters, including Dy, and Z,, which represent co-
ordinates in the cylindrical coordinate system.

For the remaining training hyperparameters, the num-
ber of epochs is set to 200, with a batch size of 1000 and
a learning rate of 0.001. The loss function uses cross-en-
tropy for multi-class classification problems, while the
SoftMax function in the final output layer calculates the

score of each class of a given event. The scores can be
used for further analysis.

V. THE MODEL PERFORMANCE

To assess the performance of the model, several prop-
erties are considered: After each training epoch, the neur-
al network assesses itself using a validation set, generat-
ing a loss-accuracy curve that tracks changes in accuracy
throughout the training process. This curve is particularly
useful for detecting potential overfitting. As shown in
Fig. 3, the loss and accuracy curves converge towards the
end of the training and a high overlap of the training and
validation set curves indicates that the model has high
generalizability.

The Receiver Operating Characteristic Curve (ROC)
is a graphical representation of the distinction ability of a
classifier model as the discrimination threshold is varied.
Figure 4 depicts the True Positive Rate (TPR) versus the
False Positive Rate (FPR) at various discrimination
thresholds. The goal of the training is to maximize the
TPR while minimizing FPR; therefore, the Area Under
the Curve (AUC) value serves as an important metric for
evaluating the performance of the model. The area under
the ROC curve ranges from 0 to 1, where a value of 1 in-
dicates perfect classification and a value of 0.5 suggests
random classification, indicating that the classifier lacks
discriminatory power. As shown in Fig. 4, the AUC value
for each class is above 0.94, indicating a strong classifica-
tion performance and the ability of the model to effect-
ively distinguish between classes.

The classifier outputs are obtained from a nine-unit
layer using the SoftMax function. Considering the cat-

model accuracy/loss

accuracy/loss

0 25 50 75 100 125 150 175 200

Fig. 3.  (color online) The Loss-accuracy vs epochs curves.
The upper two lines are the accuracy curves for the training
and validation sets, while the bottom lines are the loss curves
for the training and validation sets.
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Receiver Operating Characteristic Curve
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4 —— ROC of Hgg (AUC = 0.981)
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False Positive Rate

Fig. 4.  (color online) ROC curves for signal and back-
ground processes used in classification. The solid lines are the
ROC curves of each process considered, and the dashed lines
are the ROC curves of the micro and macro average. The
dashed black line represents random classification. The AUC
value for each class is above 0.94, indicating the strong classi-
fication ability of the model.

egory H — bb as an example, the SoftMax function com-
putes twelve scores for each event, representing the prob-
ability distribution for each process being classified as
H — bb. As illustrated in Fig. 5 (b), in the region where
the score exceeds 0.8, 99% of the events correspond to
the H — bb signal process while only 1% of the events
originate from the (ZZ),; background. These statistics can
be owing to the Z — u*u~,Z — uit/dd processes in the
(Z27), background, which have similar properties with the
signal, making the classification more challenging. In ad-
dition, the PFN has similar performance in other categor-
ies. Furthermore, the PFN demonstrates similar perform-
ance across other categories. To understand the twelve-
dimensional scores more intuitively, the t-SNE algorithm
[22] is applied to reduce the dimensions of the dataset.

As a non-linear dimension reduction algorithm, t-SNE
constructs a similarity matrix and aims to preserve the re-
lationships between data points in both high-dimensional
and low-dimensional spaces. The differences in high di-
mensions are represented as distances in two or three di-
mensions. As shown in Fig. 6, the (WW), and (S Z), pro-
cesses are relatively well separated, while signal process
such as H—cc, H—gg, H— WW* overlap signific-
antly. In addition, the H — ZZ* process has similarities
with all other signal processes, indicating room for fur-
ther model training optimization.

In supervised learning, the migration matrix is used to
compare the classified model’s predictions and true val-

ues. Based on the twelve classification task, twelve cat-
egories representing the process with the highest score for
a given event are reconstructed. In Fig. 7, the diagonal
elements of the matrix represent the correctly classified
rates, indicating the purity of each category, while the
off-diagonal elements show the misclassification rates.
The sum of values in each row is equal to 1. The decays
of H— WW* and H — ZZ* are considered inclusively,
while the classifier can distinguish hadronic decays from
non-hadronic decays. The migration matrix reflects the
overall high accuracy of the model.

VI. THE DETERMINATION OF THE
BRANCHING FRACTIONS

The migration matrix contains the information of both
correct and incorrect classifications and can be unfolded
to represent the generated number of signals [23]. This
matrix method is therefore used to measure the branch-
ing fractions of Higgs decays. By considering all signal
and background processes, the generated numbers of
events for each process can be calculated as follows:

Nsl ng1
Ns2 Ng
= (MLM) " x| T (6)
Nbl ¢ Np1
Ny Ny

where n; and N; are the expected and generated number
of events of class i, respectively. The M, is a diagonal
matrix containing the selection efficiencies, while M,
denotes the transposed migration matrix:

El,l 61271

ML=\ .. . .. , (7

mig —

€12 - €212

where ¢; is the rate at which state i is reconstructed as
state j, which is the corresponding element of the trans-
posed migration matrix. Besides, n; is obtained from MC
samples processed by the PFN model. The branching
fraction for each process is then calculated by dividing
the corresponding generated number of events by the
total number of events in Higgs decays.

VII. RESULTS

In this analysis, by using the PFN method to separate
events in the u*u~H process, the branching fractions of
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Fig. 5.
for the processes identified within each category.

H — bb/cc/gg/tT/WW*/ZZ* at the CEPC, which has a
center-of-mass energy of 240 GeV and luminosity of
5600 fb!, are measured to be 0.5770, 0.0291, 0.0857,
0.0632, 0.2150, and 0.0264 with statistical uncertainties
of 0.55%, 8.59%, 3.03%, 2.85%, 1.58%, and 15.81%, re-
spectively.

The statistical uncertainty is estimated using the
toyMC method. The number of events are changed ac-
cording to the Poisson distribution and then applied to a
multinomial distribution according to the migration mat-
rix and selection efficiency. A least squares fit of the
measured branching fractions to theoretical fractions is
performed 50k times, as shown in Eq. (8):

0.4
(S2), score

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(mix); score

(color online) Distributions of classifier outputs for twelve categories. Each histogram represents the probability distribution

N 2
Yi—ni
st (o) o
=1 O

i

where Y; is the theoretical branching fraction of process i
and 5, is the measured branching fraction with an error of
0. The final results are fitted with a guassian function of
Higgs decays, where the mean value represents the fitted
branching fraction and ¢ denotes the statistic error. The
fit results and statistical uncertainties are summarized in
Table 4.

To account for systematic uncertainty, the resolution
of the transverse momentum of the detector was adjusted
by increasing it by 2% to represent differences between
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Table 4. Measured branching fractions for the Higgs decays along with their statistical uncertainties. The statistical uncertainty
ranges from 0.55% (H — bb) to 15.81% (H — ZZ*).
Higgs boson decay H — bb H— cc H—gg H-—>1T H - Ww* H—Z7Z*
branching fraction 0.5770 0.0291 0.0857 0.0632 0.2150 0.0264
statistical uncertainty +0.55% +8.59% +3.03% +2.85% +1.58% +15.81%
60
Hbb LIEERL 6.29% 0.83% 4.85% 0.55% 0.00% 0.00% 1.10% 0.00% 0.00% 0.00% 0.00%
Hee 43-10% CIUGHEZ 4.67% 1.53% 8.44% 0.01% 0.00% 1.59% 0.00% 0.00% 0.00% 0.00%
40 0.8
|L93,93 Hag 3.46% 5.09% EYEE 3.32% 6.38% 0.00% 0.00% 1.27% 0.00% 0.00% 0.00% 0.00%
Wiifu)
% Hzz 48-90% 4.74% 11.19%48.67%16.40% 0.93% 0.55% 4.35% 0.18% 0.36% 1.46% 2.27%
20 Hww 40-26% 5.26% 10.30% 6.27% 1.69% 1.22% 2.25% 0.00% 0.00% 0.14% 0.00% 0.6
%]
wn
N O Hrr {0.00% 0.00% 0.00% 0.20% 0.43% HBEERE 1.94% 0.01% 0.01% 0.00% 0.03% 0.00%
4
é 0 o (Z2) 0.00% 0.00% 0.00% 0.52% 0.71% 8.75% PAWEZ 0.04% 0.97% 8.64% 6.62% 11.67%
=)
=] = 0.4
% (Z2)9 3.05% 3.26% 3.29% 2.86% 1.95% 0.00% 0.08% JsW¥AZ 0.00% 0.00% 0.00% 0.00%
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Fig. 7. (color online) Migration matrix of the 12 classes. The
Fig. 6. (color online) Classification performance visualized

using the t-SNE algorithm. Different colored squares repres-
ent distinct processes, with two t-SNE features corresponding
to similarity dimensions. The distance between squares re-
flects the difference between the processes.

real data and simulated samples. By applying the previ-
ous PFN model to MC samples generated with updated
resolutions, the differences in branching fractions before
and after the resolution change are considered as the sys-
tematic uncertainty. The systematic uncertainties for the
branching fractions are estimated to be 0.21%, 3.88%,
2.74%, 1.39%, 0.18%, and 19.09% for the
bb/cc/gg/tT/WW*/ZZ* final states, respectively.

VIII. CONCLUSION

The Higgs boson branching fractions into bb/cc/gg
and t7/WW*/ZZ*, where the W or Z bosons decay had-
ronically via the Z(u*u~)H process, are studied using the
PFN method at a center-of-mass energy of 240 GeV and
a luminosity of 5600 fb™' at the CEPC. Simulated
samples of "two-fermion" and "four-fermion" processes
are considered as backgrounds. The PFN model demon-
strates strong performance in classifying different chan-
nels and generalizing across processes. The statistical un-
certainties of the branching fractions of the H —
bb/cc/gg/TT/WW*|ZZ* processes are estimated to be ap-

horizontal axis represents the prediction of the model for each
event in the test set, while the vertical axis indicates the true
labels. The sum of values in each row is equal to 1.

proximately 0.55%, 8.59%, 3.03%, 2.85%, 1.58% and
15.81%, respectively. Compared to a previous analysis
[16], which reported statistical uncertainties of 1.1%,
10.5%, and 5.4% for the branching fractions of
H — bb/cc/gg process, the PFN method achieves higher
precision in a single execution, due to its better perform-
ance and deeper data exploitation. By increasing the
transverse momentum resolution by 2% to account for
differences between real data and simulated samples, the
systematic uncertainties for the branching fractions are
estimated to be 0.21%, 3.88%, 2.74%, 1.39%, 0.18% and
19.09% for bb/cc/gg/rT/WW*/ZZ* final states, respect-
ively. This study achieves highly precise measurements
of the decay branching fractions of the Higgs bosn, which
aids in improving the understanding of the properties of
the Higgs boson and contributes to further tests of the
Standard Model.
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