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Abstract: In this work, we investigate the resonance structures in the   system from both three-quark and
five-quark perspectives  within  the  framework of  the  chiral  quark model.  An accurate  few-body computational  ap-
proach, the Gaussian expansion method, is employed to construct the orbital wave functions of multiquark states. To
reduce the model dependence on parameters, we fit two sets of parameters to check the stability of the results. The
calculations show that  our results  remain stable despite changes in the parameters.  In the three-quark calculations,
two   states are obtained with energies around 1.8 GeV, which are good candidates for the experimentally ob-
served   and  . In the five-quark configuration, several stable resonance states are identified, includ-
ing  ,  , and  . These resonance states survive the channel-coupling calculations under the complex-scaling
framework  and  manifest  as  stable  structures.  Our  results  support  the  existence  of  a  two-pole  structure  for  the

  system,  predominantly  composed  of    and    configurations,  analogous  to  the  well-known  -
  ( - )  system.  On  the  other  hand,  although  the  energy  of  the    configuration  is  close  to  that  of
 and  , the obtained width is not consistent with the experimental values. This suggests that the 

state needs to mix with three-quark components to better explain the experimental   and   states. Ac-
cording to our decay width calculations, the predicted two resonance states are primarily composed of   and  ,
with their main decay channel being  . Therefore, we encourage experimental groups to search for the predicted
two-pole structure of the   system in the invariant mass spectrum of  .
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I.  INTRODUCTION

X(3872) Λ(1405)

The search for exotic states has long been a hot topic
in hadron  physics,  with  multiquark  configurations   play-
ing a crucial role in their interpretation. In the framework
of  the  traditional  quark  model,  baryons  are  described  as
three-quark  states  and  mesons  as  quark-antiquark  pairs.
This has been remarkably successful in describing a large
number of ground-state hadrons [1, 2];  however,  it  faces
significant challenges  in  explaining  certain  excited   had-
rons  such  as  the    [3]  and    [4].  It  is  now
widely believed that many excited hadrons may have sub-

stantial multiquark components in their internal structure.
Understanding  interactions  among  multiquark  systems
and  revealing  their  underlying  structure  is  essential  for
deepening our comprehension of quantum chromodynam-
ics (QCD).
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1.3 1.4

Among the  excited baryons,  the  resonance structures
in  the    system  have  attracted  sustained  interest.
Experimentally, four   states were observed to date
[5],  namely,  ,  ,  ,  and  .
However,  various  theoretical  studies  [6−11]  suggested
the  possible  existence  of  a  stable  structure  in  the  mass
range of  −  GeV. In Ref.  [6], the authors construc-

        Received 12 June 2025; Accepted 29 October 2025; Accepted manuscript online 30 October 2025
      * Supported partly by the National Science Foundation of China (12205249, 12305087). Yue Tan is supported by the Funding for School-Level Research Projects of
Yancheng Institute of Technology (xjr2022039) and the Qinglan Project Fund of Jiangsu Province. Qi Huang is supported by the Start-up Funds of Nanjing Normal
University (184080H201B20)
     † E-mail: tanyue@ycit.edu.cn (Corresponding author)
     ‡ E-mail: huangqi@njnu.edu.cn (Corresponding author)

Chinese Physics C    Vol. 50, No. 2 (2026) 023109

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd

023109-1

http://orcid.org/0000-0002-0995-958X
http://orcid.org/0000-0002-6120-9962
http://orcid.org/0000-0003-4447-7938


JP = 1/2−

Σ(1/2−)
Λ(1/2−)

Λ(1405)
K−p→ Λπ−π+

Λ∗(1520)

K−p→ Λπ−π+

J/ψ→ ΛΛ̄π
Λπ

Λ+c → γπ+Λ

Σ(1/2+)
Λ(1/2+) JP = 1/2−

Σ(1620)

Σ(1750) Σ(1900) Λ(1670)
Λ(1800)

Λ(1405) Λ(1380)

ted  a  diquark  picture  for  the  pentaquark  with 
and predicted  the  lowest  mass  of  the    state  to  be
~1.36 GeV, while the corresponding lowest   state
lies at  1.44  GeV.  This  result  is  consistent  with  the   ob-
served  . Using the effective Lagrangian approach,
Ref.  [7]  investigated  the    reaction near  the

  peak  and  found  evidence  for  a  new  resonance
around 1.38 GeV. This result was later confirmed in Ref.
[8] through a re-examination of older   data,
which  further  suggested  that  the  width  of  this  resonance
could be larger than previously estimated. More recently,
Ref.  [9]  explored  the  role  of  triangle  singularities  in  the
process  . The triangle singularity plays a sig-
nificant  role  in  shaping the    invariant  mass spectrum,
leading  to  the  appearance  of  a  resonance-like  structure
around 1.4 GeV. Similarly, within the triangle singularity
framework  and  using  an  effective  Lagrangian  approach,
Ref.  [11] investigated  resonance  production  in  the   reac-
tion  ,  which  predicts  a  resonance  near  1.38
GeV. Σ  baryons,  as  isospin  partners  of  the  Λ  states,   ex-
hibit a similar spectral structure. Figure 1 shows that the
energy of  the   state  is  ~76 MeV higher  than that
of the   state. In the   sector, if we disreg-
ard  the  experimentally  uncertain    state  (which
currently has only a one-star rating), a parallel pattern can
be observed:   and   correspond to 
and  , respectively. Based on this correspondence,
the  well-established    and  tentative 
(though the latter lacks strong experimental confirmation)
would  naturally  imply  the  existence  of  a  Σ  resonance  in
the mass range of 1.3−1.4 GeV.
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It  is  widely  accepted  that  the    and  tentative
  arise  from  a  two-pole  structure  [12−15]  gener-
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ated by the coupled-channel  interaction between the 
and   channels.  That  is,  under  strong channel  coupling
effects,  both    and    components remain   dynamic-
ally  stable.  In  this  study,  within  the  framework  of  the
chiral quark model and with the help of a high-precision
few-body  method,  the  Gaussian  expansion  method
(GEM)  first  calculates  the  energy  of  the    system
in  the  three-quark  configuration.  Then,  we  focus  on  the
five-quark picture,  where  we perform bound-state calcu-
lations  for  the    system in  various  physical   chan-
nels,  whic  includes  ,  ,  and  others.  Subsequently,
the complex-scaling method, which is a powerful tool for
identifying  resonance  states,  is  employed  for  examining
the stability of the resonances found in bound-state calcu-
lations.  In  our  analysis,  the  effects  of  channel  coupling
are  thoroughly  considered  as  we  couple  the  obtained
states to all relevant scattering channels.

The  remainder  of  this  paper  is  organized  as  follows:
Sec.  II  provides  a  brief  description  of  the  quark  model,
construction of wave functions, and overview of the com-
plex-scaling  method.  Our  numerical  results  and  related
discussions are presented in Sec. III.  Finally, a summary
is given in Sec. IV. 

II.  MODEL SETUP
 

A.    Chiral quark model

Σ(1/2−)
In  this  study,  the  chiral  quark  model  is  employed  to

investigate  the    system.  The  chiral  quark  model
[16−18] has  become  one  of  the  most  widely  used   ap-
proaches in hadron spectroscopy,  hadron-hadron interac-
tions, and  study  of  multiquark  states  because  of  its   suc-
cessful  explanation  of  a  large  amount  of  experimental
data.  In  this  model,  in  addition  to  one-gluon  exchange,
the  massive  constituent  quarks  interact  with  each  other
via  the  Goldstone  boson  exchange.  Furthermore,  color
confinement  and  meson  exchange  are  incorporated  into
the model. The Hamiltonian of the chiral quark model is
expressed as 

H =
n∑

i=1

Å
mi+

p⃗2
i

2mi

ã
−Tc+

n∑
i< j=1

V(ri j), (1)

mi p⃗i Tc V(ri j)

∑n
i=1

Å
mi+

p⃗2
i

2mi

ã
−Tc

where  ,  ,  ,  and    represent  the  quark  mass,
quark  momentum,  center-of-mass  kinetic  energy  of  the
quark system, and potential term, respectively. In the Jac-
obi coordinate system for a three-quark system, the kinet-

ic term   can be reduced to
 

p⃗2
12

2µ12
+

p⃗2
12,3

2µ12,3
, (2)

 

Fig.  1.      (color online) Comparison of energy levels  between
Σ and Λ baryons.
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and for a five-quark system, it can be reduced to 

p⃗2
12

2µ12
+

p⃗2
12,3

2µ12,3
+

p⃗2
45

2µ45
+

p⃗2
123,45

2µ123,45
. (3)

a0 f0

ρ−ω

We  are  studying  light  hadronic  states  (with  quark
constituents u, d,  and s), and therefore,  the  chiral  poten-
tial,  including  the  Goldstone  boson  exchanges  (π,  η, K)
and scalar meson exchanges ( ,  , κ, σ),  play a crucial
role. Among  these,  the  scalar  meson  exchanges  are   im-
portant  for  resolving  the    mass  inversion  problem
[19]. The interaction potentials are 

Vπ(ri j) =
g2

ch

4π
m2
π

3mim j

Λ2
πmπ

Λ2
π−m2

π

Ŝ i · Ŝ j

3∑
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λa
i λ

a
j

×
ï
Y(mπri j)−

Λ3
π

m3
π

Y(Λπri j)
ò
,

VK(ri j) =
g2

ch

4π
m2

K

3mim j

Λ2
KmK

Λ2
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K
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3∑
a=1

λa
i λ

a
j

×
ï

Y(mKri j)−
Λ3

K

m3
K

Y(ΛKri j)
ò
,

Vη(ri j) =
g2

ch

4π
m2
η

3mim j

Λ2
ηmη

Λ2
η −m2

η

Ŝ i · Ŝ j
(
λ8

i λ
8
j cosθP

−λ0
i λ

0
j sinθP

)ñ
Y(mηri j)−

Λ3
η

m3
η

Y(Ληri j)

ô
,

Vs(ri j) = vσ(ri j)λ0
i λ

0
j + va0 (ri j)

3∑
a=1

λa
i λ

a
j

vκ(ri j)
7∑

a=4

λa
i λ

a
j + v f0 (ri j)λ8

i λ
8
j , s = a0, f0, κ,σ

vs = −
g2

ch

4π
Λ2

s

Λ2
s −m2

s
ms

ï
Y(msri j)−

Λs

ms
Y(Λsri j)

ò
, (4)

λa SU(3)

Y(x) Y(x) =
e−x

x
Λχ

g2
ch

4π

mπ mη mK

mσ

m2
σ ≈ m2

π+4m2
u,d.

where    represents  the    Gell-Mann  matrices  that
act on the flavor wave functions of the quark system. The
Yukawa function   is explicitly defined as  ,

where    represents  the  cut-off  parameter,  and    cor-
responds to the coupling constant between the Goldstone
bosons and quarks.  The masses of  the Goldstone bosons
π, K, and η are denoted by  ,  , and  , respectively.
Meanwhile, the mass of the scalar meson   is related to
the pion mass as 

For  confinement  potential,  we  utilize  the  following
quadratic form in this study. Goldman [20] demonstrated
that,  in a  relativistic  first-order dynamical  system, an  in-
teraction  energy  that  increases  linearly  with  the  fermion
separation has a broad range where a harmonic approxim-
ation  is  applicable  for  the  second-order  reduction  of  the
equations  of  motion.  In  addition,  hadrons  are  small  in

ac

size, and within this range, the difference between linear
and quadratic confinement potentials is negligible. In ad-
dition,  this  difference  can  be  effectively  absorbed  by
parameters   and Δ in the quadratic potential. 

Vcon(ri j) =
(
−acr2

i j−∆
)
λc

i ·λc
j. (5)

Voge(ri j)The  one-gluon  exchange  potential    can  be
written as 

Voge(ri j) =
αs

4
λc

i ·λc
j

ï
1
ri j
− 2

3mim j
Ŝ i · Ŝ j

e−ri j/r0(µi j)

ri jr2
0(µi j)

ò
, (6)

λc SU(3)
r0

αs

Ŝ i

1/2

where    refers  to  the   Gell-Mann  matrices  acting
on the color wave functions of the quark system,   rep-
resents  a  model  parameter,    represents  the  coupling
constant determined through experimental fitting, and 
represents the spin operator acting on the spin-  wave
functions of quarks.

After fitting the ground states of light mesons and ba-
ryons,  all  model  parameters  are  determined,  which  are
collected into Table 1,  while the fit  results  are presented
in Table 2. 

Σ(1/2−)B.    Wave function of the  system
Σ(1/2−)We  aim  to  study  the    system  from  both  the

three-quark  and  five-quark  perspectives.  Therefore,  we

 

mπ = 0.7 fm−1 mσ = 3.42

fm−1 mη = 2.77 fm−1 mK = 2.51 fm−1

Table 1.    Quark model parameters (   , 
,    , and    ). The fourth column

corresponds  to  the  first  set  of  parameters  while  the  fifth
column corresponds to the second set of parameters.

Quark masses mu = md (MeV) 490 400

ms (MeV) 511 550

Goldstone bosons Λπ(fm−1) 3.5 3.5

Λη(fm−1) 2.2 2.2

Λσ(fm−1) 7.0 7.0

Λa0 (fm−1) 2.5 2.5

Λ f0 (fm−1) 1.2 1.2

g2
ch/(4π) 0.54 0.54

θp(◦) −15 −15

Confinement ac ·fm−2 (MeV ) 98 120

∆qq/qq̄ (MeV) –91.1/–10.1 –92.4/–20.1

∆qs/qs̄ (MeV) –58.0/–10.0 –60.4/–20.0

∆ss̄ (MeV) 18.1 –18.1

OGE αqq/qq̄ 0.69/1.34 0.61/1.31

αqs/qs̄ 0.90/1.15 0.95/1.16

αss̄ 0.91 0.91

r̂0 (MeV) 80.9 85.1
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ΨP

ΨB Σ(1/2−) ΨB

ΨP

ξl ψk

ϕi χ j

present our constructions for the wave functions (  and
)  of  .    represents  the  three-quark  structure

wave function,  while   represents the five-quark struc-
ture  wave  function.  The  total  wave  function  Ψ  is  the
tensor product of the color part  , flavor part  , orbital
part  , and spin part  . 

Ψ
Bi jkl
J,mJ(r) =A3

[
ϕBi

l χ
B j
]

J,mJ ψ
Bk
I,mIξ

Bl , (7)

 

Ψ
Pi jkl
J,mJ(r) =A5

[
ϕPi

l χ
P j
]

J,mJ ψ
Pk
I,mIξ

Pl , (8)

A3 A5where   and   represent the antisymmetrization oper-
ators  for  the  three-quark  and  five-quark  wave  functions,
respectively.

ϕnlm

ϕi
l

For the orbital wave function   (which we will de-
note as    for  convenience),  we adopt the GEM [21] for
expansion.  In  the  GEM  framework,  the  wave  function
with principal  quantum number n, orbital  quantum num-
ber l, and magnetic quantum number m can be expressed
as 

ϕnlm(r) = Nnlrle−νnr2
Ylm(r), (9)

Nnlwith   being the normalization constants as 

Nnl =

ñ
2l+2(2νn)l+ 3

2

√
π(2l+1)

ô 1
2

. (10)

ϕB
L,mL

(r)

ϕP
L,mL

(r)

For  the  three-quark system,  there  are  two  relative   mo-
tions,  whereas  for  the  five-quark  system,  there  are  four
relative motions.  We denote  the  total  orbital  wave   func-
tion  for  the  three-quark  system  as  ,  and  the  total
orbital  wave  function  for  the  five-quark  system  as

. These wave functions can be written as 

ϕB1
L,mL

(r) = ϕl12 (r12)ϕl3 (r3), (11)

 

ϕP1
L,mL

(r) = ϕl12 (r12)ϕl3 (r3)ϕl45 (r45)ϕl123,45 (R). (12)

12
123,45

The subscripts  in  the  wave  functions  represent  the   relat-
ive motion  between  specific  quarks.  For  example,   sub-
script    refers  to  the  relative  motion  between  quarks  1
and  2,  and    refers  to  the  relative  motion  between
quarks 1, 2, and 3 with respect to quarks 4 and 5.

S = 1/2
S = 3/2 S = 1/2

S 1 = 1/2 S 2 = 1/2
S 12 = 0,1

S 3 = 1/2
S = 1/2

χB1
1
2

χB2
1
2

S = 3/2
χB3

3
2

The spin wave function of the three-quark system can
be  of  two  possible  spin  configurations:    and

.  For  ,  it  can be obtained by coupling the
spin   of quark 1 with the spin   of quark
2, which results in the intermediate spin  . Then,
this is coupled with the spin   of the third quark to
obtain the total spin  .  We denote the former case
as   and the latter as  . The   configuration is
denoted as  .
 

χB1
1
2 ,

1
2
=

1√
2

(αβα−βαα) , (13)

 

χB1
1
2 ,−

1
2
=

1√
2

(αββ−βαβ) , (14)

 

χB2
1
2 ,

1
2
=

1√
6

(2ααβ−αβα−βαα) , (15)

 

χB2
1
2 ,−

1
2
=

1√
6

(αββ+βαβ−2ββα) , (16)

 

χB3
3
2 ,

3
2
= ααα, (17)

 

χB3
3
2 ,

1
2
=

1√
3

(ααβ+αβα+βαα), (18)

 

 

Table 2.      Results of the hadron spectrum calculation. QM.1
and QM.2 represent the mass of the states under two different
sets of parameters.

IJP state QM.1 QM.2 PDG [5]

10− π 143 147 139

00− η 599 623 547

11− ρ 786 720 770

01− ω 800 733 782
1
2

0− K 495 512 495

1
2

1− K∗ 915 893 892

00− η′ 804 828 957

01− ϕ 1029 1052 1020
1
2

1
2

+

N 939 939 939

3
2

1
2

+

Δ 1271 1297 1232

0
1
2

+

Λ 1071 1063 1116

1
1
2

+

Σ 1215 1224 1226

1
3
2

+

Σ∗ 1345 1363 1384

1
1
2

+

Σ(
1
2

−
) 1782 1826 1750

1
1
2

+

Σ∗(
1
2

−
) 1829 1889 1900

1
2

1
2

+

Ξ 1369 1363 1318

1
2

1
2

+

Ξ∗ 1479 1491 1553

3
2

1
2

+

Ω 1671 1694 1672
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χB3
3
2 ,−

1
2
=

1√
3

(αββ+βαβ+ββα), (19)
 

χB3
3
2 ,−

3
2
= βββ. (20)

JP = 1/2−
1
2 ⊗0 1

2 ⊗1 3
2 ⊗1

1/2
1/2
χP1

1
2

χP2
1
2

χP3
1
2

χP4
1
2

χP5
1
2

The spin wave function of the five-quark system can
be considered as the coupling of the spin of a three-quark
subsystem and spin of a quark-antiquark pair. Given that

, this can be obtained by coupling the following
spin configurations:  ,  ,  and  .  According to
the previous discussion, when the spin of the three-quark
system  is  ,  there  are  two  possible  configurations.
Therefore,  we  can  obtain  five  total  spin   wave  func-
tions.  These  are  denoted  sequentially  as  ,  ,  ,

, and  .
 

χP1
1
2 ,

1
2
=

1√
2

(αβα−βαα)× 1√
2

(αβ−βα),

χP2
1
2 ,

1
2
=

1√
6

(2ααβ−αβα−βαα)× 1√
2

(αβ−βα),

χP3
1
2 ,

1
2
=

1√
12

(αβααβ+αβαβα−βαααβ−βααβα

−2αββαα−2βαβαα),

χP4
1
2 ,

1
2
=

1√
36

(2ααβαβ+2ααββα−αβααβ−αβαβα

−βαααβ−βααβα−2αββαα

+2βαβαα−4ββααα),

χP5
1
2 ,

1
2
=

1√
18

(αββαα+βαβαα+ββααα−ααβαβ

−ααββα−αβααβ−αβαβα−βαααβ

−βααβα+3αααββ).

Σ(1/2−)
ψB1

I=1

The  isospin  of  the    system is  1.  In  the  three-
quark framework, its flavor wave function   can be ex-
pressed as 

ψB1
I=1 =

1√
2

(uds+dus). (21)

qqq− q̄s qqs− q̄q
qqq− q̄s I = 1

1
2 ⊗

1
2

3
2 ⊗

1
2

1
2

0⊗ 1
2 1⊗ 1

2
ψP1

I=1 ψP2
I=1 ψP3

I=1

In  the  five-quark framework,  it  has  two possible   fla-
vor  combinations:    and  . In  the  first   fla-
vor  structure  ,  the  total  isospin    coupling
scheme  is    and  .  Since    can  be  obtained  by
coupling   or  ,  we can obtain three total  isospin
wave functions. These are denoted as  ,  , and  .
 

ψP1
I=1 =

1√
2

(udud̄s−duud̄s), (22)

 

ψP2
I=1 =

1√
6

(2uudd̄s−udud̄s−duud̄s), (23)
 

ψP3
I=1 =

1√
12

(uudd̄s+udud̄s+duud̄s+3uuuūs). (24)

qqs− q̄q
I = 1 0⊗1 1⊗0 1⊗1

ψP4
I=1 ψP5

I=1 ψP6
I=1

In  the  second  flavor  structure  ,  the  total  isospin
 coupling schemes are  ,  ,  and  .  These

are denoted as  ,  , and  .
 

ψP4
I=1 =

1√
2

(udsd̄u−dusd̄u), (25)

 

ψP5
I=1 =

1√
2

(uusūu+uusd̄d), (26)

 

ψP6
I=1 =

1√
4

(−udsd̄u−dusd̄u−uusd̄u+uusd̄d). (27)

For the color  wave function in a  three-quark system,
it  must be in a color-neutral state.  Hence, it  is  expressed
as 

ξB =
1√
6

(rgb−grb+gbr−brg+bgr) . (28)

ξP1

For  a  five-quark system,  the  color  wave function can be
viewed  as  the  combination  of  the  three-quark  and  two-
quark color  wave  functions  when  considering  a  molecu-
lar state configuration. This can be obtained by coupling
two color  singlet  states,  which is  represented by   and
written as 

ξP1 =
1√
6

(rgb− rbg+gbr−grb+brg−bgr)

× 1√
3

(
r̄r+ ḡg+ b̄b

)
. (29)

 

C.    Complex-scaling method

r⃗
r⃗ eiθ

The complex-scaling method introduced in Refs. [22,
23]  is  a  robust  technique  for  identifying  resonant  states.
This  method involves replacing the spatial  coordinates 
in the Hamiltonian H with  , where θ represents a com-
plex  scaling  factor.  Both  the  energy  and  decay  width
(lifetime) of the resonance can be simultaneously determ-
ined by solving the Schrodinger equation in the complex
plane.

Γ/2

In the complex-scaling framework, the real part of the
complex  energy M  is  plotted  along  the  horizontal  axis,
while the half-width   is plotted along the vertical axis.
The  system  shows  different  characteristic  behaviors  as
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the scaling angle θ varies. The method enables the simul-
taneous study of bound states, resonances, and scattering
states,  which  are  shown  in  Fig.  2.  Their  behaviors  as  θ
changes are as follows:
 

•  Bound states: For  bound states,  the corresponding
points  converge  to  the  real  energy  axis.  The  position  of
these points on the real axis directly gives the mass of the
bound state.
 

•  Scattering  states: Points corresponding  to   scatter-
ing  states  lie  along  the  scattering  line,  where  θ  is  con-
stant. The  scattering  spectrum  is  continuous,  and   there-
fore,  an infinite number of points would theoretically lie
along this  line.  To  avoid  clutter,  only  a  few  representat-
ive points are shown to illustrate the general trend within
the energy range.
 

Γ/2

•   Resonances:  Resonance  points  do  not  lie  on  the
scattering continuum (scattering line)  but  stay fixed as θ
changes.  The  vertical  position  of  these  points  represents
the  half-width  .  The  resonance  width  is  a  result  of
coupling to open scattering channels, and hence, no width
is predicted for purely three-quark or two-quark systems.
 

A  key  advantage  of  the  complex-scaling  method  is
that transforming the system into the complex coordinate
plane  significantly  enhances  the  analysis  of  resonant
states. This makes it a powerful tool for exploring reson-
ance phenomena  in  systems  governed  by  strong   interac-
tions. 

III.  RESULTS AND DISCUSSIONS

Σ(1/2−)
We first explore the possible internal quark configura-

tions  of  the    resonance  within  the  three-quark
framework.  Then,  we  perform  bound-state  calculations
within the five-quark model to identify physical channels
exhibiting attractive interactions, which may indicate the
formation  of  resonance  states.  Within  the  complex-scal-
ing framework, these resonance candidates are coupled to
all relevant scattering channels to distinguish genuine res-

onances from  unstable  ones.  All  calculations  are   per-
formed  under  two  different  parameter  sets  to  assess  the
stability  of  the  computed  results.  In  addition,  we  further
perform channel-coupling calculations between each res-
onance candidate and corresponding open channels to es-
timate the decay widths of stable resonances and analyze
the scattering behavior of unstable ones. 

A.    Three-quark calculation

Σ(1/2+) Σ(3/2+)

Σ(1750)
Σ(1900)

Σ(1/2+) Σ(3/2+)
Σ(1750) Σ(1900)

1P 1S
ρ(770) a1(1260) K∗(895) K1(1270)

K(495) K1(1270) η′(958) f1(1420)
ϕ(1020) f1(1420)

Baryon  energies  obtained  from  three-quark  calcula-
tions are listed in Table 2. Under the two parameter sets,
the ground states   and   are in good agree-
ment with  experimental  observations.  Based on this,  un-
der the  first  set  of  parameters,  their  respective  first   ex-
cited states  are  found at  1782 and 1829 MeV, while  un-
der the second set of parameters, their respective first ex-
cited states are found at  1826 and 1889 MeV, which are
consistent with the experimentally observed   and

,  respectively.  From  another  perspective,  mass
differences  between  the  ground  states  , 
and  their  excited  counterparts  ,    are  both
around 500 MeV. This is comparable to the average mass
difference between the   and   states of mesons such
as  -   (490  MeV),  -   (375
MeV),  -   (775  MeV),  -
(462 MeV), and  -  (400 MeV). The aver-
age of these values is ~500 MeV.

Σ(1750) Σ(1900)

Λ(1670) Λ(1800) Λ(1/2−)
Σ(1/2−)

Λ(1/2−) Σ(1/2−)

Λ(1405) Λ(1380)

Therefore, it is reasonable to consider that the experi-
mentally observed   and   are likely domin-
ated  by  three-quark  components,  which  is  similar  to

 and   resonances in the   sector. If
there exists a one-to-one correspondence between 
and   families, then   resonances should ex-
ist  in  the  1.3−1.4  GeV  mass  region,  analogous  to  the

 and  ,  and it  is  predominantly composed
of five-quark components. 

B.    Five-quark calculations
 

1.    Bound-state calculation

Σ(1/2−)
qqq q̄s qqs q̄q

qqq q̄s I = 1
1
2 ⊗

1
2

3
2 ⊗

1
2

J = 1/2 1
2 ⊗0 1

2 ⊗1 3
2 ⊗1
NK̄

NK̄∗ ∆K̄∗ qqs q̄q
I = 1 0⊗1 1⊗0

1⊗1 J = 1/2
1
2 ⊗0 1

2 ⊗1 3
2 ⊗1

Λπ Λρ Σπ Σρ Ση Σω Σ∗ω
Σ∗ρ

The results for the five-quark system are listed in Ta-
ble  3.  The    five-quark  system  has  two  possible
quark  configurations  -   and  - .  In  the  first
quark configuration  - ,  the total  isospin   coup-
ling occurs in the forms   and  . For the total spin

, the coupling schemes are  ,  , and  .
Quantum  combinations  corresponding  to  these  are  ,

, and  . In the second quark configuration  - ,
the  total  isospin    coupling  can  be  ,  ,  or

,  whereas  the  total  spin    coupling  includes
,  ,  and  . The corresponding quantum com-

binations for these are  ,  ,  ,  ,  ,  ,  , and
.
Therefore,  in  our  calculations,  we  considered  a  total

 

Fig. 2.      (color online) Schematic of the complex energy dis-
tribution.
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NK̄ NK̄∗ Σπ Σρ Σ∗ω Σ∗ρ

NK̄
NK̄∗ Σπ

NK̄ NK̄∗ Σπ

NK̄ NK̄∗ Σπ

6−9

of 11 physical channels. Under the first set of parameters,
the energy distribution of these channels spans the range
from  1.2  to  2.1  GeV.  Among  them,  we  identified  six
bound states, which are  ,  ,  ,  ,  , and  .
The  binding  energies  of  the  first  three  channels,  ,

,  and  ,  are  all  greater  than  10  MeV,  while  the
binding energies of the remaining three channels are only
a few mega-electron volt. This implies that the first three
channels,  namely,  ,  ,  and  ,  are  more  likely  to
form stable resonant states. Under the second set of para-
meters, these states,  ,  , and  , remain stable and
are still  bound states,  with binding energies around 

Σρ

NK̄ NK̄∗ Σρ
Σπ

Σ∗ω Σ∗ρ

1−2

MeV.  In  addition,    has  a  binding  energy  of  6.7  MeV
under the first set of parameters, but only 0.7 MeV under
the  second set,  which indicates  that  it  is  not  very  stable.
Therefore, under both parameter sets,  ,  ,  , and

 are bound states, while under the first set of paramet-
ers,   and  ,  though also shallow bound states with
binding energies of   MeV, do not survive under the
second set of parameters.

We  systematically  studied  the  contributions  of  each
Hamiltonian term to the binding energy (threshold minus
calculated  value)  for  these  six  states  to  understand  this
discrepancy, and the results are listed in Table 4. We ob-

 

Σ∗(1/2−) i, j,k, l Eth

Esc Emix

Table 3.    Energies of the   system.   represent the index of orbit, flavor, spin, and color wave functions, respectively.  ,
, and   represent the threshold of the corresponding channel, energy of every single channel, and lowest energy of the system by

coupling all channels, respectively. (unit: MeV)

Ψ
Pi jkl
1
2 ,

1
2

Channel Eth1 Esc1 B.E. Emix1 Eth2 Esc2 B.E. Emix2

Ψ
P1111
1
2 ,

1
2
Ψ

P1261
1
2 ,

1
2

/ NK̄ 1435.3 1417.4 17.9 1215.6 1452.6 1443.1 9.5 1214.0

Ψ
P1221
1
2 ,

1
2
Ψ

P1461
1
2 ,

1
2

/ NK̄∗ 1854.3 1839.7 14.6 1834.2 1826.4 7.8

Ψ
P1351
1
2 ,

1
2

∆K̄∗ 2186.4 2188.4 ub 2191.1 2193.5 ub

Ψ
P1621
1
2 ,

1
2

Σπ 1358.5 1348.5 10.0 1372.8 1366.6 6.2

Ψ
P1641
1
2 ,

1
2

Σρ 2001.8 1995.1 6.7 1958.6 1957.9 0.7

Ψ
P1651
1
2 ,

1
2

Σ∗ρ 2132.6 2130.3 2.3 2096.9 2097.8 ub

Ψ
P1411
1
2 ,

1
2

Λπ 1214.9 1216.8 ub 1211.5 1214.2 ub

Ψ
P1431
1
2 ,

1
2

Λρ 1858.2 1859.5 ub 1797.3 1799.6 ub

Ψ
P1521
1
2 ,

1
2

Ση 1814.8 1816.2 ub 1848.8 1851.3 ub

Ψ
P1541
1
2 ,

1
2

Σω 2015.3 2016.1 ub 1945.8 1948.0 ub

Ψ
P1551
1
2 ,

1
2

Σ∗ω 2146.1 2144.9 1.2 2084.8 2085.3 ub

 

Σ(1/2−)Table 4.    Contributions of all potentials to the binding energy (unit: MeV) in   five-quark system, where Q.M.1 and Q.M.2 rep-
resent the calculation results under two different sets of parameters.

kinetic con oge π η σ a0 f0

NK̄
Q.M.1 90.0 −5.6 −12.0 −2.7 −1.1 −78.1 −6.6 −3.0

Q.M.2 64.2 −4.6 −6.2 −2.1 −0.0 −54.0 −4.6 −2.3

NK̄∗
Q.M.1 76.9 −6.1 −8.3 −2.1 −0.1 −66.7 −5.7 −2.7

Q.M.2 55.5 −4.5 −4.2 −1.7 −0.0 −46.7 −4.0 −2.1

Σπ
Q.M.1 64.9 −4.0 −7.2 2.5 −0.1 −62.5 −3.6 −0.0

Q.M.2 31.1 −1.8 −3.3 1.7 −0.0 −28.8 −1.7 −0.0

Σρ
Q.M.1 50.3 −3.5 −5.2 3.5 −0.1 −48.1 −3.5 −0.1

Q.M.2 20.1 −1.3 −1.5 2.9 −0.0 −18.5 −1.1 −0.0

Σ∗ρ
Q.M.1 27.6 −2.2 −2.5 0.0 0.3 −28.0 −0.0 −0.0

Q.M.2 9.6 −0.6 −0.5 1.0 0.0 −8.7 −0.0 −0.0

Σ∗ω
Q.M.1 20.5 −1.6 −0.3 1.1 0.2 −21.0 0.1 0.0

Q.M.2 8.0 −0.5 −0.1 0.1 0.0 −7.0 0.0 0.0
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a0

Σ∗ω Σ∗ρ

serve that the kinetic energy predominantly contributes to
repulsive  forces,  while  the  attraction  comes  from  the σ-
meson exchange, one-gluon-exchange, and  -meson ex-
change  with  the  σ-meson  exchange  playing  a  dominant
role.  The  kinetic  and  potential  energies  compete  with
each other; the quarks are brought closer together with an
increase in  attractive  potential,  thereby  leading  to  an   in-
crease  in  the  repulsive  kinetic  energy.  Compared  to  the
second set, binding energies under the first set are gener-
ally  larger,  which  results  in  larger  kinetic  energy  and
stronger  attractive  potential  contributions.  Under  the
second  set  of  parameters,  the σ-meson  exchange  for  the

  and    states  provides  insufficient  attraction  (less
than 10 MeV), which canont overcome the repulsive kin-
etic energy and prevent these states from forming bound
states. 

2.    Resonance-state calculation

NK̄ NK̄∗ Σπ
Σρ

Σ∗ω Σ∗ρ

We  aim  to  use  the  effects  of  channel  coupling  to
check  if  the  resonance  candidates  obtained  from  the
bound  state  calculation  survive  in  the  channel  coupling
framework.  Based  on  the  bound  state  calculations  under
the  two  parameter  sets,  we  identified  three  relatively
stable  bound  states,  namely  ,  ,  and  ,  one  less
stable bound state,  , and two more controversial bound
states,   and  . Under  both  parameter  sets,  we per-
form  a  complete  channel  coupling  calculation  using  the
complex-scaling  method  for  all  channels  to  search  for
stable resonance states.  Then, we perform channel coup-
ling  calculations  between  the  bound  states  identified  in
the  previous  calculations  and  corresponding  threshold
channels  to  obtain  the  decay  widths  of  resonance  states,
and  we  investigate  the  channel  coupling  mechanisms
(i.e., the reasons why unstable bound states transform in-
to  scattering  states).  The  energy  range  of  the  five-quark
system under  investigation  is  between  1.2  and  2.1  GeV.
The  resonance-state  calculation  is  performed to  verify  if
the resonance candidates identified in the bound state cal-
culation correspond to genuine resonances.  Therefore,  in
Figs. 3 and 4, we present the energy range from 1.2 to 2.2
GeV.

R(1302) R(1395) R(1830)

R(1302) R(1395)
NK̄ Σπ R(1302) Σπ

R(1395)
NK̄ R(1830)

NK̄∗ Ση

NK̄∗ Ση

Ση NK̄∗ Ση

As  shown  in  Fig.  3, we  obtained  three  stable   reson-
ance  states,  namely  ,  ,  and    (we
use ''R(Energy)''  to  denote Resonance.).  We performed a
component  analysis  of  these  three  resonance  states,  and
the  results  (see Table  6)  show that    and 
include  -   coupling.    has  a  dominant 
component (about 53.1%), while   has a dominant

 component (about 73.3%).   has a main com-
ponent of   (about 51.6%) and an important   com-
ponent  (about  33.4%).  This  implies  that  the  -
coupling  is  significant;  however,  there  is  no  attraction
between  .  Therefore,  even  though  the  -   coup-
ling is strong, it still cannot form a resonance state dom-

Ση Σπ NK̄
NK̄∗

Σ∗ρ Σ∗ω
Σ∗ρ

R(1302) R(1395) R(1830)

R(1302) R(1395)

Λ(1/2−)
Λ(1380) Λ(1405) Λ(1/2−) Σ(1/2−)

R(1302) R(1395)
R(1830) Σ(1750) Σ(1900)

R(1830)

inated by  .  Thus,  their  main components  are  ,  ,
and  ,  respectively.  Meanwhile,  another  shallow
bound state  , and two controversial bound states, 
and  ,  obtained  in  the  previous  bound-state  calcula-
tions  did  not  survive in  the  channel  coupling calculation
and became scattering states. This conclusion is corrobor-
ated by the results under the second set of parameters, as
shown in Fig. 4, where  ,  , and   are
stable  resonance  states.  In  our  calculations,  the  energies
of  the  predicted    and    are  very  close  to
each  other,  which  correspond  to  the  two-pole  structure
observed  experimentally  in  the    system,  namely

 and  .  The   and   systems
differ  only  by  isospin,  and  therefore,  the  prediction  of

  and    is  highly  credible.  The  energy  of
  lies  between    and  , which   sug-

gests that   is one of the five-quark candidates for
these states.

Σρ Σ∗ω Σ∗ρ

R(1302) Λπ

We performed channel coupling calculations with all
possible decay channels to obtain the decay widths for the
genuine  resonance  states  and  investigate  why  unstable
resonances  such as  ,  ,  and   decay into  scatter-
ing states. The decay widths are shown in Fig. 5 and lis-
ted  in  Table  5.  The  results  of  the  unstable  resonances
coupling with decay channels and transitioning into scat-
tering states are shown in Fig. 6. The resonance states ob-
tained from both parameter sets are consistent in our cal-
culations,  and  therefore,  the  decay  widths  are  only
provided for the first parameter set. According to our cal-
culations, in Fig. 5, the decay width of    to    is

 

Σ(1/2−)
Fig.  3.      (color online) Complex-scaling  results  for  the

  five-quark  system  in  the  1200−2200  MeV  range  for
the first set of parameters.

 

Σ(1/2−)
Fig.  4.      (color online) Complex-scaling  results  for  the

  five-quark  system  in  the  1200−2200  MeV  rangefor
the second set of parameters.
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R(1395)
Λπ Σπ

R(1830)
Λπ Σπ NK̄ Ση

Σ(1750)
Σ(1900)

R(1830)
Σ(1750)

Σ(1900)

Σ(1750) Σ(1900)

Σ(1/2−) NK̄∗

R(1302) R(1395) Λπ

R(1830)
Λπ Ση

Σρ

5.0 MeV, and because this is the only decay channel, the
total width is 5.0 MeV. For  , the decay widths to

 and   are 24.0 and 8.6 MeV, respectively, yielding a
total  width  of  32.6  MeV.  For  ,  the  decay  widths
to  ,  ,  , and   are 7.6, 4.2, 4.1, and 5.0 MeV, re-
spectively, thereby resulting in a total width of 20.9 MeV.
Considering that the experimental widths of   and

 are  both  over  100 MeV from the  perspective  of
decay widths,   may require additional three-quark
components  to  better  explain  the  experimental 
and   states because its width in our calculation is
only 20.9  MeV.  Therefore,  we  propose  that  the   experi-
mental   and   are likely to be mixed states,
which  contains  components  of  both  the  three-quark

 and five-quark   states. Finally, based on the
percentage  of  their  decay  widths,  as  shown  in  Table  5,

 and   predominantly decay into   (with
more than 70%), while   has a more complex de-
cay pattern with both   and   playing significant roles.
According  to  Fig.  6,  the    state  survives  only  when

Ση NK̄∗

Λπ Σπ NK̄ Λρ

Σ∗ω

Σ∗ρ

Σρ Σ∗ω Σ∗ρ

coupled with the   and   channels, and it rapidly de-
cays into the  ,  ,  ,  and   channels. In contrast,
the  two  more  controversial  resonance  candidates, 
and  , do not survive in any of the coupled decay chan-
nels. The reason why  ,  , and   fail to form genu-
ine resonance states is that their binding energies are too
small,  and  this  leads  them  to  transition  into  scattering
states once coupled with most decay channels. 

IV.  SUMMARY

Σ(1/2−)
Within  the  framework of  the  chiral  quark  model,  we

systematically studied the   system from the three-
quark  and  five-quark  perspectives  under  two  different
parameter sets by employing the GEM.

Σ(1/2−)

Σ(1750)
Σ(1900)

Σ(1/2+) Σ(3/2+)

1P
1S
K∗

Σ(1750) Σ(1900)

From  the  three-quark  calculations,  we  obtained  two
  states  with  energies  of  ~1.75  and  1.82  GeV  for

the  first  parameter  set,  and  1.83  and  1.89  GeV  for  the
second parameter  set.  These  results  are  in  good   agree-
ment  with  the  experimentally  observed    and

,  respectively,  while  simultaneously  reproducing
the  ground  states    and   with good   accur-
acy.  In  addition,  the  energy  gap  between  these  excited
and ground states is roughly 500 MeV, which is consist-
ent  with the typical  mass difference between the   and

 states in light meson systems such as η, ρ, ω, K,  and
.  This  observation  further  supports  the  interpretation

that   and   possess substantial  three-quark
components.

Σπ

In  the  bound-state  calculations  within  the  five-quark
framework,  we  obtained  three  stable  bound  states:  ,

 

Σ(1/2−) Σπ→ Λπ NK̄→ Λπ
NK̄→ Σπ NK̄∗→ Λπ NK̄∗→ Σπ NK̄∗→ NK̄ NK̄∗→ Ση

Fig.  5.      (color online) Calculated  decay  widths  of  resonance  states  in  the    five-quark  system.(a) .  (b) .
(c) . (d) . (e) . (f) . (g) .

 

Table  5.      Various  decay  channels  and  corresponding  decay
widths of obtained resonances. (unit: MeV)

Decay channels R(1302) P R(1395) P R(1830) P

Λπ 5.0 100% 24.0 74% 7.6 37%

Σπ … … 8.6 26% 4.2 20%

NK̄ … … … … 4.1 19%

Ση … … … … 5.0 24%

Total 5.0 32.6 20.9
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Σ(1/2−)
Σ∗ρ→ Λπ Σ∗ρ→ Σπ Σ∗ρ→ NK̄ Σ∗ρ→ Ση Σ∗ρ→ NK̄∗ Σ∗ρ→ Λρ Σ∗ρ→ Σρ Σ∗ρ→ Σω Σρ→ Λπ

Σρ→ Σπ Σρ→ NK̄ Σρ→ Ση Σρ→ NK̄∗ Σρ→ Λρ Σ∗ω→ Λπ Σ∗ω→ Σπ Σ∗ω→ NK̄ Σ∗ω→ Ση Σ∗ω→ NK̄∗

Σ∗ω→ Λρ Σ∗ω→ Σρ Σ∗ω→ Σω Σ∗ω→ Σ∗ρ

Fig. 6.    (color online) Channel-coupling effects transforming some unstable resonances into scattering states in the   five-quark
system.  (a) .(b) .  (c) .  (d) .  (e) .  (f) .  (g) .  (h) .  (i) .
(j) . (k) . (l) . (m) . (n) . (o) . (p) . (q) . (r) . (s) .
(t) . (u) . (v) . (w) .
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NK̄ NK̄∗ Σρ
Σ∗ρ Σ∗ω

Σπ NK̄ NK̄∗

R(1302) R(1395) R(1830)
Σ∗ρ Σ∗ω Σρ

R(1302) R(1395)
Σπ NK̄

Λ(1380) Λ(1405)
R(1830) NK̄∗

Σ(1750) Σ(1900)

R(1830)

, and  , along with a shallower bound state   and
two controversial bound states   and  . Our calcula-
tions show that, under the effect of channel coupling, the
three  stable  bound  states  ,  ,  and    form  stable
resonance  states  ,  ,  and  ,  while

,  ,  and    all  transition  into  scattering  states.
Among these,   and  , with their main com-
ponents being the   and   channels, survive the coup-
ling process and remain stable despite being close in en-
ergy,  thereby  yielding  a  two-pole structure.  These   pre-
dicted  two-pole  resonances  are  similar  in  nature  to  the
well-established  -   system.  The  main
component of   is  , which shows good agree-
ment with the masses of   and  . However,
its decay width deviates from the experimental data. This
suggests  that    requires  additional  three-quark

Σ(1750)
Σ(1900)

components  to  better  explain  the  experimental 
and   states.  In  future  work,  we intend to  explore
this  system using an unquenched quark model  to  further
test our hypothesis.

Σ(1/2−)
R(1302) R(1395) R(1830)

R(1302) R(1395)
Λ(1380) Λ(1405)

Λπ

R(1830) Σ(1750)
Σ(1900)

Σ(1750) Σ(1900)

We obtained three resonance states in the   sys-
tem:  ,  ,  and  .  Among  these,

-   exhibits  a  two-pole  structure  similar  to
the  -   system, and  we  strongly   recom-
mend experimental efforts to search for these states in the
invariant  mass  spectrum  of  .  Although  the  mass  of

  agrees  well  with  the  experimental    and
, the calculated width is relatively small. This in-

dicates that three-quark mixing effects may be required to
better  explain  the  experimental    and 
states.
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