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f (R,Lm,T )Abstract: This  study  uses  a  minimal  geometric  deformation  scheme  within  the   gravity  paradigm to
model  anisotropic  compact  stars  using  class-1  embedding  spacetime.  We  introduce  the  deformation  of  the  radial
component of the metric tensor, which decouples the Einstein field equations and introduces an additional gravita-
tional source. The relevant constants are evaluated using observational data from seven realistic star candidates by
matching the inner region with the outer Schwarzschild line element.  A comprehensive graphical analysis of three
compact stars is performed to examine the impact of the coupling parameter β and deformation parameter n, reveal-
ing  positive,  well-behaved  energy  densities  and  pressures  that  satisfy  the  energy  conditions.  The  study  found  that
negative values of the coupling parameter β allow greater mass accumulation while preserving key physical charac-
teristics, such as stability under Herrera's cracking condition and the extended Tolman-Oppenheimer-Volkoff equa-
tion. This study highlights the significance of gravitational decoupling for determining mass, redshift, and compact-
ness and provides important insights into the internal structure of stellar bodies within this new generalized gravity
framework.
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I.  INTRODUCTION

In 1916, Albert Einstein introduced the theory of gen-
eral relativity (GR), which revolutionized our current un-
derstanding  of  gravitational  phenomena  and  explained
various  critical  astronomical  events,  including  the  cur-
vature of spacetime and the formation of stellar as well as
galactic structures.  One  of  the  most  significant   predic-
tions  of  GR is  the  existence of  black holes  and compact
stellar configurations, all of which result from the gravita-
tional  collapse  during  the  final  stages  of  a  star's  life.  In
2005, numerous compact objects with high densities were
discovered  [1].  The  theory  of  GR  has  continued  to
demonstrate its accuracy, as evidenced by the precise pre-
diction  of  gravitational  waves  by  Mercury's  perihelion
precession, which  are  recently  detected  by  the  Laser   In-
terferometer Gravitational-Wave Observatory in collabor-

ation with Virgo [2]. Additionally, the first picture of the
shadow  of  a  black  hole,  captured  by  the  Event  Horizon
Telescope project, further validated the theory of GR [3].
Despite these remarkable successes, GR has encountered
challenges in  addressing  certain  theoretical  and  observa-
tional cosmic issues, such as the unexpected acceleration
of the cosmos [4−7], non−renormalizability [8], cosmolo-
gical constant problem [9], and mysteries surrounding the
dark terms of cosmic distributions [10].

F(R)

Numerous  extended  gravitational  frameworks  have
been  proposed  to  address  the  limitations  of  GR.  These
theories serve  as  candidates  for  DE,  which  is  often   be-
lieved to  be  responsible  for  accelerated  cosmic   expan-
sion owing to its negative pressure. Many of these theor-
ies involve geometric modifications of the GR, providing
essential  frameworks  to  support  observational  cosmic
data. For example,   gravity modifies the gravitation-
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al theory by introducing a Lagrangian that is a function of
the  Ricci  scalar  [11,  12].  Another  significant  theory  is
teleparallel  gravity  in  which  the  curvature    is  substi-
tuted  by  torsion    and  is  defined  by  the  Weitzenböck
connection instead of the Levi-Civita connection [13, 14].
Initially,  this  framework  was  applied  to  BTZ black  hole
solutions  [15].  Subsequently,  a  study  [16]  revealed  that

 theory fails to comply with the first thermodynam-
ical  law  of  black  holes.  Examples  of  other  remarkably
modified theories of gravity include   [17−19],

  gravity  [20],    gravity  [21],    gravity
[22],   [23−26],   [27, 28], and   the-
ory [29].

f (R,T )
f (R,Lm) f (R,Lm,T )

R Lm

Lgrav =

f (R,Lm,T )

f (R,Lm,T )

A particularly important class of modified theories in-
volves coupling matter and geometry, such as   and

,  and  their  unification  in    gravity.
These frameworks allow the energy-momentum tensor to
directly  influence  spacetime  geometry,  leading  to  richer
phenomenology  and  the  emergence  of  non-conserved
matter fields. Recent studies have applied such theories to
model  anisotropic  compact  stars,  explore  deviations  in
hydrostatic  equilibrium,  and  test  the  energy  conditions
under strong gravity. Additionally, the Minimal Geomet-
ric  Deformation (MGD) technique has been increasingly
utilized  to  generate  exact  or  semi-analytical  anisotropic
solutions within these extended frameworks, demonstrat-
ing compatibility  with  astrophysical  observations.   Col-
lectively,  these  advancements  indicate  that  modified
gravity  continues  to  be  a  fertile  ground  for  addressing
outstanding  questions  in  theoretical  and  observational
cosmology. This  theory  considers  the  gravitational   Lag-
rangian as a generic function of three fundamental quant-
ities: the Ricci scalar  , matter Lagrangian  , and trace
of  the  energy-momentum  tensor  T,  that  is, 

  [30−32].  Recent  developments  have  shown
that  such  frameworks  can  accommodate  more  realistic
compact star  models,  account  for  anisotropic  matter  dis-
tributions,  and  generate  modified  equilibrium  conditions
that are  consistent  with  astrophysical  observations.  Mo-
tivated by these advances, the present study explores an-
isotropic  compact  stellar  configurations  within  the

 gravity framework using the MGD technique
under the gravitational decoupling approach. This allows
us to construct physically viable solutions while incorpor-
ating  non-minimal  matter-geometry coupling  that   re-
flects  the  current  direction  of  research  in  gravitational
modeling.

In recent  years,  the  quest  for  exact  spherically   sym-
metric solutions to the dynamical field equations has be-
come  increasingly  challenging,  primarily  because  of  the
presence of numerous non-linear terms,  especially in the
context  of  modified  gravity  theories.  A  substantial  body
of  literature  is  available  wherein  compact  star  solutions
have been constructed using various gravitational frame-
works.  Nashed  and  El  Hanafy  [33] investigated   spheric-

f (R)
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J0740+
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2GM
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ally symmetric dynamical  configurations in   gravity
using  a  quadratic  model  defined  by  .  For
the interior  spacetime geometry,  they adopted the Krori-
Barua metric  and  considered  anisotropic  matter  distribu-
tions.  Utilizing  the  observational  data  of  PSR 

 from NICER and XMM-Newton observations, they
determined  the  viable  values  of  the  parameter    and
demonstrated that the resulting structure is stable and sat-
isfies  all  essential  physical  conditions.  Extending  this
study,  Nashed  and  Capozziello  [34] employed  an   expo-
nential model,  , in combination with observa-
tional data from pulsar SAX J1748.9–2021, yielding sig-
nificant results. In another investigation, Nashed [35] ob-
tained  exact  solutions  for  anisotropic,  perfect-fluid
spheres  within  the    framework,  adopting  a  linear
form of the function as  , where β is a di-
mensional parameter. The resulting solutions were in hy-
drostatic equilibrium,  with  all  relevant  physical   quantit-
ies  expressed  in  terms  of  β  and  compactness  parameter

. Within  the  same  theoretical  context,  the   au-
thor further  derived solutions by introducing specific  as-
sumptions  on  anisotropy  and  radial  metric  components,
leading to compelling physical conclusions.

f (R,T )

f (R,T )

f (R,T )

κ(R,T )

In the framework of conformal   gravity, Das et
al.  [36]  explored  the  modeling  of  compact  stars,  where
solutions were  generated  to  describe  the  interior   geo-
metry  of  compact  objects  using  a  barotropic  equation  of
state  (EoS).  A  detailed  graphical  analysis  demonstrated
that the obtained solutions were physically consistent and
corresponded  to  radiating  compact  stars.  Kumar  et  al.
[37] constructed stellar models with isotropic matter dis-
tributions in curvature-matter coupled gravity, assuming a
linear  functional  form  of  . Their  analysis   con-
firmed the stability of the proposed configuration through
various  physical  criteria.  The  pursuit  of  anisotropic  and
non-singular  compact  star  models  was further  conducted
in [38], where the barotropic EoS was applied within the

 framework.  The results  indicated that  the energy
conditions  were  satisfied  and  the  models  exhibited  a
stable  behavior.  In  another  recent  study  [39],  compact
stellar configurations were investigated by employing the
Krori-Barua  metric  as  the  interior  geometry  within  the
context  of    gravity.  Utilizing  observational  data
from  three  compact  stars—4U  1820–30,  SAX  J1808.4–
3658,  and  Her  X–1—the  physical  acceptability  and   sta-
bility of the models were examined using graphical meth-
ods.

The  gravitational  decoupling  technique,  using  MGD,
offers a novel strategy that facilitates the derivation of ac-
ceptable solutions  for  spherically  relativistic   configura-
tions.  This  method introduces various new elements  that
contribute to the pursuit of solutions for spherically sym-
metric objects  by  incorporating  more  complex   gravita-
tional sources into the existing energy-momentum tensor

M. Zubair, Hira Sohail, Saira Waheed et al. Chin. Phys. C 50, 025103 (2026)

025103-2



(2+1)

f (R,T )

F(R,T )

F(R,T )

while preserving  spherical  symmetry.  The  MGD   ap-
proach was  first  presented  by  Ovalle  within  the   frame-
work  of  the  Randall-Sundrum brane-world  scenario  [40,
41]. It was later extended to deform the standard Schwar-
zschild  solution  [42],  leading  to  the  formulation  of  new
black  hole  models  [43]. Initial  applications  of  this   tech-
nique  were  primarily  developed  in  the  context  of  brane-
world  models  [44,  45],  black  hole  acoustics  [46],  and
studies  on  the  Generalized  Uncertainty  Principle  (GUP)
and  Hawking  radiation  involving  fermions  [47].  Addi-
tionally, it was applied to purely anisotropic matter distri-
butions  [48,  49]  and  the  anisotropic  Einstein-Maxwell
system  [50,  51].  Subsequently,  this  technique  has  been
employed in  various theories,  such as  in  [52],  where the
MGD approach  was  used  to  extend  the  Buchdahl   solu-
tion, and in [53], where it was applied to obtain an aniso-
tropic  static  BTZ  model  in  a  -dimensional  space-
time. Other  applications  can also  be  found in  the   literat-
ure  [54−56].  In  particular,  within  the  context  of 
theory, references are provided in [57, 58]. In the context
of    theory,  researchers  [59] modeled  new   aniso-
tropic  compact  stars  based  on  the  decoupling  approach.
To achieve this target, they assumed a linear selection of
the   function—a well-known ansatz for metric po-
tential, namely the modified Durgapal-Fuloria model and
Pseudo-Isothermal dark matter—as a new source for the
anisotropic seed solution. The obtained solution was non-
singular and  agreed  with  all  necessary  physical   condi-
tions.  In  the  context  of  GR,  a  previous  study [60] adop-
ted  the  decoupling  method  to  focus  on  the  strange  star
model and argued that through mass-radius analysis con-
ducted  for  neutron  star  mergers  and  huge  pulsars,  the
model  parameters  can  be  effectively  constrained.  It  was
concluded  that  their  outcomes  exceeded  the  observed
masses of compact stars and also showed a correlation of
recent  findings  from  gravitational  wave  events,  such  as
GW190814 and GW200210.

f (R,Lm,T )

(c,B,A)

Following  the  work  of  Nashed  et  al.  [33−35],  the
primary  target  of  this  study  is  to  utilize  the  radii  and
masses  of  some  known  pulsars  located  within  globular
clusters  and  constrain  different  model  parameters.  By
performing graphical analysis, we will assess whether the
proposed  MGD-based  model  in  the  realm  of 
gravity remains  physically  valid  for  the  observed   com-
pact star candidates with known radii and masses. There-
fore,  we will  select  well-known stars  and test  our  model
against  their  properties.  Specifically,  we  shall  perform a
complete  physical  analysis  (including  energy  conditions
and stability) for one representative star. For other known
stars,  we  shall  include  the  relevant  numerical  results  in
tabular form to show the variation in the values of differ-
ent  parameters    under  different  configurations,
which  can  further  change  the  behavior  of  all  physical
properties.  This  dual  approach  can  allow  us  to  validate
the model across multiple realistic scenarios.

f (R,Lm,T )

f (R,T ) f (R,Lm)

In  this  work,  we  shall  construct  anisotropic  compact
star  models  within  the  framework  of    gravity
using  the  gravitational  decoupling  approach  via  MGD
and embedding class-I spacetime. By deforming the radi-
al metric  component,  the  field  equations  will  be   de-
coupled  into  isotropic  and  anisotropic  sectors,  enabling
the construction of physically viable models that are con-
sistent  with  the  observed  stellar  data.  This  work  aims  to
explore  the  influence  of  the  generalized  theory,  which
unifies previous models such as   and  , on
the key physical features of compact stars such as stabil-
ity,  energy  conditions,  and  mass-radius  behavior.  The
manuscript is organized as follows: Section II outlines the
theoretical  framework  of  this  modified  gravity,  Section
III discusses the metric and matching conditions, Section
IV  presents  a  detailed  physical  analysis,  and  Section  V
concludes our main findings.
 

f (R,Lm,T )II.  BASICS OF  THEORY

f (R,Lm,T )

f (R,T ) f (R,Lm)

Because  our  primary  objective  is  to  study  compact
star  models  beyond  the  paradigm  of  GR,  specifically
within  the  framework  of    theory,  this  section
provides an overview of the primary mathematical struc-
ture of this modified gravity theory, along with the neces-
sary  assumptions  required  to  achieve  the  outlined  goal.
Haghani and Harko [30] proposed a novel framework that
unifies the   and   theories. This innovative
approach leads  to  a  new  Lagrangian  density   incorporat-
ing  the  Ricci  scalar,  trace  of  the  energy-momentum
tensor, and Lagrangian of ordinary matter, defined by the
following gravitational action:
 

S =
1

16π

∫
f (R,Lm,T )

√−gd4x+
∫
Lm
√−gd4x

+β

∫
Lϑ
√−gd4x. (1)

f (R,Lm,T )

Lm Lϑ

gµν

Here,   is a generic function of geometrical and
gravitational quantities, and thus leads to the violation of
the  principle  of  minimal  interaction  between  matter  and
geometry  [30].  Consequently,  unlike  GR,  the  dynamical
equations  can  no  longer  be  written  in  the  conventional
form where spacetime  geometry  equals  ordinary  matter,
hence,  the  standard  conservation  of  the  energy-mo-
mentum tensor is not guaranteed. Furthermore, the quant-
ities   and   correspond to  the  matter  and additional
gravitational source sectors (commonly referred to as the
ϑ–sector),  respectively.  A dimensionless  constant β,  rep-
resenting the coupling parameter, is introduced. In metric
formalism, the variation in the action with respect to 
yields the following field equations:
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fRRµν−
1
2

[ f − ( fL+2 fT )Lm]gµν+ (gµν□−∇µ∇ν) fR

=
î
8πG+

1
2

( fL+2 fT )
ó
Tµν+8πGβϑµν+ fTτµν, (2)

fR = ∂ f /∂R, fT = ∂ f /∂T, fL = ∂ f /∂L □ =
gµν∇µ∇ν
∇ν Tµν ϑµν τµν

where    and 
.  Here,  the covariant derivative is  symbolized by

.  Further,  the  ,  extra source  ,  and    terms are,
respectively, given as 

Tµν = gµνLm−2∂Lm/∂gµν, (3)

 

ϑµν = gµνLϑ−2∂Lϑ/∂gµν, (4)

 

τµν = gαβδTαβ /δgµν. (5)

Eq. (2) can be re-arranged as follows: 

Gµν =
1
fR

ï
(8πG+ ( fT +

1
2

fL))Tµν+
1
2

( f −R fR)gµν

− ( fT +
1
2

fL)Lmgµν+ (∇µ∇ν−gµν□) fR + fTτµν

ò
. (6)

In  this  setup,  we  assume  the  spherically  symmetric
metric written in following form: 

ds2 = −ev(r)dt2+ eξ(r)dr2+ r2
Ä

dθ2+ sin2 θdϕ2
ä
. (7)

The distribution of stellar matter is assumed to be an an-
isotropic fluid,  which  is  defined  by  the  following   equa-
tion: 

Tµν = (ρ+ pt)VµVν+ ptgµν+ (pr − pt)χµχν, (8)

pr pt

Vα χα

where ρ is energy density, and   and   denote the radi-
al and transverse stresses, respectively. The four velocity,
denoted by   and   for the radial four vector, satisfies 

Vu = e
−ν
2 δu

0, VuVu = 1, χu = e
−a
2 δu

1, χuχu = −1.

Lm

f (R,Lm,T )
Lm = (pr +2pt)/3

f (R,Lm,T )

For the sake of simplicity in Eq. (6), we shall assume the
well-motivated  forms  of  Lagrangian  matter    and

  function. In  this  study,  we  assume  the   Lag-
rangian  matter  form  as  .  Additionally,
we  assume  a  simple  form  of  the    function,
which is given by 

f (R,Lm,T ) = R+γT +λLm, (9)

f (R,T ) f (R,Lm)

f (R,Lm,T )

R Lm

fR = 1
Lm

f (R,Lm,T )

where  γ  and  λ  are  the  coupling  constants.  The  primary
reason for selecting this model (9) is that it results in min-
imal coupling between matter and geometry, avoiding the
complications of  high order  derivatives and enabling the
successful implementation of either the MGD or e-MGD
scheme. Earlier research has also employed similar func-
tional  forms  to  produce  regular  and  physically  feasible
stellar models, such as in   [61] and   grav-
ity [62]. Although there are fewer examples of studies on

  gravity, where  it  was  demonstrated  to   pre-
serve central  regularity  and  enable  a  physically   consist-
ent  anisotropic  extension,  our  work  expands  on  this
strategy and demonstrates that it is still efficient and con-
sistent in this larger context.  Interestingly,  because mod-
el (9) is linear for all variables, that is,  ,   and T, the
right hand side of Eq. (6) is similar to that obtained in GR
theory as  . In contrast, on the left hand side, quant-
ities   and T alter  the anisotropic fluid distribution via
dimension-less  interaction  constants.  Introducing  this
form of   into Eq. (6), the following generic ex-
pression is obtained: 

Gµν = 8πGTµν+8πGβϑµν+
Å
γ+

λ

2

ã
Tµν

+
1
2

(γT +λLm)gµν−
Å
γ+

λ

2

ã
Lmgµν. (10)

 

III.  MGD AND EMBEDDING CLASS-I SPACE
TIME

ϑµν

In  this  section,  we  introduce  the  concept  of  minimal
geometric  deformation,  which introduces anisotropy into
the  set  of  field  equations.  This  method  incorporates  an
additional  gravitational  source,  ,  into  the  energy-mo-
mentum tensor through gravitational decoupling. The fol-
lowing transformation is introduced: 

eν(r) −→ eH(r)+β η(r), (11)

 

e−ξ(r) −→ e−W(r)+β ψ(r). (12)

η(r) ψ(r)

η(r) = 0 ψ(r) = 0
η(r) = 0

β = 0
f (R,Lm,T )

Here, the notations   and   denote the deformation
functions introduced for the temporal and radial compon-
ents  of  the  spacetime  metric,  respectively.  According  to
the MGD approach,  one of  these functions can be set  to
zero, that is,  either   or  .  In this study, we

,  thereby  introducing  deformation  exclusively  in
the  radial  component.  The  constant  β  serves  as  a  free
coupling  parameter,  and  by  setting  ,  the  original
field  equations  of    gravity  are  recovered.
Based on  this  framework,  the  resulting  deformed   func-
tion is expressed as follows: 
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e−ξ(r) −→ e−W(r)+βψ(r). (13)

ϑµν

f (R,Lm,T )

We introduce the additional gravitational source   into
the original energy-momentum tensor, resulting in the ef-
fective  energy-momentum tensor  for   gravity.
The standard dynamical equations, expressed in terms of
the MGD, can then be written as 

Rµν−
1
2
Rgµν = 8πGT eff

µν , (14)

where 

T eff
µν = 8πGT̂µν+8πGβϑµν = 8πGTµν+

Å
γ+

λ

2

ã
Tµν

+
1
2

(γT +λLm)gµν−
Å
γ+

λ

2

ã
Lmgµν+8πGβϑµν.

(15)

Tµν = diag(ρ,−pr,−pt,−pt)
ϑµν = diag(ϑ0

0,ϑ
1
1,ϑ

2
2,ϑ

3
3)

ϑµν

Here,  the  original  energy-momentum  tensor  is  given  by
, whereas the additional gravita-

tional  source  is  represented  as  .
The  components  of    introduce  anisotropies  into  the
self-gravitating  system,  thereby  transforming  the  field
equations into a set of quasi-Einstein field equations. This
transformation is achieved through the deformation of the
metric, and the resulting expressions for the effective en-
ergy density  and  pressures  under  gravitational   decoup-
ling are obtained as follows: 

ρeff = ρ̂+βϑ0
0, peff

r = p̂r −βϑ1
1, peff

t = p̂t −βϑ2
2, (16)

with 

ρ̂ = 8πGρ+
1
2

(3γ+λ)ρ− γ
6

pr −
γ

3
pt, (17)

 

p̂r = 8πGpr −
γ

2
ρ+

Å
7γ
6
+
λ

2

ã
pr +

γ

3
pt, (18)

 

p̂t = 8πGpt −
γ

2
ρ+

γ

6
pr +

Å
4γ
3
+
λ

2

ã
pt. (19)

The anisotropy parameter is defined as 

∆ =
r
2

(peff
t − peff

r ) = ∆+∆ϑ. (20)

∆ =
r
2

(pt − pr) ∆ϑ =
r
2
β(ϑ1

1−ϑ2
2)

Tµν

β = 0

These relations  effectively  decouple  the  original  dynam-
ical  equations  into  two  distinct  systems:  one  governing
the seed isotropic  matter  distribution and the  other  char-
acterizing the new anisotropic configuration arising from
gravitational decoupling. By substituting Eq. (13) into the
field Eqs. (17)–(19), two separate sets of equations can be
obtained, where   and  . The
first  system  corresponds  to  the  standard  field  equations
governed by the energy-momentum tensor   in the lim-
it  , and is supplemented by a conservation equation.
The governing equations are as follows:

 

ρ =

Å
e−a(r)
Å

ra′(r) (16γ+96πG+6λ−γrv′(r))+2
(
ea(r)−1

)
(8γ+48πG+3λ)+2γr2v′′(r)+γr2v′(r)2+4γrv′(r)

ãã¡Å
3r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
,

(21)

 

pr =

Å
e−a(r)
Å
γra′(r) (rv′(r)+8)−2

((
ea(r)−1

)
(8γ+48πG+3λ)+γr2v′′(r)

)
+2r(10γ+48πG

+3λ)v′(r)+γ
(
−r2

)
v′(r)2

ãã¡Å
3r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
, (22)

 

pt =

Å
e−a(r)
Å
− ra′(r) (8γ+ r(10γ+48πG+3λ)v′(r)+96πG+6λ)+2γ

(
8ea(r)+5r2

(
2v′′(r)+ v′(r)2

)
+8rv′(r)−8

)
+3r(16πG+λ)

(
2rv′′(r)+ rv′(r)2+2v′(r)

)ããÅ
6r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
, (23)

and the conservation equation is given by
 

Stellar configurations in f(R, Lm, T) gravity: probing anisotropy and stability... Chin. Phys. C 50, 025103 (2026)

025103-5



− dpr

dr
− H(r)′

2
(ρ+ pr)+

2(pt − pr)
r

+
d
dr

ï
γ

6(8πG+γ+λ/2)

Ä
3ρ− pr −2pt)

äò
= 0. (24)

The spacetime solution for the aforementioned set of
equations can be expressed by the following metric:
 

ds2 = eH(r)dt2− eW(r)dr2− r2(dθ2+ sin2 θdφ2). (25)

ϑµν

β , 0

The  quasi-Einstein  equations  are  the  second  set  of
equations that  apply to  source  .  These are  derived by
using the  relationships  defined  in  Eq.  (16)  and  the   de-
formed metric supplied in Eq. (13), where  . The res-
ulting quasi-Einstein equations, along with the conserva-
tion equation, are as follows:

 

ϑ0
0 =

Å
rψ′(r) (γrH′(r)−2(8γ+48πG+3λ))+ψ(r)

(
γr (2rH′′(r)+H′(r) (rH′(r)+4))−2(8γ+48πG+3λ)

)ã¡Å
3r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
, (26)

 

ϑ1
1 =

Å
γr (rH′(r)+8)ψ′(r)−ψ(r)

(
16γ+ r (H′(r) (20γ+96πG−γrH′(r)+6λ)−2γrH′′(r))+96πG+6λ

)ã¡Å
3r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
, (27)

 

ϑ2
2 = −

Å
rψ′(r) (8γ+ r(10γ+48πG+3λ)H′(r)+96πG+6λ)+ψ(r)

(
r
(
2r(10γ+48πG+3λ)H′′(r)

+H′(r) (16γ+ r(10γ+48πG+3λ)H′(r)+96πG+6λ)
)
−16γ

)ã¡Å
6r2(2γ+16πG+λ)(4γ+16πG+λ)

ã
, (28)

 

−H(r)′

2
(ϑ0

0−ϑ1
1)− dϑ1

1

dr
+

2
r

(ϑ2
2−ϑ1

1)+
d
dr

ï
γ

6(8πG+γ+λ/2)

Ä
3ϑ0

0+ϑ
1
1+2ϑ2

2

äò
= 0. (29)

At this juncture, it is pertinent to note that the two sets of
equations  are  decoupled,  exhibit  no  exchange  of  energy
between  them,  and  interact  solely  through  gravitational
effects. 

A.    Class-I solutions and minimal geometric deforma-
tion scheme

W(r) H(r)

r = 0

To solve the two sets of field equations involving un-
known functions   and  , we select a metric poten-
tial that meets the key criteria: it must be finite, monoton-
ically  increasing  with  r,  and  reach  a  minimum  at  ,
ensuring regularity.  As outlined in [63],  these conditions
are essential for deriving physically viable static spheric-
ally  symmetric  perfect  fluid  solutions.  In  this  study,  we
adopt  the  following form for  the  metric  potential,  which
satisfies the necessary mathematical conditions and facil-
itates  the  derivation  of  physically  viable  expressions  for
the  effective  energy  density  and  pressure.  The  chosen

metric potential is given by
 

eW = 1+ cr2enar2
, (30)

r = 0 eW = 1+O(r2)

where  c,  n,  and  a  are  arbitrary  constants.  This  specific
form has been widely utilized as an ansatz, particularly in
the  construction  of  class-I  solutions  [64,  65].  Notably,
this metric is consistent with the criterion of being regu-
lar  at  the  center,  exhibiting  a  monotonically  increasing
trend with a minimum at   and  . There-
fore, it  is  feasible to model compact stars using this  the-
ory.  For  a  spacetime to be categorized under  embedding
class-I, it  is  imperative  that  Eq.  (25)  satisfies  the   Kar-
markar condition, originally formulated by Karmarkar in
1948 [66]. This condition is expressed as follows:
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R1414 =
R1212R3434+R1224R1334

R2323
. (31)

R2323 , 0

W(r) H(r)

By incorporating the conditions specified in Eq. (31), and
given  that  ,  as  noted  in  [67], we  derive  the   fol-
lowing  equation  that  establishes  a  relationship  between
the  two spacetime  functions,    and  ,  as  outlined
below: 

W ′H′

1− eW
=W ′H′−2H′′−H′2, (32)

eW(r) , 1where  . By integrating the first  equation,  we de-
rive the following equation, which illustrates the manner
in which the four-dimensional spacetime, as described by
Eq. (31), is embedded within a five-dimensional pseudo-
Euclidean  space.  This  corresponds  to  the  solutions  for
embedding class-I. It is defined as 

eH(r) =

Å
A+B

∫ √
eW(r)−1dr

ã2

, (33)

A B

eH(r)

where    and    are constants  due  to  integration.  Substi-
tuting Eq.  (30)  into  the  above  equation  allows  us  to  de-
termine the value of the metric  , as follows: 

eH(r) =

Ç
A+
B
√

cr2eanr2

anr

å2

. (34)

A B

eH(r)

eH(r)→ 1
r→ 0

f (R,T,Lm)

Constants  ,  ,  and c can be evaluated by applying the
matching  condition.  In  the  subsequent  section,  we  fixed
constants λ and a.  Notably, the metric potential    is a
radial  dependent  monotonically  increasing  function  and
exhibits a positive, finite, and regular trend with 
as  ,  thus  ensuring  the  absence  of  singularities.
Therefore, this metric potential is suitable for modeling a
relativistic  compact  object  within  the  framework  of

 gravity using the MGD approach. The below-
line  element  can  be  used  to  describe  the  field  equations
given by Eqs. (21) to (23): 

ds2 = −
Å
A+
B
√

cr2eanr2

anr

ã2

dt2+

Å
1+ cr2enar2

ã−1

dr2

+ r2
Ä

dθ2+ sin2 θdϕ2
ä
. (35)

ϑµν
ψ(r)

ψ(r)

To  obtain  the  complete  solutions  for  our  model,  the
components  of   must  be  calculated.  This  requires  the
determination  of  the  deformation  function  .  Several
methods can be employed to determine  , including
 

ϑ0
0 = ρ● mimicking the density constraint ( );

 

ϑ1
1 = pr● mimicking the pressure constraint ( ); and

 
ϑµν●  relating  the  components  of    through  various

equations of  state,  such  as  polytropic,  barotropic,  or   lin-
ear equations.
 

ψ(r)

ψ(r)

However, the determination of the deformation func-
tion,  , often becomes mathematically intricate, partic-
ularly when aiming to maintain physical acceptability and
analytical solvability. Therefore, we adopt a deformation
function  that  is  free  from  singularities,  exhibits  non-de-
creasing  behavior,  and  has  been  extensively  utilized  in
previous studies for constructing physically viable aniso-
tropic models [52, 65, 68]. The selected form is not arbit-
rary;  it  is  carefully  selected  to  be  fully  compatible  with
the  prescribed  seed  solution,  thereby  ensuring  that  the
resulting field equations remain analytically tractable and
physically  consistent.  Although  alternative  functional
forms  for    are theoretically  permissible,  they   fre-
quently  introduce  significant  non-linearities or  yield   un-
physical features,  such  as  singularities  or  negative   pres-
sures. Moreover, the selected function has also been suc-
cessfully  employed  in  conjunction  with  the  same  seed
metric  in  earlier  studies,  further  justifying  its  use  in  the
present analysis. This form is given by 

ψ(r) =
ncr2

cr2+1
. (36)

T eff
µν

The  complete  spacetime  structure  related  to  the  energy-
momentum  tensor    can be  explicitly  defined  as   fol-
lows: 

ds2 = −
Å
A+
B
√

cr2eanr2

anr

ã2

dt2

+

Å
(1+ cr2enar2 )(cr2+1)

(cr2+1)+βncr2(1+ cr2enar2 )

ã
dr2

+ r2
Ä

dθ2+ sin2 θdϕ2
ä
, (37)

where 

eν(r) =

Ç
A+
B
√

cr2eanr2

anr

å2

, (38)

 

e−ξ(r) =
(1+ cr2enar2 )(cr2+1)

(cr2+1)+βncr2(1+ cr2enar2 )
. (39)

In  subsequent  computations,  the  characterization  of
the  total  state  quantities,  that  is,  the  energy  density  and
the  radial  and  tangential  pressures  will  be  implemented,
as follows: 
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ρ(total) = ρ+αϑ0
0, (40)

 

p(total)
r = pr −αϑ1

1, (41)
 

p(total)
t = pt −αϑ2

2, (42)

where density  and pressure are  given by Eqs.  (21)−(23).
These  relations  involve  additional  geometric  quantities
that interact via the coupling parameter α.

ρ(total) p(total)
r p(total)

tThe  quantities  ,  along  with    and    for
completing the system, are expressed as follows:

 

ρtotal =
1

3k1r2 (2γ+ k1)

Å
1

k2r+1

Å
4a2B2γk2

2n2r4

k2
3

+
4aBγn (k2r) 3/2

(
aAnr

(
anr2+1

)
+B
√

k2r
)

k2
3

+

2aBγk2nr2

Å
2anr2+2

k2r+1
−2anr2+2

ã
k3

+
4k2r

(
anr2+1

)
(8γ+48πG+3λ)

k2r+1
+2k2r(8γ+48πG+3λ)

ã
+

2βcnr2

(cr2+1)2

ÅÅ
k2
(
− a2A2n2r(8γ+3λ)

(
cr2+3

)
+2aABn

√
k2r

(
γ
(
r2
(
c
(
anr2

(
anr2+3

)
−8

)
+ an

(
anr2+4

))
−24

)
−3λ

(
cr2+3

))
+B2k2

(
2γ

(
r2
(
anr2+4

)(
acnr2

+ an− c
)
−12

)
−3λ

(
cr2+3

)))¡
(k2

3)+48πG
(
cr2+3

)ãã
,

ptotal
r =

1
3k1r2 (2γ+ k1)

Å
1

k2r+1

Å
− 4a2B2γk2

2n2r4

k2
3

−
4aBγn (k2r) 3/2

(
aAnr

(
anr2+1

)
+B
√

k2r
)

k2
3

+

2aBk2nr2

Å
2γ
Å
−anr2+1

k2r+1
+ anr2+11

ã
+96πG+6λ

ã
k3

+
16γk2r

(
anr2+1

)
k2r+1

−2k2r(8γ

+48πG+3λ)
ã
+

Å
βcnr2

(Å
2
(
aAn

(
cr2+1

) √
k2r(8γ+48πG+3λ)+Bk2

(
48πG

(
cr2+1

)(
2anr2+1

)
+2γ

(
r2
(
c
(
anr2

(
9− anr2

)
+4

)
+ an

(
8− anr2

))
+4

)
+3λ

(
cr2+1

)(
2anr2+1

)))ä
/(k3)−16γ

)ã¡Å(
cr2+1

)2
ãã

,

ptotal
t =

c
3k1 (2γ+ k1)

ÅÅ
2reanr2

Å
a2A2k2n2

Å
−48G

(
πanr2+π
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Å
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√
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Ä
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(
48πG

(
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+ anr2(10γ+3λ)+6(3γ+λ)

)
+4γk2

2

åã¡
(k2

3 (k2r+1) 2
ã
+

Å
βn
ÅÅ

2k2
(
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)Å
a3ABn3r4

√
k2r(10γ+48πG+3λ)+ a2n2r

Å
−4A2γ

+6ABr
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k2r(3γ+16πG+λ)+B2k2r3(10γ+48πG+3λ)
ã
+2aBn

Ä
3Bk2r2(3γ+16πG+λ)−4Aγ

√
k2r
ä

−4B2γk2

ãã¡Å
k2

3

ã
+

2aBk2nr2(10γ+48πG+3λ)
k3

+8γ+96πG+6λ
ãã¡Å(

cr2+1
)2
ãã

, (43)

where
 

k1 = s2γ+16πG+λ, k2 = creanr2
, k3 = aAn

√
k2r+Bk2.

 

B.    Boundary conditions and determination of con-

stants: Israel-Darmois matching

Matching conditions are crucial for understanding the
physical  characteristics  of  any  gravitational  model  by
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aligning interior  and  exterior  geometries  across  a  hyper-
surface. This process is  governed by two primary condi-
tions:
 

●  Continuity  of  metric  coefficients:  The  metric
components of both spacetimes must be continuous at the
hypersurface. This constraint ensures that there is no dis-
continuity in the metrics across the boundary.
 

peff
r = 0

●  Extrinsic  curvature  matching:  The  extrinsic
curvatures of both spacetimes must be equal at the hyper-
surface.  This  requirement  leads  to  the  condition  ,
which  implies  that  there  is  no  difference  in  the  tensor
components of the stress energy across the boundary.
 

These  conditions  are  essential  for  ensuring  smooth
transition and consistency across the interior and exterior
geometries of any gravitational model. For this study, we
selected the exterior Schwarzschild spacetime as follows: 

ds2 = −
Å

1− 2M
r

ã
dt2+

Å
1− 2M

r

ã−1

dr2

+ r2
Ä

dθ2+ sin2 θdϕ2
ä
. (44)

By equating  the  exterior  spacetime  metric  with  Eq.  (37)
and applying the continuity conditions for the metric po-
tentials, we derive the following two relations:
 

ev(r) = 1− 2M
R , (45)

 

e−ξ(r) = 1− 2M
R , (46)

M Rwhere the terms   and   refer to the total mass and radi-
us of the compact star,  respectively. The second form of
continuity, in  which  the  pressure  vanishes  at  the  bound-
ary and hence allows stability in a true vacuum, is presen-
ted as follows:
 

ptotal
r (r)|r=R =

Å
pr −αϑ1

1

ã
|r=R = 0. (47)

A B

By  utilizing  Eqs.  (45)−(47)  and  re-arranging  them  with
the  appropriate  substitutions,  the  values  of  the  random
constants  ,  , and c can be obtained as follows:
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√
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√
R−2M

anR ,

B =

ÅÄ
c
√
R
√
R−2M

(
cR2e2anR2(

8γ
Ä
βc2nR4−
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,

c =
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4M
ã
/

Å
−2MR2

Ä
eanR2
+1
ä
+

√
R4
Ä(
−(R−2M)eanR2

+2M+βnR
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ä
+R3
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eanR2 −βn
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. (48)

A B

β = 0.2 β = −0.2

λ = 1×10−12 a = 0.03

Random constants  ,  , and c are then evaluated by tak-
ing    and  ,  and  the  summary  of  resulting
values is provided in Tables 1 and 2, in which the data of
seven  selected  stellar  models  has  been  utilized.  In  both
instances, the fixed parameters are  ,  ,

γ = 0.009and  , whereas  the  coupling  parameter  can   as-
sume any non-zero real value, as illustrated in the tables.

Utilizing  the  listed  constant  values  for  the  selected
stellar candidates, we generated plots of the metric poten-
tials, as shown in Figs. 1(a) and 1(b). These figures illus-
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trate the trend of the metric potentials as functions of the
radial coordinate r for two distinct constant values across
the four  stellar  models.  In  both  cases,  the  metric   poten-
tials exhibit  regular,  monotonically increasing, and finite
behavior throughout  the  stellar  interior,  without  any   in-
dication of singularities. 

IV.  PHYSICAL ANALYSIS

pr, pt

In this  section,  we  analyze  the  stability  of  our   solu-
tions by exploring various physical characteristics that are
crucial for the validity and stability of celestial objects in
any gravitational  framework.  This  includes  the   illustra-
tion  of  the  energy  density,  pressures  ( ),  and  their
gradients,  anisotropy,  velocities,  equation of  state  (EoS),
mass,  compactness,  and  redshift.  All  of  these  measures
are explained in detail in the following subsections. 

A.    Energy density, pressures, and gradients
In  self-gravitating  bodies—particularly  highly  dense

objects such  as  compact  objects  and  matter   compon-
ents—the energy density and pressures are anticipated to
exhibit  characteristic  behavior.  The  energy  density  and
pressures are expected to be maximum at the core of the
star, showing finite, positive, and singularies-free behavi-
or,  which  decreases  toward  the  surface.  This  behavior
supports  the  stability  of  the  model  within  the  proposed

theoretical framework. Figures 2 and 3 illustrate the radi-
al profiles of energy density, as well as the tangential and
radial pressures, throughout the radius of the compact star
models. The tangential pressure vanishes at the boundary.
Furthermore,  we  analyzed  the  gradients  of  the  energy
density and pressure, which are essential for the construc-
tion of a compact star model. It has been posited [75] that
these gradients  must  exhibit  negative  behavior.  We con-
ducted  this  analysis  by  considering  two  specific  cases:
first, by varying the parameter n while keeping the coup-
ling parameter β constant, and second, by varying β while
maintaining a constant value for n. This examination en-
sures  the  consistency  of  our  model  under  the  following
conditions in both scenarios:
 

dρ
dr

< 0;
dpr

dr
< 0;

dpt

dr
< 0. (49)

r = 0

Figures 3(b) and 3(c) illustrate the behavior of  all  gradi-
ents in both scenarios. The gradients were in accordance
with  the  essential  conditions,  exhibited  a  decreasing
trend,  and  vanished  at  the  stellar  core,  that  is,  at  .
This behavior  is  consistent  with  the  physical   expecta-
tions  of  a  compact  star  model,  where  the  energy density
and pressures reach their maximum at the center and de-
crease outward.
 

 

β = 0.2, λ = 1∗10−12,

a = 0.03, γ = 0.009

Table 1.    Synopsis of computed values of constants based on the data of seven stellar candidates for MGD case (
).

Star Models M/M⊙Mass  RRadius  (km) M
RMass-radius( ) c B A

Her X-1 [69] 0.85±0.15 8.1±0.41 0.154 0.00339865 −0.0279575 −0.289412

LMC X-4 [70] 1.04±0.09 8.301±0.2 0.184 0.00403809 −0.029791 −0.165948

Cen X-3 [71] 1.49±0.08 9.178±0.13 0.239 0.00454612 −0.0306402 −0.0403881

4U 1608-52 [72] 1.74±0.14 9.528±0.15 0.269 0.0049576 −0.03128 0.0445229

Vela X-1 1.77±0.08 9.56±0.08 0.273 0.00502456 −0.0312868 0.057035

PSR J1614-2230 [73] 1.97±0.04 9.69±0.2 0.300 0.0056665 −0.0324197 0.166191

PSR J0740+6620 [74] 2.07±0.04 12.34±0.2 0.247 0.00214646 −0.02322001 −0.3364949

 

β = −0.2, λ = 1∗10−12,

a = 0.03, γ = 0.009

Table  2.      Synopsis  of  computed  values  of  constants  based  on  the  data  of  seven  star  models  for  MGD case  (
).

Star Models M/M⊙Mass  RRadius  (km) M
RMass-radius( ) c B A

Her X-1 [69] 0.85±0.15 8.1±0.41 0.154 0.00325493 −0.028568 −0.289414

LMC X-4 [70] 1.04±0.09 8.301±0.2 0.184 0.0038583 −0.0304771 −0.165951

Cen X-3 [71] 1.49±0.08 9.178±0.13 0.239 0.00432607 −0.0314096 −0.0403919

4U 1608-52 [72] 1.74±0.14 9.528±0.15 0.269 0.00470364 −0.0321131 0.0445179

Vela X-1 1.77±0.08 9.56±0.08 0.273 0.00476514 −0.0322297 0.0570297

PSR J1614-2230 [73] 1.97±0.04 9.69±0.2 0.300 0.00535511 −0.0333488 0.166184

PSR J0740+6620 [74] 2.07±0.04 12.34±0.2 0.247 0.00205513 −0.0237099 −0.364951
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M/M⊙ = 0.85 R = 8.1 M/M⊙ = 1.49 R = 9.178

M/M⊙ = 1.77 R = 9.56 M/M⊙ = 2.07 R = 12.34
λ = 1×10−12

Fig.  1.      (color  online)  For  the  compact  star  Her  X-1  ( ,  )(■),  Cen  X-3  ( ,  )(■),  Vela  X-1
( ,  )(■) and PSR J0740+6620 ( ,  )(■), the variations in metric functions against r are shown.
All plots use  .

 

M/M⊙ = 1.49 R = 9.178
pt & pr n = 0.1 β = 0 β = 0.5

β = 1 β = 1.5 β = 2.5 β = 0.01 n = 0.5 n = 1 n = 2 n = 3

n = 4 λ = 1×10−12

Fig. 2.    (color online) For the compact star Cen X-3 ( ,  ), the variations in energy density and pressures with the
radial coordinate r are shown. Subfigures (a) and (b) depict energy density and pressures ( ) for   with   (■), 
(■),   (■),   (■), and   (■). Subfigure (c) shows energy density for   with   (■),   (■),   (■),   (■),
and   (■). All plots use  .

 

M/M⊙ = 1.49 R = 9.178

pt & pr β = 0.01 n = 0.5 n = 1 n = 2
n = 3 n = 4 n = 0.1 β = 0 β = 0.5 β = 1 β = 1.5 β = 2.5

λ = 1×10−12

Fig. 3.    (color online) For the compact star Cen X-3 ( ,  ), the variations in pressures and gradients with the radi-
al coordinate r are shown. Subfigures (a) and (b) depict pressures ( ) and gradients for   with   (■),   (■), 
(■),   (■), and   (■). Subfigure (c) shows gradients for   with   (■),   (■),   (■),   (■), and   (■).
All plots use  .
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dρ
dr

∣∣∣∣
r=0

= 0;
dpr

dr

∣∣∣∣
r=0

= 0;
dpt

dr

∣∣∣∣
r=0

= 0. (50)

 

B.    Anisotropy, energy conditions, and equilibrium
forces

pt

pr ∆ > 0

Pressure anisotropy is a crucial factor in assessing the
stability of  a  compact  object,  because  it  provides   valu-
able insights into the interior stellar structure. For a stable
compact  star,  the  anisotropy—denoted by Δ—should be
non-zero. When the tangential pressure   exceeds the ra-
dial pressure  , anisotropy Δ is positive ( ) and ex-
hibits a repulsive (outward-directed) force. Conversely, if

pr pt ∆ < 0  is  greater  than  ,  anisotropy  is  negative  ( )  and
refers  to  an  attractive  (inward-directed)  force  [76].  Fig-
ures 4(c) and 5(c) demonstrate the behavior of anisotropy
as a function of radius. The anisotropy is zero at the core
and becomes positive, increasing toward the boundary in
both cases, as shown graphically. This trend confirms the
repulsive trend of anisotropy and the necessary anti-grav-
itational behavior of the anisotropic force to maintain the
stability of the stellar structures.

Energy conditions represent mathematical constraints
on  the  energy-momentum tensor  of  self-gravitating bod-
ies  and  form the  root  cause  of  singularity  theorems  [77]
and entropy bounds [78]. These conditions are pivotal for

 

M/M⊙ = 1.49 R = 9.178
β = 0.01 n = 0.5

n = 1 n = 2 n = 3 n = 4 λ = 1×10−12

Fig. 4.    (color online) For the compact star Cen X-3 ( ,  ), the variations in energy conditions and anisotropy with
the radial coordinate r are shown. Subfigures (a) and (b) depict energy conditions and (c) depicts anisotropy for   with 
(■),   (■),   (■),   (■), and   (■). All plots use  .

 

M/M⊙ = 1.49 R = 9.178
n = 0.1 β = 0

β = 0.5 β = 1 β = 1.5 β = 2.5 λ = 1×10−12

Fig. 5.    (color online) For the compact star Cen X-3 ( ,  ), the variations in energy conditions and anisotropy with
the radial coordinate r are shown. Subfigures (a) and (b) depict energy conditions and (c) depicts anisotropy for   with   (■),

 (■),   (■),   (■), and   (■). All plots use  .
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assessing  the  feasibility  of  relativistically  stable  models.
The primary energy conditions include the strong energy
condition (SEC), weak energy condition (WEC), null en-
ergy  condition  (NEC),  and  dominant  energy  condition
(DEC). Mathematically, these are as follows: 

NEC : ρeff ≥ 0,

WEC : ρeff + peff
t ≥ 0, ρeff + peff

r ≥ 0.

SEC : ρeff +2peff
t + peff

r ≥ 0,

DEC : ρeff − |peff
r | ≥ 0, ρeff − |peff

t | ≥ 0.

(51)

For a  physically  captivating  model,  the  associated   in-
equalities  must  be  satisfied  to  ensure  that  these  energy

conditions  reach  their  maximum  at  the  core  of  the  star
and remain positive throughout its structure. As shown in
Figs. 4(a), 4(b), 5(a), and 5(b), all specified energy condi-
tions  are  met  under  both  scenarios:  when  varying  the
parameter n while keeping the coupling parameter β con-
stant  and  when  varying β while  maintaining n  constant.
This  consistency  across  both  cases  further  validates  the
stability of the proposed models.

Fg

Fh Fa

Fm f (R,T,Lm)

Next,  we  analyze  the  equilibrium conditions  through
the  involved  forces,  that  is,  the  gravitational  force  ( ),
hydrostatic  force  ( ),  anisotropic  force  ( ) and  modi-
fied  force  ( )  due  to  our  modified    gravity
model. By  incorporating  the  effects  of  the  MGD   ap-
proach, the extended Tolman-Oppenheimer-Volkoff (TOV)
equation for our model is formulated as follows:
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f (R,T,
Lm)

Fg Fh Fa

Fm

To  ensure  the  stability  of  our  model  within 
 gravity, the total impact of all forces, that is, gravita-

tional ( ), hydrostatic ( ), anisotropic ( ), and modi-
fied  force  ( ),  must  be  zero,  which  implies  that  these
forces  are  in  equilibrium.  This  balancing  effect  ensures
the  stability  of  all  configurations.  Figures  6(a)  and  6(b)
show the behavior of these forces in two distinct scenari-

os. In the first scenario, the parameters are held constant
and the forces are plotted as functions of varying n, as de-
picted in Fig. 6(a). The figure shows that the gravitation-
al force is counteracted by combined hydrostatic and an-
isotropic  forces,  which  act  in  opposite  directions.  This
equilibrium  prevents  gravitational  collapse,  whereas  the
modified  force  remains  constant  and  exerts  only  a  small

 

M/M⊙ = 1.49 R = 9.178
β = 0.01 n = 0.5 n = 1 n = 2 n = 3 n = 4

n = 0.1 β = 0 β = 0.5 β = 1 β = 1.5 β = 2.5 λ = 1×10−12

Fig. 6.    (color online) For the compact star Cen X-3 ( ,  ), the variations in forces with the radial coordinate r are
shown. Subfigure (a) depict forces for   with   (■),   (■),   (■),   (■), and   (■). Subfigure (b) shows forces
for   with   (■),   (■),   (■),   (■), and   (■). All plots use  .
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impact on the hydrostatic balance. In the second scenario,
the forces were plotted for varying values of the coupling
parameter β,  as  illustrated  in  Fig.  6(b). This  figure   con-
firms  that  even  with  different  values  of β,  all  the  forces
are  balanced,  which  further  confirms  the  stability  of  the
model. These findings confirm that the model is not only
stable  but  also  represents  a  physically  viable  relativistic
system. 

C.    Equation of state and stability analysis
The equation of state represents a dimensionless con-

straint  on the parameters  governing radial  and tangential
pressures. These  limitations  play  a  pivotal  role  in   estab-
lishing the relationship between the state variables, as ex-
pressed by the following equation: 

ωt =
pt

ρ
, ωr =

pr

ρ
. (53)

ωr

It  is  posited that  both parameters  must  lie  between 0
and 1 to ensure the physical stability of a relativistic mod-
el and confirm the non-exotic nature of the internal fluid
distribution  [79]. Figures  7(a)  and 7(b)  depict  the  trends
of  these  parameters  along  the  radial  direction,  with 
vanishing  at  the  star  boundary  for  two  scenarios—vary-
ing n and β—as labeled in the figures. The results clearly
demonstrate  that  both  EoS  parameters  fall  within  the
aforementioned limits,  thereby  confirming  that  the   solu-
tions are physically viable and consistent  with the stable
relativistic star models.

The pressure components must be constrained by the
speed of light [80] to evaluate the physical stability of the
anisotropic  compact  star  models.  This  is  achieved  using
Herrera's concept of cracking [81], which defines the ex-

[0,1]

pressions for  the  tangential  and  radial  velocities,  as  out-
lined  below.  Both  velocities  must  lie  within  the  range

, as shown below, which is a requirement termed the
causality condition: 

v2
r =

dpr

dρ
, v2

t =
dpt

dρ
. (54)

The concept of cracking was further extended by Ab-
reu  [82]  and  Andreasson  [83]  to  assess  the  stability  of
stellar structures. This extension is represented by the fol-
lowing  equations  and  inequalities.  For  a  model  to  be
physically promising  and  potentially  stable,  it  must   ad-
here to the conditions outlined below: 

=

{
−1 ≤ v2

t − v2
r ≤ 0, Potentially stable;

0 < v2
t − v2

r ≤ 1, Potentially unstable.
(55)

v2
r v2

t

Figures  8(a),  8(b),  8(c),  and  9(a)  illustrate  the  radial
and tangential velocities (  and  ) and their differences.
As shown,  the  velocities  remain  within  the  specified   re-
gions  for  both  scenarios—varying β  and n—which con-
firms the stability  of  our  models.  These results  reinforce
the  physical  viability  and  consistency  of  the  model  and
further validates its capacity to represent a stable relativ-
istic system. 

D.    Adiabatic index
The  adiabatic  index,  which  describes  the  stiffness  of

the EoS by measuring the change in pressure in response
to slight variations in matter density, is a critical factor in
analyzing the stability of stellar structures, both relativist-
ically  and  non-relativistically.  Chandrasekhar  [84]  noted

 

M/M⊙ = 1.49 R = 9.178
wt & wr β = 0.01 n = 0.5 n = 1 n = 2 n = 3 n = 4

wt & wr n = 0.1 β = 0 β = 0.5 β = 1 β = 1.5 β = 2.5 λ = 1×10−12

Fig. 7.    (color online) For the compact star Cen X-3 ( ,  ), the variations in EoS with the radial coordinate r are
shown.  Subfigure  (a)  EoS( )  for   with    (■),    (■),    (■),    (■),  and    (■).  Subfigure  (b)  shows
EoS( ) for   with   (■),   (■),   (■),   (■), and   (■). All plots use  .
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Γ > 4/3that  the  adiabatic  index  should  adhere  to  , a   cri-
terion that has been extensively examined by various au-
thors  for  both  isotropic  and  anisotropic  stellar  models
[85–86]. The adiabatic indices corresponding to the radi-
al and tangential components are as follows: 

Γr =
ρ+ pr

pr

Ädpr

dρ

ä
=
ρ+ pr

pr
v2

r , (56)

 

Γt =
ρ+ pt

pt

Ädpt

dρ

ä
=
ρ+ pt

pt
v2

t . (57)

Γr

Figures 9(b) and 9(c) illustrate the conduct of the adiabat-
ic index  , demonstrating that  its  value consistently ex-
ceeds  4/3  in  both  scenarios  when  varying β  and n.  This

Γt

(M/R)

Γcrit Γcrit

result  confirmed  the  stability  of  the  model  under  these
conditions.  The  adiabatic  index   was  not  plotted,  as  it
does  not  lead  to  any  significant  physical  insight  in  this
context.  Additionally,  Moustakidis  [87]  discussed  the
critical  value  of  the  adiabatic  index  Γ,  emphasizing  its
strong  dependence  on  the  mass-to-radius  ratio  .
The critical values of Γ for the seven different stellar can-
didates are listed in Tables 3 and 4. For all the stellar can-
didates,    exceeds  4/3.  The  calculation  of    incor-
porates the modified mass resulting from gravitational de-
coupling.  These  findings  further  confirmed  the  stability
and physical consistency of our models. 

Γcrit =
4
3
+

19
42

2M
R . (58)

 

 

M/M⊙ = 1.49 R = 9.178
v2

t & v2
r v2

t − v2
r & v2

r − v2
t

n = 0.1 β = 0 β = 0.5 β = 1 β = 1.5 β = 2.5 v2
t & v2

r β = 0.01 n = 0.5

n = 1 n = 2 n = 3 n = 4 λ = 1×10−12

Fig.  8.      (color online) For the compact  star  Cen X-3 ( ,  ),  the variations in velocities and velocities difference
with the radial coordinate r are shown. Subfigures (a) and (b) depict velocities ( ) and velocities difference ( ) for

 with   (■),   (■),   (■),   (■), and   (■). Subfigure (c) shows velocities ( ) for   with 
(■),   (■),   (■),   (■), and   (■). All plots use  .

 

M/M⊙ = 1.49 R = 9.178
Γr v2

t − v2
r & v2

r − v2
t

β = 0.01 n = 0.5 n = 1 n = 2 n = 3 n = 4 n = 0.1 β = 0
β = 0.5 β = 1 β = 1.5 β = 2.5 λ = 1×10−12

Fig. 9.    (color online) For the compact star Cen X-3 ( ,  ), the variations in velocities difference and adiabatic in-
dex ( ) with the radial coordinate r are shown. Subfigures (a) and (b) depict the velocities difference ( ) and adiabatic
index for   with   (■),   (■),   (■),   (■), and   (■). Subfigure (c) shows adiabtic index for   with 
(■),   (■),   (■),   (■), and   (■). All plots use  .
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E.    Mass function, compactness factor, and redshift
function

r→ 0 M(r)→ 0
r = R

In  this  section,  we  discuss  the  inter-connection
between the mass function, compactness, and redshift be-
cause  these  quantities  are  inherently  related.  It  is  well
known that the mass function must exhibit  a positive in-
creasing behavior  and  be  consistent  with  the  radial   co-
ordinate limit, that is,  ,  . The mass reaches
its  maximum  value  at  the  boundary  when  .
However, as  previously  discussed,  gravitational   decoup-
ling introduces an additional gravitational source that af-
fects  the  mass  function.  Therefore,  the  modified  mass
function for the current theory is given by 

M(r) = 4π
∫ r

0
ρeff(r1)r1

2 dr1 = 4π
∫ r

0
[ρ(r1)+βϑ0

0(r1)]r1
2 dr1,

(59)

or 

M(r) =
r
2

Ä
1− e−a(r)

ä
=

r
2

Ä
1− e−W(r)−βψ(r)

ä
. (60)

This modification to the mass relation reflects the impact
of supplemental gravitational contributions resulting from
the decoupling  process,  which  further  affects  the   struc-
ture  and  dynamics  of  the  compact  object.  The  revised

r = R
f (R,Lm,T )

equation can be expressed as follows, with the first com-
ponent representing the mass at   derived solely from

 gravity, as follows: 

M = M0−β
R
2
ψ(R), where M0 =

R
2

(1− e−W(r)). (61)

f (R,Lm,T )

f (R,Lm,T )

This  formulation  sets  forth  the  contributions  from  the
standard    gravity  from  those  introduced  by
gravitational decoupling. The compactness factor [88] for

  gravity  owing  to  the  MGD approach  can  be
written as 

ueff =
M
R = u0−

β

2
ψ(R), where u0 =

M0

R . (62)

ueff

zs

zs

f (R,Lm,T )

Owing to the impact of the compactness  ,  the surface
gravitational redshift   is also influenced by the decoup-
ling process. Thus, the modified surface redshift   in the
context  of  the  MGD for   gravity  is  expressed
as follows [89] : 

zs =
Ä

1−2u0+βψ(R)
ä−1/2

−1. (63)

Following the discussion of mass, redshift, and compact-
ness under the gravitational decoupling effect, a few key

 

β = 0.2,
λ = 1∗10−12,a = 0.03,γ = 0.009
Table  3.      Synopsis  of  total  mass  along  with  compactness  factor  values  by  utilizing  the  MGD contribution  for  parameters  (

).

Star objects M0/M⊙ R(km) u0 = M0/R zs M/M⊙ u = M/R zs (MGD) Γcrit(MGD)

Her X-1 [69] 0.85 8.1 0.155 0.203153 0.839975 0.152772 0.19999 1.47156

LMC X-4 [70] 1.04 8.301 0.185 0.259026 1.02773 0.182395 0.254704 1.49836

Cen X-3 [71] 1.49 9.178 0.239 0.384532 1.47275 0.236397 0.377241 1.54722

4U 1608-52 [72] 1.74 9.528 0.269 0.471337 1.71993 0.265932 0.461549 1.57394

Vela X-1 1.77 9.56 0.278 0.483339 1.74958 0.269611 0.473173 1.57727

PSR J1614-2230 [73] 1.97 9.69 0.300 0.579186 1.94716 0.296032 0.565684 1.60117

PSR J0740+6620 [74] 2.07 12.34 0.247 0.406152 2.04937 0.244662 0.399352 1.55469

 

β = −0.2,
λ = 1∗10−12,a = 0.03,γ = 0.009
Table 4.    Synopsis of total mass along with compactness parameter values by taking the MGD contribution for parameters (

).

Star objects M0/M⊙ R(km) u0 = M0/R zs M/M⊙ u = M/R zs (MGD) Γcrit(MGD)

Her X-1 [69] 0.85 8.1 0.155 0.203153 0.859676 0.156355 0.206229 1.4748

LMC X-4 [70] 1.04 8.301 0.185 0.259026 1.05183 0.186672 0.263238 1.50223

Cen X-3 [71] 1.49 9.178 0.239 0.384532 1.50664 0.241837 0.391676 1.55214

4U 1608-52 [72] 1.74 9.528 0.269 0.471337 1.75935 0.272028 0.480962 1.57945

Vela X-1 1.77 9.56 0.278 0.483339 1.78969 0.275792 0.493341 1.58286

PSR J1614-2230 [73] 1.97 9.69 0.300 0.579186 1.99201 0.302851 0.59253 1.60734

PSR J0740+6620 [74] 2.07 12.34 0.247 0.406152 2.08997 0.249509 0.412826 1.55908
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points can be outlined from the graphical analysis.
 

f (R,Lm,T )

zs

●  First,  mass  expansion  can  be  achieved  using  the
MGD technique [90] within   gravity.  As seen
from  Eq.  (61),  if  the  second  term  is  positive,  then  the
overall  mass  increases.  In  our  case,  this  is  possible  for
negative  values  of  the  interaction  parameter  β.  As  the
mass increases, both the redshift ( ) and compactness (u)
increase. Various authors have previously achieved simil-
ar  results,  as  seen  in  [64], where  mass  expansion  is   ob-
served for negative β, whereas in [91–92], the authors re-
ported  mass  expansion  for  positive  coupling  parameter
values.  Tables  3  and  4  display the  values  of  mass,   red-
shift, and compactness with and without the coupling ef-
fect  for  both  negative  and  positive  β  values  across  the
seven  star  candidates.  Notably,  the  mass  increases  only
for  positive β  values,  whereas  for  negative β, the  modi-
fied mass is less than the original. Additionally, the critic-
al  values  of  the  adiabatic  index  obtained  using  Eq.  (58)

f (R,Lm,T )

for  the  modified  mass  using  the  MGD  approach  are
shown in the table for all stars. The value is greater than
4/3  in  both  cases  (positive  and  negative β  values),  con-
firming the stable trend of the proposed model within the
realm  of    gravity.  Moreover, Figs.  10  and 11
show plots  of  the  modified mass,  redshift,  and compact-
ness for both cases.
 

u ≤ 4/9 u ≤ 0.30

● Second,  the modified compactness  due to MGD is
greater compared to compactness without this effect. Our
findings are also consistent with the Buchdahl limits [93]
for  isotropic  ( )  and  anisotropic  fluids  ( ),
which are crucial for establishing a physically acceptable
model.
 

Table  5  presents  a  clear  comparative  analysis  of  the
various anisotropic  stellar  models  developed  within   dif-
ferent modified gravity frameworks. It highlights the dis-
tinct  features  of  each  model  and  illustrates  how  the

 

M/M⊙ = 1.49 R = 9.178

r β β = −0.1 β = −0.2 β = −0.3
β = −0.4 β = −0.5 β = 0.01 a = 0.03 γ = 0.009 λ = 1×10−12

Fig. 10.    (color online) For the compact star Cen X-3 ( ,  ), the plots show how the mass function, compactness,
and redshift vary with the radial coordinate  . The variation is considered for some variations of  :   (■),   (■), 
(■),   (■), and   (■). In all plots, the parameters are set to  ,  ,  , and  .

 

M/M⊙ = 1.49 R = 9.178

r n n = 0.5 n = 1 n = 1.5 n = 2
n = 3 n = 0.1 a = 0.0003 γ = 0.0009 λ = 1×10−12

Fig. 11.    (color online) For the compact star Cen X-3 ( ,  ), the plots show how the mass function, compactness,
and redshift vary with the radial coordinate  . The variation is considered for some values of  :   (■),   (■),   (■), 
(■), and   (■). In all plots, the parameters are set to  ,  ,  , and  .
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f (R,Lm,T )

present study based on Class-I solutions within the MGD
approach relates  to  and  extends  previous  works.  By   ad-
opting  a  more  generalized  gravitational  theory,  namely

, which encompasses earlier special cases, and
by utilizing  realistic  values  of  mass  and  radius  of   com-
pact stars, the model offers a physically consistent aniso-
tropic  extension  of  an  initially  isotropic  seed  solution.
This comparative framework emphasizes the novelty and
physical viability of the present model within the broader
context of modified gravity theories.

f (R)
f (R,T )

f (R,Lm,T )

f (R,Lm,T )

It is important to note that mass–radius (M–R) curves
provide the  most  direct  diagnostic  of  stellar   configura-
tions.  In  the  present  analysis,  we  fixed  the  stellar  mass
and  adopted  the  assumed  radii  to  examine  the  physical
behavior.  However,  previous  studies  on  GR  [97], 
gravity  [34,  98–99],  and    gravity  [100−104],  as
well  as  more  recent  studies  on    models  [32,
105],  have  shown that  matter–geometry couplings   signi-
ficantly  shift  M–R relations.  The  compactness  and   red-
shift  trends  obtained  are  qualitatively  consistent  with
these results. Our approach differs by employing the gen-
eralized    framework  together  with  the  MGD
technique.

f (R,Lm,T )

Unraveling the  true  mass  and  radius  of  pulsars   re-
mains  a  central  challenge  in  compact  star  astrophysics.
Despite  notable  observational  progress,  these  parameters
still involve uncertainties owing to extreme physical con-
ditions and  complex  matter  interactions  inside  such   ob-
jects.  In  this  study,  we  propose  a  refined  modeling
strategy  within  the  extended    gravity  frame-
work to better capture the structure of pulsars under mod-
ified  gravitational  dynamics.  To  connect  our  theoretical
model with observational reality, we compared it  to reli-
able  data  from  well-studied  pulsars,  including  Her  X-1
[69],  LMC  X-4  [70],  Cen  X-3  [71],  4U  1538-52  [72],
Vela  X-1  ,  PSR J1614-2230  [73],  and  PSR J0740+6620
[74]. These compact objects span a wide mass range and
provide a robust testing ground for assessing the predict-
ive power and flexibility of the proposed model.

f (R,Lm,T )
f (R) f (R,T )

In future work, we plan to extend this analysis by nu-
merically  constructing  explicit  M–R  sequences  in

  gravity  and  comparing  them  directly  to  GR,
, and   predictions, thereby offering deeper in-

sights into the physics of ultra-dense stars. 

V.  CONCLUSION

f (R,Lm,T )

f (R,Lm,T )

Tµν

ϑµν

ψ(r)

β = 0

A B

In this research, we employed the MGD approach for
gravitational  decoupling  within  the  framework  of

  gravity  to  construct  anisotropic  compact  star
models  based  on  a  class-1  embedding  spacetime.  In  the
literature,  this  method  has  proven  to  be  highly  effective
for  developing  interior  solutions  of  self-gravitating  sys-
tems,  enabling  the  investigation  of  gravitational  effects
from  various  perspectives  within  spherically  symmetric
configurations.  In  the  present  study,  we  have  utilized
Ovalle's  gravitational  decoupling  technique  [92]  along
with  the  MGD  approach  in  the  context  of 
gravity to formulate physically viable models of compact
stellar  objects  with  anisotropic  pressure.  Within  this
framework,  one  of  the  metric  potentials  is  deformed  by
introducing an  additional  gravitational  source  that   de-
couples the original field equations into two separate sys-
tems. The  first  system  corresponds  to  the  standard   per-
fect  fluid  Einstein  equations  described  by  ,  whereas
the second governs the anisotropic source  , forming a
quasi-Einstein system.  Notably,  these  two  sources   inter-
act  solely  through  gravitational  interaction,  without  any
direct  energy  exchange.  We  introduced  deformation  by
modifying the radial component of the metric through an
appropriate choice of the function   [64–65], ensuring
regularity in the metric functions and all essential physic-
al parameters throughout the stellar interior. It is import-
ant  to  note  that  setting  the  coupling  parameter    re-
covers the  original  field  equations  of  the  theory.   Addi-
tionally,  constants  ,  ,  and  c  were  determined  by
matching the  interior  solution  to  the  exterior   Schwarz-
schild geometry.

peff
r = 0

pr ψ(r)
θ̃µν

The effective radial pressure,  , at the boundary,
derived from  the  second  fundamental  form  of  the   junc-
tion  conditions,  incorporates  both  the  isotropic  pressure
  and  deformation  function  ,  which  arises  because

of the additional source  . Using realistic observational
data,  we  determined  the  constants A, B,  and c  for  seven
compact stellar candidates: Her X-1, Cen X-3, LMC X-4,
Vela  X-1,  PSR  J1614-2230,  4U  1608-52,  and  PSR

 

Table 5.    Comparison of anisotropic stellar models in various modified gravity frameworks.

Gravity theory Metric Anstaz Matter Configuration &Stability  Features

f (R,T ) [94] Krori-Barua metric Anisotropic fluid
Physically acceptable; matched with Schwarzschild

exterior; consistent graphs for real stars

f (T ) [95] gravity Krori-Barua metric Anisotropic fluid
Regular and stable; consistent with 4U 1820-30, Her X-1,

and SAX J1808.4-3658; surface redshift analyzed

f (R,Lm,T ) = R+αTLm  [96] Numerical (non-KB)
Anisotropic quark matter; MIT

bag model
Mass–radius relation, adiabatic index, sound speed; α

constrained using observational data

f (R,Lm,T )

Present Work

Class-1 embedding; MGD
approach

Anisotropic fluid; radial metric
deformation

Well-behaved energy density/pressures; negative β yields
higher mass; stability via TOV and Herrera cracking

condition
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J0740+6620.  The  corresponding  results  are  presented  in
Tables  1 and 2.  The  compact  star  Cen X-3 was  selected
for  graphical  examination  because  its  radius  ( )
lies in  an  optimal  range  that  allows  a  comprehensive   il-
lustration  of  all  physical  parameters,  including  energy
density,  pressure  profiles,  anisotropy,  energy  conditions,
and equilibrium forces. Larger radii were required to ex-
hibit the full behavior of these quantities, making Cen X-
3 a  suitable  candidate.  For  graphical  analysis,  we  evalu-
ated the  physical  behavior  of  the  model  under  two   dis-
tinct  scenarios:  one  involving  variations  in  the  coupling
parameter β, and  the  other  involving  changes  in  the   de-
formation parameter n,  both  using Cen X-3 as  the   refer-
ence  model.  We summarize  the  key  conclusions  derived
from this study as follows:
 

A = −0.0403881 B = −0.0306402 C =
0.00454612

●  Figures  1(a)  and  1(b) show  how  gravitational   de-
coupling  affects  the  metric  potentials  for  both  scena-
rios  when  using  Cen  X-3  star's  observational  data  and
constants  ,  ,  and 

. The  metric  potentials  clearly  indicate   posit-
ive and monotonically decreasing behavior within the star
before diminishing at the boundary, fostering our model's
regularity and stability.
 

●  Figures  2(a),  2(b),  2(c),  and  3(a)  show  positive,
non-singular,  and monotonically decreasing behaviors of
energy density and pressure inside the stellar structure. It
was noticed that the radial pressure vanished at the star's
surface, validating the model's physical consistency.
 

● Figures 4(c) and 5(c) depict the trend of the aniso-
tropy profile, which is a positive increasing function of r
and is zero at the boundary (indicating that the radial and
tangential pressures are equal).
 

r = 0

●  Figures  3(b)  and  3(c)  illustrate  the  negative  and
monotonically  declining  gradients  of  the  energy  density
and  pressures,  which  satisfy  the  required  constraint  of
vanishing  at    given  in  Eq.  (50),  and  hence  assured
the model's physical validity.
 

●  Furthermore,  Figs.  4(a),  4(b),  5(a),  and  5(b)  show
the energy condition inequalities, which demonstrate that
all  energy  bounds  (NEC,  SEC,  DEC,  and  WEC)  have
been validated throughout the stellar interior given in Eq.
(51).
 

Fh Fg

Fa Fm

f (R,Lm,T )

● Figure  6 depicts  the  hydrostatic  equilibrium of  the
model given  by  Eq.  (52),  which  is  derived  from   balan-
cing  the  hydrostatic  force  ( ),  gravitational  force  ( ),
anisotropic  force  ( ),  and  modified  force  ( )  due  to

 gravity. This  ensures  that  the forces  counter-
balance each other,  preventing gravitational collapse and
confirming the stability of the model.

● The EoS, as shown in Figs. 7(a) and 7(b), indicates
that all values are between 0 and 1.
 

v2
r & v2

t●  Additionally,  the  speeds  of  sound  ( )  re-
mained lower than the speed of light throughout the stel-
lar  interface,  as  shown  in  Figs.  8  and  9(a).  This  clearly
satisfies the criteria for causality and stability.
 

● Furthermore,  the  adiabatic  index  surpasses  the   es-
sential  value of 4/3,  thereby guaranteeing static stability.
Furthermore, Herrera's  cracking  conditions  were   satis-
fied.
 

β = −0.5

n = 3 β = −0.2

Clearly,  the  TOV  equation  holds  true  in  the  re-de-
signed  framework,  indicating  that  our  solutions  reflect
physically  viable,  stable,  and  equilibrium  compact  star
models. Tables 3 and 4 show the mass, redshift, and com-
pactness values, with and without MGD. Notably, we ob-
served  that  negative  values  of  the  coupling  parameter β
allow for  greater  mass  packing,  as  evidenced  by  the   in-
creased values  of  mass,  redshift,  and  compactness   com-
pared  with  that  of  the  un-deformed  case.  Figure  10
clearly demonstrates that these values increase monoton-
ically with r, reaching the highest value at the surface of
the star for  . Figure 11 shows the effect of vary-
ing  n  with  these  parameters,  with  the  maximum  values
occurring at   for  .

(u = M/R)

This  study  concludes  by  highlighting  the  important
effects of  gravitational  decoupling  via  the  MGD   tech-
nique on the compactness   and total mass of the
compact  star  models.  When  β  assumes  negative  values,
the additional gravitational source, induced and governed
by the coupling parameter β, enables a higher mass con-
finement within the stellar  structure.  This realization un-
derscores the  flexibility  and  strength  of  the  MGD   ap-
proach  for  constructing  stable  and  physically  consistent
compact star solutions with anisotropic pressures and ex-
tended gravitational influences.

f (R,Lm,T )

f (R)

f (R)

In particular,  our findings differ from those of previ-
ous studies in other modified gravity models, as shown in
Table  5,  where  such significant  variation in  mass  due to
deformation  and  coupling  has  not  been  reported  within
the context of   gravity. Specifically, the simul-
taneous  increase  and  decrease  in  mass  and  compactness
with different β values is a novel result of this theory, re-
vealing new  physical  insights  that  have  not  been   previ-
ously explored. Table 5 presents a comparative summary
of our model with other recent studies, clearly emphasiz-
ing  the  theoretical  and  physical  advancements  achieved.
In    theory,  Sharif  and  Aslam  [106] explored   aniso-
tropic spherical symmetric solutions through an extended
gravitational decoupling  approach.  Two  types  of   solu-
tions were presented by considering the Starobinsky mod-
el of   gravity along with the Krori-Barua metric po-
tential. It was shown that one of the two developed mod-
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els  exhibited  locally  unstable  conduct  when  different
coupling  parameter  values  were  used.  In  another  study
[58], the  authors  investigated  the  construction  of   aniso-
tropic static spheres by using the metric potentials of the
Tolman V solution and MGD scheme in   gravity.
Solutions were obtained by imposing three different con-
straints,  and  the  first  two  models  were  physically  viable
and stable  only  when  small  choices  of  decoupling   para-
meters were  considered.  In  the  present  study,  we   con-
sidered the linear   models and found that for all
choices  of  parameter  β,  the  obtained  model  exhibited
stable  and  physically  valid  behavior.  In  a  recent  study,
Singh et  al.  [65] explored  anisotropic  compact  star   con-
figurations  for  a  self-gravitating  structure  using  a  MGD
scheme,  along  with  embedding  class-1  spacetime  in  the
GR framework.  They  performed  a  graphical  analysis  by
considering different  variations of  the coupling paramet-

ers α and n. It is shown that all the physical characterist-
ics are satisfied when positive values of α are considered.
Our study extends this work by involving curvature-mat-
ter coupling and the results obtained are quite similar. Us-
ing the same metric potential with the gravitational coup-
ling  approach,  Hira  et  al.  [64]  modeled  compact  stellar
structures using Rastall  theory.  Using different  measures
of graphical  analysis,  physically  valid  models  were   ob-
tained when positive coupling parameter values were as-
sumed, and our results were also in agreement with their
findings.

f (R,Lm,T )
The effective  implementation  of  this  technique  with-

in the framework of   gravity offers promising
new directions for the study of compact stars in alternat-
ive  gravity  theories  and  enhances  our  understanding  of
the internal  composition  and  evolution  of  dense   astro-
physical objects.

 

 

References 

 J.  M.  Lattimer  and  M.  Prakash,  Phys.  Rev.  Lett.  94,
111101 (2005)

[1]

 B.  P.  Abbott,  R.  Abbott,  T.  D.  Abbott  et  al.,  Phys.  Rev.
Lett. 119, 161101 (2017)

[2]

 K. Akiyama, A. Alberdi, W. Alef et al., Astrophys. J. Lett.
875, L1 (2019)

[3]

 S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys.
J. 517, 565 (1999)

[4]

 A. G. Riess, A. V. Filippenko, P. Challis et al., Astron. J.
116, 1009 (1998)

[5]

 D. N. Spergel,  L. Verde, H. V. Peiris et al., Astrophys. J.
Suppl. Ser. 148, 175 (2003)

[6]

 E. Komatsu, J.  Dunkley, M. R. Nolta et al., Astrophys.  J.
Suppl. Ser. 180, 330 (2009)

[7]

 S.  W.  Hawking  and  R.  Laflamme,  Phys.  Lett.  B 209,  39
(1988)

[8]

 A.  Narimani,  N.  Afshordi,  and  D.  Scott,  J.  Cosmo.
Astropart. Phys. 08, 049 (2014)

[9]

 J. S. Farnes, Astron. Astrophys. 620, A92 (2018)[10]
 T.  P.  Sotiriou  and  V.  Faraoni,  Rev.  Mod.  Phys.  82,  451
(2010)

[11]

 S. Capozziello and M. De Laurentis, Phys.  Rep. 509, 167
(2011)

[12]

 K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979)[13]
 E. E. Flanagan and E. Rosenthal, Phys. Rev. D 75, 124016
(2007)

[14]

 J.  B.  Dent,  S.  Dutta,  and  E.  N.  Saridakis,  J.  Cosmol.
Astropart. Phys. 2011, 009 (2011)

[15]

 K.  Bamba,  C.  Q.  Geng,  C.  C  Lee  et  al.,  J.  Cosmo.
Astropart. Phys. 2011, 021 (2011)

[16]

 M.  Zubair,  F.  Kousar,  and  R.  Saleem, Chin.  J.  Phys. 65,
355 (2020)

[17]

 F.  Kousar,  R.  Saleem,  and  M.  Zubair, Adv.  High  Energy
Phys. 2018, 3085761 (2018)

[18]

 M. Zubair, F. Kousar, and S. Waheed, Can. J. Phys. 97(8),
880 (2019)

[19]

 N. Montelongo Garcia, F. S. N. Lobo, J. P. Mimoso et al.,
J. Phys. Conf. Ser. 314, 012056 (2011)

[20]

 S.  K.  Maurya,  A.  Errehymy,  D.  Deb et  al., Phys.  Rev.  D[21]

100, 044014 (2019)
 M.  Caruana,  G.  Farrugia,  and  J.  L.  Said, Eur.  Phys.  J.  C
80, 640 (2020)

[22]

 E. Gudekli,  M. Zubair, M. J. Kamran et al., Int.  J.  Geom.
Meth. Mod. Phys. 19(4), 2250056 (2022)

[23]

 R. Saleem, M. I. Aslam, and M. Zubair, Eur. Phys. J. Plus
136(10), 1078 (2021)

[24]

 M. Zubair,  A.  Ditta,  S.  Waheed et  al., Chin.  J.  Phys. 77,
1827 (2022)

[25]

 S. K. Maurya, J. Kumar, and S. Kiroriwal, JHEAP 44, 194
(2024)

[26]

 S.  K.  Maurya,  A.  Errehymy,  Y.  Saginayev  et  al.,  Phys.
Dark Univ. 49, 101977 (2025)

[27]

 S. K. Maurya, K. N. Singh, M. Govender et al., Astrophys.
J. Suppl. 269(2), 35 (2023)

[28]

 L. V. Jaybhaye, R. Solanki, S. Mandal et al., Phys. Lett. B
831, 137148 (2022)

[29]

 Z. Haghani and T. Harko, Eur. Phys. J. C 81, 615 (2021)[30]
 M.  Zubair,  S.  Waheed,  Q.  Muneer  et  al.,  Fortsch.  Phys.
71(8), 2300018 (2023)

[31]

 C.  E.  Mota,  J.  M.  Z.  Pretel,  C.  O.  V.  Flores  et  al.,  Eur.
Phys. J. C 84, 673 (2024)

[32]

 G. G. L.  Nashed and W. El  Hanafy, J.  Cosmo. Astropart.
Phys. 09, 038 (2023)

[33]

 G.  G.  L.  Nashed  and  S.  Capozziello, Eur.  Phys.  J.  C 84,
521 (2024)

[34]

 G. G. L. Nashed, Astrophys. J. 950(2), 129 (2023)[35]
 A. Das, F. Rahaman, B. K. Guha et al., Eur. Phys. J. C 76,
654 (2016)

[36]

 J. Kumar, H. D. Singh, and A. K. Prasad, Phys. Dark Univ.
34, 100880 (2021)

[37]

 A.  K.  Yadav,  M.  Mondal,  and  F.  Rahaman,  Pramana  J.
Phys. 94, 90 (2020)

[38]

 D.  Taser  and  S.  S.  Dogru, Astrophys.  Space  Sci. 368(6),
49 (2023)

[39]

 J.  Ovalle,  R.  Casadio,  R.  da Rocha et  al., Eur.  Phys.  J.  C
78, 122 (2018)

[40]

 L.  Randall  and  R.  Sundrum,  Phys.  Rev.  Lett.  83,  4690
(1999)

[41]

 R.  Casadio,  J.  Ovalle,  and  R.  da  Rocha, Class.  Quantum[42]

M. Zubair, Hira Sohail, Saira Waheed et al. Chin. Phys. C 50, 025103 (2026)

025103-20

https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.94.111101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1088/1475-7516/2014/08/049
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1051/0004-6361/201832898
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1103/PhysRevD.75.124016
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/009
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1016/j.cjph.2020.03.020
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1155/2018/3085761
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1139/cjp-2018-0566
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1088/1742-6596/314/1/012056
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1142/S0219887822500566
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1140/epjp/s13360-021-02052-0
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.cjph.2021.12.029
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.jheap.2024.09.012
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.1016/j.dark.2025.101977
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.3847/1538-4365/ad0154
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1016/j.physletb.2022.137148
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1140/epjc/s10052-021-09359-3
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1002/prop.202300018
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1140/epjc/s10052-024-13042-8
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1088/1475-7516/2023/09/038
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.1140/epjc/s10052-024-12866-8
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.3847/1538-4357/acd182
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1140/epjc/s10052-016-4503-0
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1016/j.dark.2021.100880
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s12043-020-01960-7
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1007/s10509-023-04203-4
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1088/0264-9381/32/21/215020


Gravit. 32, 215020 (2015)
 J. Ovalle, Int. J. Mod. Phys. D 18, 837 (2009)[43]
 R. Casadio and J. Ovalle, Phys. Lett. B 715, 251 (2012)[44]
 J. Ovalle, Phys. Lett. B 788, 213 (2019)[45]
 R. da Rocha, Eur. Phys. J. C 77, 355 (2017)[46]
 R. Casadio, P. Nicolini, and R. da Rocha, Class. Quantum
Gravit. 35, 185001 (2018)

[47]

 C.  L.  Heras  and  P.  Leon,  Fortsch.  Phys.  66,  1800036
(2018)

[48]

 M.  Estrada,  F.  Tello-Ortiz,  Eur.  Phys.  J.  Plus  133,  453
(2018)

[49]

 M. Sharif and S. Saba, Eur. Phys. J. C 78, 921 (2018)[50]
 E.  Morales  and  F.  Tello-Ortiz,  Eur.  Phys.  J.  C  78,  618
(2018)

[51]

 M.  Estrada  and  R.  Prado,  Eur.  Phys.  J.  Plus  134,  168
(2019)

[52]

 E.  Contreras  and  P.  Bargueno,  Eur.  Phys.  J.  C  78,  558
(2018)

[53]

 H.  Azmat  and  M.  Zubair,  Phys.  Dark  Univ.  37,  101049
(2022)

[54]

 H.  Azmat,  R.  Khalid,  M.  Zubair  et  al.,  Commun.  Theor.
Phys. 77(6), 065401 (2025)

[55]

 H.  Azmat,  F.  Tello-Ortiz,  M.  Zubair  et  al.,  Phys.  Scripta
98(1), 015010 (2022)

[56]

 S. K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 27, 100442
(2020)

[57]

 M. Sharif and S. Iltaf, Physica Scripta 97, 075002 (2022)[58]
 S. K. Maurya, A. Errehymy, B. Dayanandan et al., JHEAP
45, 46 (2025)

[59]

 S. K. Maurya, A. Errehymy, K. N. Singh et al., J. Cosmol.
Astropart. Phys. 04, 004 (2025)

[60]

 H.  Azmat  and  M.  Zubair,  Eur.  Phys.  J.  Plus 136(1),  112
(2021)

[61]

 S. Sahlu, A. H. A. Alfedeel, and A. Abebe, Eur. Phys. J. C
84(9), 982 (2024)

[62]

 K. Lake, Phys. Rev. D 67, 104015 (2003)[63]
 H. Sohail,  A.  Ditta,  I.  Mahmood et  al., Eur.  Phys.  J.  Plus
139(8), 695 (2024)

[64]

 K. N. Singh, S. K. Maurya, M. K. Jasim et al., Eur. Phys.
J. C 79(10), 851 (2019)

[65]

 D.  M.  Pandya,  B.  Thakore,  R.  B.  Goti  et  al., Astrophys.
Space Sci. 365(2), 30 (2020)

[66]

 S.  N.  Pandey and S.  P.  Sharma, Gen.  Relativ.  Gravit. 14,
113 (1982)

[67]

 E.  Morales  and  F.  Tello-Ortiz,  Eur.  Phys.  J.  C  78,  841
(2018)

[68]

 M.  K.  Abubekerov,  E.  A.  Antokhina,  A.  M.
Cherepashchuk et al., Astron. Rep. 52, 379 (2008)

[69]

 M.  L.  Rawls,  J.  A.  Orosz,  J.  E.  McClintock  et  al.,
Astrophys. J. 730, 25 (2011)

[70]

 S. Naik, B. Paul, and Z. Ali, Astrophys. J. 737, 79 (2011)[71]
 F. E. Marshall, L. Angelini, IAU Circ. 6331, 1 (1996)[72]
 Z.  Arzoumanian  et  al.  (NANOGrav  Collaboration),
Astrophys. J. Suppl. 235(2), 37 (2018)

[73]

 M. Miller, F. K. Lamb, A. Dittmann et al., APJL 887, L24
(2019)

[74]

 A. Chanda, S. Dey, and B. C. Paul, Eur. Phys. J. C 79, 502
(2019)

[75]

 B. V. Ivanov, Phys. Rev. D 65, 104001 (2002)[76]
 S.  W.  Hawking  and  G.  F.  R.  Ellis,  The  Large  Scale
Structure  of  Space-Time,  (Cambridge:  Cambridge
University Press, 2023).

[77]

 R. Bousso, Rev. Mod. Phys. 74, 825 (2002)[78]
 S.  Das,  F.  Rahaman,  and  L.  Baskey,  Eur.  Phys.  J.  C 79,
853 (2019)

[79]

 A.  Di  Prisco,  L.  Herrera,  and  V.  Varela,  Gen.  Relativ.
Gravit. 29, 1239 (1997)

[80]

 L. Herrera, Phys. Lett. A 165, 206 (1992)[81]
 H.  Abreu,  H.  Hernandez,  and  L.  A.  Nunez,  Classic.
Quantum Gravit. 24, 4631 (2007)

[82]

 H. Andreasson, Commun. Math Phys. 288, 715 (2009)[83]
 S. Chandrasekhar, Astrophys. J. 140, 417 (1964)[84]
 D.  D.  Doneva  and  S.  S.  Yazadjiev,  Phys.  Rev.  D  85,
124023 (2012)

[85]

 H.  O.  Silva,  C.  F.  B.  Macedo,  E.  Berti  et  al.,  Class.
Quantum Gravit. 32, 145008 (2015)

[86]

 C. C. Moustakidis, Gen. Relativ. Gravit. 49, 68 (2017)[87]
 M.  K.  Mak  and  T.  Harko,  Proc.  R.  Soc.  London  Ser.  A
Math Phys. Eng. Sci. 459, 393 (2003)

[88]

 C.  G.  Bohmer  and  T.  Harko, Class.  Quantum Gravit. 23,
6479 (2006)

[89]

 C. Arias, F. Tello-Ortiz, and E. Contreras, Eur. Phys. J. C
80, 463 (2020)

[90]

 S.  Chakraborty,  S.  SenGupta,  J.  Cosmo.  Astropart.  Phys.
05, 032 (2018)

[91]

 F. Tello-Ortiz, Eur. Phys. J. C 80, 413 (2020)[92]
 H. A. Buchdahl, Phys. Rev. 116, 1027 (1959)[93]
 M. F. Shamir, Z. Asghar, and A. Malik, Fortsch. Phys. 70,
12 (2022)

[94]

 G.  Abbas,  A.  Kanwal,  and  M.  Zubair,  Astrophys.  Space
Sci. 357(2), 109 (2015)

[95]

 T. Tangphati,  I.  Sakalli,  A. Banerjee et al., Chin. Phys. C
49(2), 025110 (2025)

[96]

 S. K. Maurya, M. K. Jasim, A. Errehymy et al., Eur. Phys.
J. C 85(3), 321 (2025)

[97]

 R. Kumar, S. K. Maurya, Y. Sekhmani et al., Nucl. Phys.
B 1018, 116984 (2025)

[98]

 M. Zubair  and G.  Abbas, Astrophys.  Space Sci. 361, 342
(2016)

[99]

 A. Errehymy, Y. Khedif, G. Mustafa et al., Chin. J. Phys.
77, 1502 (2022)

[100]

 P.  H.  R.  S.  Moraes,  J.  D.  V.  Arbañil,  and  M.  Malheiro,
JCAP 06, 005 (2016)

[101]

 K. N. Singh, S. K. Maurya, A. Errehymy et al., Phys. Dark
Univ. 30, 100620 (2020)

[102]

 K. N. Singh, A. Errehymy, F. Rahaman et al., Chin. Phys.
C 44(10), 105106 (2020)

[103]

 M. Rahaman, K. N. Singh, A. Errehymy et al., Eur. Phys.
J. C 80(3), 272 (2020)

[104]

 J. A. S. Fortunato, P. H. R. S. Moraes, E. Brito et al., Phys.
Dark Univ. 48, 101893 (2025)

[105]

 M. Sharif and M. Aslam, Eur. Phys. J. C 81, 641 (2021)[106]

Stellar configurations in f(R, Lm, T) gravity: probing anisotropy and stability... Chin. Phys. C 50, 025103 (2026)

025103-21

https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1088/0264-9381/32/21/215020
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1142/S0218271809014790
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2012.07.041
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1140/epjc/s10052-017-4926-2
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1088/1361-6382/aad664
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1002/prop.201800036
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjp/i2018-12249-9
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6406-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjc/s10052-018-6102-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjp/i2019-12555-8
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1140/epjc/s10052-018-6048-x
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1016/j.dark.2022.101049
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1572-9494/ad9c41
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1088/1402-4896/aca5c1
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1016/j.dark.2019.100442
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1088/1402-4896/ac74f2
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1016/j.jheap.2024.11.011
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1088/1475-7516/2025/04/004
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjp/s13360-021-01081-z
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1140/epjc/s10052-024-13307-2
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1103/PhysRevD.67.104015
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjp/s13360-024-05456-w
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1140/epjc/s10052-019-7377-0
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/s10509-020-3742-6
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1007/BF00756917
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1140/epjc/s10052-018-6319-6
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1134/S1063772908050041
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/730/1/25
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.1088/0004-637X/737/2/79
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1140/epjc/s10052-019-7020-0
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/PhysRevD.65.104001
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1140/epjc/s10052-019-7367-2
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1023/A:1018859712881
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1016/0375-9601(92)90036-L
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1088/0264-9381/24/18/005
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1007/s00220-008-0690-3
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1007/s10714-017-2232-9
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1098/rspa.2002.1014
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1088/0264-9381/23/22/023
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1140/epjc/s10052-020-8042-3
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1140/epjc/s10052-020-7995-6
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1002/prop.202200134
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1007/s10509-015-2337-0
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1088/1674-1137/ad99b2
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1140/epjc/s10052-025-13917-4
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1016/j.nuclphysb.2025.116984
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1007/s10509-016-2933-7
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1088/1475-7516/2016/06/005
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1016/j.dark.2020.100620
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1088/1674-1137/abab88
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1140/epjc/s10052-020-7842-9
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1016/j.dark.2025.101893
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7
https://doi.org/10.1140/epjc/s10052-021-09436-7

	I INTRODUCTION
	IIBASICSOFf(\calR,\calLm,T)THEORY
	III MGD AND EMBEDDING CLASS-I SPACE TIME
	A Class-I solutions and minimal geometric deformation scheme
	B Boundary conditions and determination of constants: Israel-Darmois matching

	IV PHYSICAL ANALYSIS
	A Energy density, pressures, and gradients
	B Anisotropy, energy conditions, and equilibrium forces
	C Equation of state and stability analysis
	D Adiabatic index
	E Mass function, compactness factor, and redshift function

	V CONCLUSION
	REFERENCES

