Chinese Physics C  Vol. 50, No. 2 (2026) 025103

Stellar configurations in R, L,,, T) gravity: probing anisotropy and
stability via minimal geometric deformation
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Abstract: This study uses a minimal geometric deformation scheme within the f(R,L,,T) gravity paradigm to
model anisotropic compact stars using class-1 embedding spacetime. We introduce the deformation of the radial
component of the metric tensor, which decouples the Einstein field equations and introduces an additional gravita-
tional source. The relevant constants are evaluated using observational data from seven realistic star candidates by
matching the inner region with the outer Schwarzschild line element. A comprehensive graphical analysis of three
compact stars is performed to examine the impact of the coupling parameter § and deformation parameter n, reveal-
ing positive, well-behaved energy densities and pressures that satisfy the energy conditions. The study found that
negative values of the coupling parameter f allow greater mass accumulation while preserving key physical charac-
teristics, such as stability under Herrera's cracking condition and the extended Tolman-Oppenheimer-Volkoff equa-
tion. This study highlights the significance of gravitational decoupling for determining mass, redshift, and compact-
ness and provides important insights into the internal structure of stellar bodies within this new generalized gravity

framework.
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I. INTRODUCTION

In 1916, Albert Einstein introduced the theory of gen-
eral relativity (GR), which revolutionized our current un-
derstanding of gravitational phenomena and explained
various critical astronomical events, including the cur-
vature of spacetime and the formation of stellar as well as
galactic structures. One of the most significant predic-
tions of GR is the existence of black holes and compact
stellar configurations, all of which result from the gravita-
tional collapse during the final stages of a star's life. In
2005, numerous compact objects with high densities were
discovered [1]. The theory of GR has continued to
demonstrate its accuracy, as evidenced by the precise pre-
diction of gravitational waves by Mercury's perihelion
precession, which are recently detected by the Laser In-
terferometer Gravitational-Wave Observatory in collabor-
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ation with Virgo [2]. Additionally, the first picture of the
shadow of a black hole, captured by the Event Horizon
Telescope project, further validated the theory of GR [3].
Despite these remarkable successes, GR has encountered
challenges in addressing certain theoretical and observa-
tional cosmic issues, such as the unexpected acceleration
of the cosmos [4—7], non—renormalizability [8], cosmolo-
gical constant problem [9], and mysteries surrounding the
dark terms of cosmic distributions [10].

Numerous extended gravitational frameworks have
been proposed to address the limitations of GR. These
theories serve as candidates for DE, which is often be-
lieved to be responsible for accelerated cosmic expan-
sion owing to its negative pressure. Many of these theor-
ies involve geometric modifications of the GR, providing
essential frameworks to support observational cosmic
data. For example, F(R) gravity modifies the gravitation-
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al theory by introducing a Lagrangian that is a function of
the Ricci scalar [11, 12]. Another significant theory is
teleparallel gravity in which the curvature R is substi-
tuted by torsion 7~ and is defined by the Weitzenbdck
connection instead of the Levi-Civita connection [13, 14].
Initially, this framework was applied to BTZ black hole
solutions [15]. Subsequently, a study [16] revealed that
F(T) theory fails to comply with the first thermodynam-
ical law of black holes. Examples of other remarkably
modified theories of gravity include f(R,R%5,®) [17-19],
f(G) gravity [20], f(R,T) gravity [21], f(7,B) gravity
[22], f(T,T) [23-26], f(Q.T) [27, 28], and f(R,L,) the-
ory [29].

A particularly important class of modified theories in-
volves coupling matter and geometry, such as f(R,T) and
fR,L,), and their unification in f(R,L,,T) gravity.
These frameworks allow the energy-momentum tensor to
directly influence spacetime geometry, leading to richer
phenomenology and the emergence of non-conserved
matter fields. Recent studies have applied such theories to
model anisotropic compact stars, explore deviations in
hydrostatic equilibrium, and test the energy conditions
under strong gravity. Additionally, the Minimal Geomet-
ric Deformation (MGD) technique has been increasingly
utilized to generate exact or semi-analytical anisotropic
solutions within these extended frameworks, demonstrat-
ing compatibility with astrophysical observations. Col-
lectively, these advancements indicate that modified
gravity continues to be a fertile ground for addressing
outstanding questions in theoretical and observational
cosmology. This theory considers the gravitational Lag-
rangian as a generic function of three fundamental quant-
ities: the Ricci scalar R, matter Lagrangian £,,, and trace
of the energy-momentum tensor 7, that is, L =
fR,L,,T) [30-32]. Recent developments have shown
that such frameworks can accommodate more realistic
compact star models, account for anisotropic matter dis-
tributions, and generate modified equilibrium conditions
that are consistent with astrophysical observations. Mo-
tivated by these advances, the present study explores an-
isotropic compact stellar configurations within the
SR, L,,T) gravity framework using the MGD technique
under the gravitational decoupling approach. This allows
us to construct physically viable solutions while incorpor-
ating non-minimal matter-geometry coupling that re-
flects the current direction of research in gravitational
modeling.

In recent years, the quest for exact spherically sym-
metric solutions to the dynamical field equations has be-
come increasingly challenging, primarily because of the
presence of numerous non-linear terms, especially in the
context of modified gravity theories. A substantial body
of literature is available wherein compact star solutions
have been constructed using various gravitational frame-
works. Nashed and El Hanafy [33] investigated spheric-

ally symmetric dynamical configurations in f(R) gravity
using a quadratic model defined by f(R) =R+ eR?. For
the interior spacetime geometry, they adopted the Krori-
Barua metric and considered anisotropic matter distribu-
tions. Utilizing the observational data of PSR J0740+
6620 from NICER and XMM-Newton observations, they
determined the viable values of the parameter ¢ and
demonstrated that the resulting structure is stable and sat-
isfies all essential physical conditions. Extending this
study, Nashed and Capozziello [34] employed an expo-
nential model, f(R) =Re®, in combination with observa-
tional data from pulsar SAX J1748.9-2021, yielding sig-
nificant results. In another investigation, Nashed [35] ob-
tained exact solutions for anisotropic, perfect-fluid
spheres within the f(R,T) framework, adopting a linear
form of the function as f(R,T)=R+BT, where f is a di-
mensional parameter. The resulting solutions were in hy-
drostatic equilibrium, with all relevant physical quantit-
ies exgressed in terms of f and compactness parameter

thor further derived solutions by introducing spemﬁc as-
sumptions on anisotropy and radial metric components,
leading to compelling physical conclusions.

In the framework of conformal f(R,T) gravity, Das et
al. [36] explored the modeling of compact stars, where
solutions were generated to describe the interior geo-
metry of compact objects using a barotropic equation of
state (EoS). A detailed graphical analysis demonstrated
that the obtained solutions were physically consistent and
corresponded to radiating compact stars. Kumar et al.
[37] constructed stellar models with isotropic matter dis-
tributions in curvature-matter coupled gravity, assuming a
linear functional form of f(R,T). Their analysis con-
firmed the stability of the proposed configuration through
various physical criteria. The pursuit of anisotropic and
non-singular compact star models was further conducted
in [38], where the barotropic EoS was applied within the
SR, T) framework. The results indicated that the energy
conditions were satisfied and the models exhibited a
stable behavior. In another recent study [39], compact
stellar configurations were investigated by employing the
Krori-Barua metric as the interior geometry within the
context of «(R,T) gravity. Utilizing observational data
from three compact stars—4U 1820-30, SAX J1808.4—
3658, and Her X—1—the physical acceptability and sta-
bility of the models were examined using graphical meth-
ods.

The gravitational decoupling technique, using MGD,
offers a novel strategy that facilitates the derivation of ac-
ceptable solutions for spherically relativistic configura-
tions. This method introduces various new elements that
contribute to the pursuit of solutions for spherically sym-
metric objects by incorporating more complex gravita-
tional sources into the existing energy-momentum tensor
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while preserving spherical symmetry. The MGD ap-
proach was first presented by Ovalle within the frame-
work of the Randall-Sundrum brane-world scenario [40,
41]. It was later extended to deform the standard Schwar-
zschild solution [42], leading to the formulation of new
black hole models [43]. Initial applications of this tech-
nique were primarily developed in the context of brane-
world models [44, 45], black hole acoustics [46], and
studies on the Generalized Uncertainty Principle (GUP)
and Hawking radiation involving fermions [47]. Addi-
tionally, it was applied to purely anisotropic matter distri-
butions [48, 49] and the anisotropic Einstein-Maxwell
system [50, 51]. Subsequently, this technique has been
employed in various theories, such as in [52], where the
MGD approach was used to extend the Buchdahl solu-
tion, and in [53], where it was applied to obtain an aniso-
tropic static BTZ model in a (2+ 1)-dimensional space-
time. Other applications can also be found in the literat-
ure [54—56]. In particular, within the context of f(R,T)
theory, references are provided in [57, 58]. In the context
of F(R,T) theory, researchers [59] modeled new aniso-
tropic compact stars based on the decoupling approach.
To achieve this target, they assumed a linear selection of
the F(R,T) function—a well-known ansatz for metric po-
tential, namely the modified Durgapal-Fuloria model and
Pseudo-Isothermal dark matter—as a new source for the
anisotropic seed solution. The obtained solution was non-
singular and agreed with all necessary physical condi-
tions. In the context of GR, a previous study [60] adop-
ted the decoupling method to focus on the strange star
model and argued that through mass-radius analysis con-
ducted for neutron star mergers and huge pulsars, the
model parameters can be effectively constrained. It was
concluded that their outcomes exceeded the observed
masses of compact stars and also showed a correlation of
recent findings from gravitational wave events, such as
GW190814 and GW200210.

Following the work of Nashed et al. [33—35], the
primary target of this study is to utilize the radii and
masses of some known pulsars located within globular
clusters and constrain different model parameters. By
performing graphical analysis, we will assess whether the
proposed MGD-based model in the realm of f(R,L,,T)
gravity remains physically valid for the observed com-
pact star candidates with known radii and masses. There-
fore, we will select well-known stars and test our model
against their properties. Specifically, we shall perform a
complete physical analysis (including energy conditions
and stability) for one representative star. For other known
stars, we shall include the relevant numerical results in
tabular form to show the variation in the values of differ-
ent parameters (c,B,A) under different configurations,
which can further change the behavior of all physical
properties. This dual approach can allow us to validate
the model across multiple realistic scenarios.

In this work, we shall construct anisotropic compact
star models within the framework of f(R,L,,T) gravity
using the gravitational decoupling approach via MGD
and embedding class-I spacetime. By deforming the radi-
al metric component, the field equations will be de-
coupled into isotropic and anisotropic sectors, enabling
the construction of physically viable models that are con-
sistent with the observed stellar data. This work aims to
explore the influence of the generalized theory, which
unifies previous models such as f(R,T) and f(R,L,), on
the key physical features of compact stars such as stabil-
ity, energy conditions, and mass-radius behavior. The
manuscript is organized as follows: Section II outlines the
theoretical framework of this modified gravity, Section
IIT discusses the metric and matching conditions, Section
IV presents a detailed physical analysis, and Section V
concludes our main findings.

II. BASICS OF f(R,£,,T) THEORY

Because our primary objective is to study compact
star models beyond the paradigm of GR, specifically
within the framework of f(R,L,,T) theory, this section
provides an overview of the primary mathematical struc-
ture of this modified gravity theory, along with the neces-
sary assumptions required to achieve the outlined goal.
Haghani and Harko [30] proposed a novel framework that
unifies the f(R,T) and f(R,L,) theories. This innovative
approach leads to a new Lagrangian density incorporat-
ing the Ricci scalar, trace of the energy-momentum
tensor, and Lagrangian of ordinary matter, defined by the
following gravitational action:

S = % / PR L T) V=g d*x + / N =t O
+/3/.£,9 vV=gd*x. (1)

Here, f(R,L,,T) is a generic function of geometrical and
gravitational quantities, and thus leads to the violation of
the principle of minimal interaction between matter and
geometry [30]. Consequently, unlike GR, the dynamical
equations can no longer be written in the conventional
form where spacetime geometry equals ordinary matter,
hence, the standard conservation of the energy-mo-
mentum tensor is not guaranteed. Furthermore, the quant-
ities £,, and L, correspond to the matter and additional
gravitational source sectors (commonly referred to as the
9-—sector), respectively. A dimensionless constant S, rep-
resenting the coupling parameter, is introduced. In metric
formalism, the variation in the action with respect to g’
yields the following field equations:
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1
fRR,uv - E[f_ (f[ + 2fT)Lm]g/tv + (g,uvD - V,uvv)f‘R

= [82G + %( e+ 2f0)| Ty + 827G + fr Ty @)

where fr=0f/0R, fr =0f/0T, fr =0f/0L and O=
gV, V,. Here, the covariant derivative is symbolized by
V,. Further, the T,,, extra source 9,,, and 7, terms are,
respectively, given as

TI‘V = g}lV‘Lm - 28-£m /6g,w» (3)
ﬂ,uv = g,uVLﬂ - 26£17/agﬂv’ (4)
T/IV = gaﬁ(STwﬁ /6gﬂv' (5)

Eq. (2) can be re-arranged as follows:
L
Jr

1
_(fT+ Efl:)ngpvJ"(Vva_gva)fR+fTT;1v:| . (6)

1 1
Gyv (87TG + (fT + Ef-ﬁ))T/lv + E(f_ Rfﬂ)g,uv

In this setup, we assume the spherically symmetric
metric written in following form:

ds? = —e'Vdr +e0dr + 12 (467 +sin*0dg? ). (7)

The distribution of stellar matter is assumed to be an an-
isotropic fluid, which is defined by the following equa-
tion:

T/lv = (p""pt)vyvv+ptg,uv+(pr_pt)/\/u/\/v, (8)

where p is energy density, and p, and p, denote the radi-
al and transverse stresses, respectively. The four velocity,
denoted by V,, and y, for the radial four vector, satisfies

Vi=e2ss, V'V,=1, x'=e?d&, x'y.=-1
For the sake of simplicity in Eq. (6), we shall assume the
well-motivated forms of Lagrangian matter £, and
fR,L,,T) function. In this study, we assume the Lag-
rangian matter form as £, = (p,+2p;)/3. Additionally,
we assume a simple form of the f(R,Z£,,T) function,
which is given by

SR,L,y,T)=R+yT +AL,, 9

where y and A are the coupling constants. The primary
reason for selecting this model (9) is that it results in min-
imal coupling between matter and geometry, avoiding the
complications of high order derivatives and enabling the
successful implementation of either the MGD or e-MGD
scheme. Earlier research has also employed similar func-
tional forms to produce regular and physically feasible
stellar models, such as in f(R,T) [61] and f(R,L,) grav-
ity [62]. Although there are fewer examples of studies on
fR,L,,T) gravity, where it was demonstrated to pre-
serve central regularity and enable a physically consist-
ent anisotropic extension, our work expands on this
strategy and demonstrates that it is still efficient and con-
sistent in this larger context. Interestingly, because mod-
el (9) is linear for all variables, that is, R, £, and 7, the
right hand side of Eq. (6) is similar to that obtained in GR
theory as fz = 1. In contrast, on the left hand side, quant-
ities £,, and T alter the anisotropic fluid distribution via
dimension-less interaction constants. Introducing this
form of f(R,L,,T) into Eq. (6), the following generic ex-
pression is obtained:

1
Gy = 87GT,, +87GBD,, + ('y N 5) T,

1 A
+ 5(7T+/l-£m)guv_ <7+ 5) ngyv- (10)

III. MGD AND EMBEDDING CLASS-1 SPACE
TIME

In this section, we introduce the concept of minimal
geometric deformation, which introduces anisotropy into
the set of field equations. This method incorporates an
additional gravitational source, 9,,, into the energy-mo-
mentum tensor through gravitational decoupling. The fol-
lowing transformation is introduced:

e’ — i +8 (), (11)

e —e V4B Y. (12)

Here, the notations 7(r) and y(r) denote the deformation
functions introduced for the temporal and radial compon-
ents of the spacetime metric, respectively. According to
the MGD approach, one of these functions can be set to
zero, that is, either n(r) =0 or ¥(r) = 0. In this study, we
n(r) =0, thereby introducing deformation exclusively in
the radial component. The constant f serves as a free
coupling parameter, and by setting 8=0, the original
field equations of f(R,L,,T) gravity are recovered.
Based on this framework, the resulting deformed func-
tion is expressed as follows:
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e — e 4By (). (13)

We introduce the additional gravitational source 9,, into
the original energy-momentum tensor, resulting in the ef-
fective energy-momentum tensor for f(R,L,,T) gravity.
The standard dynamical equations, expressed in terms of
the MGD, can then be written as

>

1
Ry — iﬂgw = 8aGTeT (14)
where
7 A
T = 87GT,, +87GBY,, = 87GT,, + (y N E) T,

1 A
+ 5 ('}/T + /l-gm)g;w - (7"' E) ngyv + Sﬂ'Gﬁﬂyv'
(15)

Here, the original energy-momentum tensor is given by
T, = diag(p,—p,,—p:,—p:), whereas the additional gravita-
tional source is represented as W, = diag(d),9},93,93).
The components of ,, introduce anisotropies into the
self-gravitating system, thereby transforming the field
equations into a set of quasi-Einstein field equations. This
transformation is achieved through the deformation of the
metric, and the resulting expressions for the effective en-
ergy density and pressures under gravitational decoup-
ling are obtained as follows:

o =p+pdy, pT=p,-p9. p"=p-p95.  (16)
with
1
ﬁ=8ﬂGp+7(3y+/l)p—Zp,—Zp,, (17)
2 6" 3
. Y Ty /l) Y
- _r R z 1
5, = 87Gp, 2p+(6+2 P+ 2p, (18)
. Yy v dy ﬂ)
= — o+ L BEANT - . 1
D= 8nGp, 2p+6pr+<3+2 Pi (19)

The anisotropy parameter is defined as
r
A= S =P = Ak Ay, 20)

These relations effectively decouple the original dynam-
ical equations into two distinct systems: one governing
the seed isotropic matter distribution and the other char-
acterizing the new anisotropic configuration arising from
gravitational decoupling. By substituting Eq. (13) into the
field Egs. (17)—(19), two separate sets of equations can be

r r
obtained, where A = E(Pr —pr) and Ag = Eﬁ(ﬁ} -93). The
first system corresponds to the standard field equations
governed by the energy-momentum tensor 7, in the lim-

it =0, and is supplemented by a conservation equation.
The governing equations are as follows:

p= (e_“(r) (ra'(r) (16y + 961G + 61— yrv' (1)) +2 (7 = 1) 8y + 487G +3) + 2yr™V" (r) +yr*V'(r)* + 4yrv’(r)) ) /

(3r2(2'y + 167G + ) (4y + 167G + /1)),

(21)
D= (e’“(’) (yra’(r) ') +8)-2 ( (e"(’) -1 ) By +481G +31) + yrzv”(r)) +2r(10y + 487G
+3V (N +y (-r7) v’(r)2) ) / <3r2(2y + 167G + ) (4y + 167G + /1)), (22)
P = (e““’) ( —rd (r) (8y + r(10y + 487G + 3V (r) + 967G + 6) + 2y (8e"” + 517 (20" (r) +V'(r))
+8r'(r)— 8) +3r(167G + ) (2rv"(r) +1(r)?+ 2v’(r)) ) ) (6r2(27 + 167G + ) (4y + 167G + /l)> , (23)

and the conservation equation is given by
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H(ry 2(p, —
_dpr_ (r) (,0+pr)+ (Pr pr)
dr 2 r

d Y

T ar m(%—pr—m))} =0. (24)

The spacetime solution for the aforementioned set of

equations can be expressed by the following metric:

8=

ds? = edr? —e"0dr? — 2(d6? + sin® 6d¢?). (25)

The quasi-Einstein equations are the second set of
equations that apply to source d,,. These are derived by
using the relationships defined in Eq. (16) and the de-
formed metric supplied in Eq. (13), where 8 # 0. The res-
ulting quasi-Einstein equations, along with the conserva-
tion equation, are as follows:

(r(p’(r) (yrH'(r)=2(8y + 487G + 32)) + y(r) (yr QrH"(r)+ H'(r)(rH'(r)+4)) - 2(8y + 487G + 3/1)) ) /

(3r2(2y+ 167G + ) (4y + 167rG+/l)), (26)
9] = (yr(rH’(r) +8) ' (r)—y(r) ( 16y +r(H'(r)(20y + 967G —yrH'(r) + 61) = 2yrH" (r)) + 967G + 6/1)) /
(3r2(2y+ 167G + ) (4y + 167rG+/l)), (27)
9= - (r;b’(r) 8y +r(10y + 487G + 30)H'(r) + 961G + 62) + Y (r) (r(2r(107 +48r7G +3)H" (r)
+H'(r)(16y + r(10y + 487G + 3)H' (r) + 967G + 6.0) ) — 16y) ) / (6r2(2y +167G + ) (4y + 167G + /l)) , (28)
Hr) o g 491 2 d Y 0, gl 2 }
- _9h - L Z9R - B A —— 2 =0. 2
2 om0 =+ O &G+ v+ 4/2) (306+]+283) | =0 @)
[
At this juncture, it is pertinent to note that the two sets of ~ metric potential is given by
equations are decoupled, exhibit no exchange of energy
between them, and interact solely through gravitational
effects. e" = 1+cr2e"”, (30)

A. Class-I solutions and minimal geometric deforma-
tion scheme

To solve the two sets of field equations involving un-
known functions W(r) and H(r), we select a metric poten-
tial that meets the key criteria: it must be finite, monoton-
ically increasing with », and reach a minimum at =0,
ensuring regularity. As outlined in [63], these conditions
are essential for deriving physically viable static spheric-
ally symmetric perfect fluid solutions. In this study, we
adopt the following form for the metric potential, which
satisfies the necessary mathematical conditions and facil-
itates the derivation of physically viable expressions for
the effective energy density and pressure. The chosen

where ¢, n, and a are arbitrary constants. This specific
form has been widely utilized as an ansatz, particularly in
the construction of class-1 solutions [64, 65]. Notably,
this metric is consistent with the criterion of being regu-
lar at the center, exhibiting a monotonically increasing
trend with a minimum at » =0 and e" =1+ O(+?). There-
fore, it is feasible to model compact stars using this the-
ory. For a spacetime to be categorized under embedding
class-I, it is imperative that Eq. (25) satisfies the Kar-
markar condition, originally formulated by Karmarkar in
1948 [66]. This condition is expressed as follows:
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Ri212R3434 + R1224R1334

Risa = R
2323

G

By incorporating the conditions specified in Eq. (31), and
given that R,3; # 0, as noted in [67], we derive the fol-
lowing equation that establishes a relationship between
the two spacetime functions, W(r) and H(r), as outlined
below:

W H'
T — W/H/ —2H" — H/2’ (32)

where ") # 1. By integrating the first equation, we de-
rive the following equation, which illustrates the manner
in which the four-dimensional spacetime, as described by
Eq. (31), is embedded within a five-dimensional pseudo-
Euclidean space. This corresponds to the solutions for
embedding class-I. It is defined as

2
o — (A+B/ \/eW(r)_ldr> , (33)

where A and B are constants due to integration. Substi-
tuting Eq. (30) into the above equation allows us to de-
termine the value of the metric e, as follows:

2
2 aanr?
o) <A+B Ver'e ) . (34)

anr

Constants A, B, and ¢ can be evaluated by applying the
matching condition. In the subsequent section, we fixed
constants 4 and a. Notably, the metric potential e?*’ is a
radial dependent monotonically increasing function and
exhibits a positive, finite, and regular trend with e — 1
as r— 0, thus ensuring the absence of singularities.
Therefore, this metric potential is suitable for modeling a
relativistic compact object within the framework of
fR,T,L,) gravity using the MGD approach. The below-
line element can be used to describe the field equations
given by Egs. (21) to (23):

2 -1
B Ver2ean? 2
— = ) dP+ | 1+cerfe™ dar?

anr

ds*= - (A +
+72(d6? +sin” 0dg? ). (35)

To obtain the complete solutions for our model, the
components of 9, must be calculated. This requires the
determination of the deformation function (). Several

methods can be employed to determine y(r), including

e mimicking the density constraint (43 = p);

e mimicking the pressure constraint (] = p,); and

e relating the components of ¢, through various
equations of state, such as polytropic, barotropic, or lin-
ear equations.

However, the determination of the deformation func-
tion, y(r), often becomes mathematically intricate, partic-
ularly when aiming to maintain physical acceptability and
analytical solvability. Therefore, we adopt a deformation
function that is free from singularities, exhibits non-de-
creasing behavior, and has been extensively utilized in
previous studies for constructing physically viable aniso-
tropic models [52, 65, 68]. The selected form is not arbit-
rary; it is carefully selected to be fully compatible with
the prescribed seed solution, thereby ensuring that the
resulting field equations remain analytically tractable and
physically consistent. Although alternative functional
forms for y(r) are theoretically permissible, they fre-
quently introduce significant non-linearities or yield un-
physical features, such as singularities or negative pres-
sures. Moreover, the selected function has also been suc-
cessfully employed in conjunction with the same seed
metric in earlier studies, further justifying its use in the
present analysis. This form is given by

2

w(r) = _her (36)

cr’+1°

The complete spacetime structure related to the energy-
momentum tensor 75 canbe explicitly defined as fol-
lows:

BV 2 aanr? 2
ds? = — <A+ L) dr
anr

( (1+cr?e™ ) (cr* +1) ) )
— |dr
(cr? + 1) + Bncr?(1 + crierer)

+7? <d92 +sin® 6d¢>2), (37
where
2
2 panr?
0 <A+B m) , (38)
anr
2 .nar? 2
o) (I +cre™ ) er +1) (39)

T (err+1) +Bncr?(1+cr2enr’)’

In subsequent computations, the characterization of
the total state quantities, that is, the energy density and
the radial and tangential pressures will be implemented,
as follows:
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where density and pressure are given by Egs. (21)—(23).

0 = p+ @, 40 . . .. . "
p P (40) These relations involve additional geometric quantities
P = p —ad), (41) that interact via the coupling parameter a.

| ) The quantities p®#, along with pt°) and p{“Y for
pgtota) =p, _0’192, (42) . )
completing the system, are expressed as follows:
|
wotal 1 ( 1 (4:112182 yiin?rt  4aByn(kor)*? (aAnr (anr® +1) + B Vkor)
= +
P T 3k @y k) \or+ 1 K2 I8
2anr? + 2
2 _ 2
2aBykanr ( kz 2anr 2> Hoor (anr® + 1) (8y + 487G +31)
+ + + 2k, r(8y +487G +32)

total __

D,

total __

D;

where

ki =s2y+16aG+A4, k= = cre™”’ , ky=aAn\/kyr+Bk,.

kor+1

Tty

+an (anr’ +

» oo ( (kz A’ r(8y +32) (cr +3) +2aABn kor (y(r (¢ (anr® (anr® +3) - 8)
) ) ) 31 (Cr + 3) ) +B%k, (2)/(}’2 (anr2 + 4) (acnr2
)-

+an—c)-12 3/l(cr2+3)))/(k§)+487rG(cr2+3))>,

1 ( 1 ( 4a’B2ykin*r*  4aByn(kor)*? (aAnr (anr2 + 1) +B \/kzr)
3k 2y + k) \kor+1 i3 K3
2
) Canrt+1 ) > )
2aBk,nr <27 ( for i1 +anr +11 ) +967G + 61 16k, (anrz + 1) _—
ks lor+ 1 2nSY

+487G + 34)) + ( cnr ( (2 (aAn (cr* +1) \/kor(8y + 481G +32) + Bk, (487G (cr’ + 1) (2anr’ +1)

+2y (7 (c (anr* (9—anr®) +4) +an (8 —anr?)) +4) + 34 (cr’ + 1) (2anr* +1) )))/(ks)— 167’))

/((cr2+1)2)>,

Ayk
m < (Zre ( a2 A2lon (—486‘ (manr +7) + 7 (% —an(dy+ 31)) - 31)
+aBn/k, ( 3(167G + Dkz (anr? +2) +an (487G (anr® +2) +anr’(10y +32) + 6(3y + 1)) + 87k2>

B, (kz (4aynr? — 487G - 32)
r

+an (487TG (anr2 + 2) + aan(IOy +320)+6(3y+ /l)) + 4yk§) )

/(k§ (kor + 1)2> + ( n(<2k2 (cr2 + 1) (a3ABn3r4 \ kor(10y + 487G +32) + aznzr( —4A2y

+6ABr \/kor(3y + 167G + A) + B2k, r* (10y + 487G + 34)) +2aBn (3Bkor*(3y + 167G + 1) - 44y \/kor )

2aBkonr(10y +4
—4B2yk2)>/(k§>+ aBkonr( OZJ’ SﬂG+3/D+8y+967rG+6/l>)/<(cr2+1)2)>, 43)
3

B. Boundary conditions and determination of con-
stants: Israel-Darmois matching

Matching conditions are crucial for understanding the
physical characteristics of any gravitational model by
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aligning interior and exterior geometries across a hyper-
surface. This process is governed by two primary condi-
tions:

e Continuity of metric coefficients: The metric
components of both spacetimes must be continuous at the
hypersurface. This constraint ensures that there is no dis-
continuity in the metrics across the boundary.

e Extrinsic curvature matching: The extrinsic
curvatures of both spacetimes must be equal at the hyper-
surface. This requirement leads to the condition pf =0,
which implies that there is no difference in the tensor
components of the stress energy across the boundary.

These conditions are essential for ensuring smooth
transition and consistency across the interior and exterior
geometries of any gravitational model. For this study, we
selected the exterior Schwarzschild spacetime as follows:

1

ds® = — (1 —%>dt2+ (1 —%> dr?
r r

+r(d6? +sin’ 6dg? ). (44)
Ao B VeR2e R + an VR VR -2 M
a anR ’

By equating the exterior spacetime metric with Eq. (37)
and applying the continuity conditions for the metric po-
tentials, we derive the following two relations:

en=1-20 (45)
=120 (46)

where the terms M and R refer to the total mass and radi-
us of the compact star, respectively. The second form of
continuity, in which the pressure vanishes at the bound-
ary and hence allows stability in a true vacuum, is presen-
ted as follows:

ptrotal(r)lr:R — (pr — Q’ﬂ}) [= = 0. (47)

By utilizing Eqgs. (45)—(47) and re-arranging them with
the appropriate substitutions, the values of the random
constants A, B, and ¢ can be obtained as follows:

B = ((c VRVR=2M(cR2e*™ (8y (Bc?nR' - (cR? +1)7) +487G (R + 1) (cR*(Bn—1)-1)

+32(cR2+1) (cR2Bn—1)—1) ) +e“% (8ayn (cR® +R)” + 168yc’nR* + 487G (cR* +1)

5 (cRA2Bn—1)—1) +34 (cR*+1) (cRA2pn—1)=1) ) +n (48G (ncR + 1) + cR2 8y +31)+31) ) )
/(2 VR (1 (R2 (¢ (BRI (R (c (anR - 9) +an) —8) +cR2(Bn+ 1) (anR> —9)

+26"% (BenR? (R (c (anR® - 9) +an) —8) =5 (cR? + 1)) +anR¥(fn+2) - 86n— 18) +an) —9)

—487G (R +1) (cR%™™ +1) (cR? (Bn (cR2™™ +1) +1) +1) =32 (cR2+1)

)
s (chea"Rz + 1) (CR2 (ﬂn (che*‘”(Rz + 1) + 1) + 1) ))) )

c= (4/\/() / ( —2MR (e +1) + \/ R ((~(R=2M)ev® +2M+pnR)” ~ 8 Me ™ QM+ R(Bn — 1))

R (e —pn) ).

Random constants A, B, and ¢ are then evaluated by tak-
ing 8=0.2 and 8=-0.2, and the summary of resulting
values is provided in Tables 1 and 2, in which the data of
seven selected stellar models has been utilized. In both
instances, the fixed parameters are 1 =1x107"2, a =0.03,

(48)

[
and y =0.009, whereas the coupling parameter can as-
sume any non-zero real value, as illustrated in the tables.
Utilizing the listed constant values for the selected
stellar candidates, we generated plots of the metric poten-
tials, as shown in Figs. 1(a) and 1(b). These figures illus-
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Table 1. Synopsis of computed values of constants based on the data of seven stellar candidates for MGD case (8=0.2, 1= 1x107'2,
a=0.03, y=0.009).
Star Models Mass M/ Mo Radius R(km) Mass-radius( %) c B A
Her X-1 [69] 0.85+0.15 8.1+0.41 0.154 0.00339865 —0.0279575 —0.289412
LMC X-4 [70] 1.04+0.09 8.301+0.2 0.184 0.00403809 —0.029791 —0.165948
Cen X-3 [71] 1.49+0.08 9.178+0.13 0.239 0.00454612 —0.0306402 —0.0403881
4U 1608-52 [72] 1.74+0.14 9.528+0.15 0.269 0.0049576 —0.03128 0.0445229
Vela X-1 1.77+0.08 9.56+0.08 0.273 0.00502456 —0.0312868 0.057035
PSR J1614-2230 [73] 1.97+0.04 9.69+0.2 0.300 0.0056665 —0.0324197 0.166191
PSR J0740+6620 [74] 2.07+0.04 12.34+0.2 0.247 0.00214646 —0.02322001 —0.3364949

Table 2. Synopsis of computed values of constants based on the data of seven star models for MGD case (8=-0.2, 1= 110712,
a=0.03, y=0.009).
Star Models Mass M/ Mg Radius R(km) Mass-radius( %) c B A
Her X-1 [69] 0.85+0.15 8.1+0.41 0.154 0.00325493 —0.028568 —0.289414
LMC X-4 [70] 1.04+0.09 8.301+0.2 0.184 0.0038583 —0.0304771 —0.165951
Cen X-3 [71] 1.49+0.08 9.178+0.13 0.239 0.00432607 —0.0314096 —0.0403919
4U 1608-52 [72] 1.74+0.14 9.528+0.15 0.269 0.00470364 —0.0321131 0.0445179
Vela X-1 1.77+0.08 9.56+0.08 0.273 0.00476514 —0.0322297 0.0570297
PSR J1614-2230 [73] 1.97+0.04 9.69+0.2 0.300 0.00535511 —0.0333488 0.166184
PSR J0740+6620 [74] 2.07+0.04 12.34+0.2 0.247 0.00205513 —0.0237099 —0.364951

trate the trend of the metric potentials as functions of the
radial coordinate » for two distinct constant values across
the four stellar models. In both cases, the metric poten-
tials exhibit regular, monotonically increasing, and finite
behavior throughout the stellar interior, without any in-
dication of singularities.

IV. PHYSICAL ANALYSIS

In this section, we analyze the stability of our solu-
tions by exploring various physical characteristics that are
crucial for the validity and stability of celestial objects in
any gravitational framework. This includes the illustra-
tion of the energy density, pressures (p,,p;), and their
gradients, anisotropy, velocities, equation of state (EoS),
mass, compactness, and redshift. All of these measures
are explained in detail in the following subsections.

A. Energy density, pressures, and gradients

In self-gravitating bodies —particularly highly dense
objects such as compact objects and matter compon-
ents—the energy density and pressures are anticipated to
exhibit characteristic behavior. The energy density and
pressures are expected to be maximum at the core of the
star, showing finite, positive, and singularies-free behavi-
or, which decreases toward the surface. This behavior
supports the stability of the model within the proposed

theoretical framework. Figures 2 and 3 illustrate the radi-
al profiles of energy density, as well as the tangential and
radial pressures, throughout the radius of the compact star
models. The tangential pressure vanishes at the boundary.
Furthermore, we analyzed the gradients of the energy
density and pressure, which are essential for the construc-
tion of a compact star model. It has been posited [75] that
these gradients must exhibit negative behavior. We con-
ducted this analysis by considering two specific cases:
first, by varying the parameter n while keeping the coup-
ling parameter f constant, and second, by varying S while
maintaining a constant value for n. This examination en-
sures the consistency of our model under the following
conditions in both scenarios:

dp dp, dp,
* <o e < AP} 49
dr<o, dr<o, dr<0 (49)

Figures 3(b) and 3(c) illustrate the behavior of all gradi-
ents in both scenarios. The gradients were in accordance
with the essential conditions, exhibited a decreasing
trend, and vanished at the stellar core, that is, at r=0.
This behavior is consistent with the physical expecta-
tions of a compact star model, where the energy density
and pressures reach their maximum at the center and de-
crease outward.
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dp:
dr

dp
dr

dp,
dr

=0.  (50)

r=0

r=0 r=0

B. Anisotropy, energy conditions, and equilibrium
forces

Pressure anisotropy is a crucial factor in assessing the
stability of a compact object, because it provides valu-
able insights into the interior stellar structure. For a stable
compact star, the anisotropy—denoted by A—should be
non-zero. When the tangential pressure p, exceeds the ra-
dial pressure p,, anisotropy A is positive (A > 0) and ex-
hibits a repulsive (outward-directed) force. Conversely, if

p, is greater than p,, anisotropy is negative (A <0) and
refers to an attractive (inward-directed) force [76]. Fig-
ures 4(c) and 5(c) demonstrate the behavior of anisotropy
as a function of radius. The anisotropy is zero at the core
and becomes positive, increasing toward the boundary in
both cases, as shown graphically. This trend confirms the
repulsive trend of anisotropy and the necessary anti-grav-
itational behavior of the anisotropic force to maintain the
stability of the stellar structures.

Energy conditions represent mathematical constraints
on the energy-momentum tensor of self-gravitating bod-
ies and form the root cause of singularity theorems [77]
and entropy bounds [78]. These conditions are pivotal for
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Fig. 4. (color online) For the compact star Cen X-3 (M/ Mo = 1.49, R =9.178), the variations in energy conditions and anisotropy with

the radial coordinate » are shown. Subfigures (a) and (b) depict energy conditions and (c) depicts anisotropy for g=0.01 with n=0.5
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» 5000 ~, Dot Dashed = p + py+2 py P ..
£ . Dashed = g P0rzzzzs.
- Ql#; as| P+ Pt & Ifiizzi: )
3 ey ST % Solidzp- >
(] ~. ? p=Pr ?

s 450 s, 2

g g 400

2 40 g

T 3

§ ;

0 350 8 350

3 >

5 o

£ 300 8

. W 300

(a)For B variations with v = 0.009, a = (b)For 3 variations with v = 0.009, a = (c)For n

0.03 0.03
Fig. 5.

100
Dashed=p - p,
Solid=p +p, 80
o As0
e 60
£
>
0
]
d
2
07\ L L L L
6 8 0 2 4 6 8
r r
variations with ~ =

0.0009, a = 0.0003
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assessing the feasibility of relativistically stable models.
The primary energy conditions include the strong energy
condition (SEC), weak energy condition (WEC), null en-
ergy condition (NEC), and dominant energy condition
(DEC). Mathematically, these are as follows:

NEC : p°" > 0,

WEC : o + p¢ > 0,

SEC : p*T +2p°" + pof > 0,

DEC : o™ — |p| > 0,

P+ pT > 0.

(51)
P =1ps" > 0.

For a physically captivating model, the associated in-
equalities must be satisfied to ensure that these energy

conditions reach their maximum at the core of the star
and remain positive throughout its structure. As shown in
Figs. 4(a), 4(b), 5(a), and 5(b), all specified energy condi-
tions are met under both scenarios: when varying the
parameter n while keeping the coupling parameter f con-
stant and when varying f while maintaining » constant.
This consistency across both cases further validates the
stability of the proposed models.

Next, we analyze the equilibrium conditions through
the involved forces, that is, the gravitational force (F,),
hydrostatic force (F}), anisotropic force (F,) and modi-
fied force (F,,) due to our modified f(R,T,L,) gravity
model. By incorporating the effects of the MGD ap-
proach, theextended Tolman-Oppenheimer-Volkoff(TOV)
equation for our model is formulated as follows:

H(ry dp, dv! 2
A [P+Pr+ﬁ(ﬁ8—ﬂi>} —(£ —ﬁd—r‘> +;{Pr—17r—ﬁ(ﬁ8—ﬁ})}
Fg Fy Fq
K P A S 0 ol 4o ]) -
+dr{6(87rG+y+/l/2)((3p r 2p,)+,8(300+191+21?2)b—0. (52)

Fin

To ensure the stability of our model within f(R,T,
L, gravity, the total impact of all forces, that is, gravita-
tional (F,), hydrostatic (F}), anisotropic (F,), and modi-
fied force (F,), must be zero, which implies that these
forces are in equilibrium. This balancing effect ensures
the stability of all configurations. Figures 6(a) and 6(b)
show the behavior of these forces in two distinct scenari-

‘
os. In the first scenario, the parameters are held constant
and the forces are plotted as functions of varying n, as de-
picted in Fig. 6(a). The figure shows that the gravitation-
al force is counteracted by combined hydrostatic and an-
isotropic forces, which act in opposite directions. This
equilibrium prevents gravitational collapse, whereas the
modified force remains constant and exerts only a small

variations
v = 0.0009, a = 0.0003

(a)[For n

Fig. 6.

Fi km?

with (b)For § variations with v = 0.009, a =
0.03

(color online) For the compact star Cen X-3 (M/M, = 1.49, R =9.178), the variations in forces with the radial coordinate » are

shown. Subfigure (a) depict forces for 5 =0.01 with n=0.5 (»), n=1 (m), n=2 (m), n=3 (m), and n =4 (m). Subfigure (b) shows forces
for n=0.1 with §=0 (m), 3=0.5 (w), =1 (m), = 1.5 (m), and g=2.5 (m). All plots use 1= 1x 10712,
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impact on the hydrostatic balance. In the second scenario,
the forces were plotted for varying values of the coupling
parameter f, as illustrated in Fig. 6(b). This figure con-
firms that even with different values of f, all the forces
are balanced, which further confirms the stability of the
model. These findings confirm that the model is not only
stable but also represents a physically viable relativistic
system.

C. Equation of state and stability analysis

The equation of state represents a dimensionless con-
straint on the parameters governing radial and tangential
pressures. These limitations play a pivotal role in estab-
lishing the relationship between the state variables, as ex-
pressed by the following equation:

_pt _pr
W= —, Wp=—.

P o (53)

It is posited that both parameters must lie between 0
and 1 to ensure the physical stability of a relativistic mod-
el and confirm the non-exotic nature of the internal fluid
distribution [79]. Figures 7(a) and 7(b) depict the trends
of these parameters along the radial direction, with w,
vanishing at the star boundary for two scenarios— vary-
ing n and f—as labeled in the figures. The results clearly
demonstrate that both EoS parameters fall within the
aforementioned limits, thereby confirming that the solu-
tions are physically viable and consistent with the stable
relativistic star models.

The pressure components must be constrained by the
speed of light [80] to evaluate the physical stability of the
anisotropic compact star models. This is achieved using
Herrera's concept of cracking [81], which defines the ex-
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Fig. 7.

with v = (b)For

pressions for the tangential and radial velocities, as out-
lined below. Both velocities must lie within the range
[0, 1], as shown below, which is a requirement termed the
causality condition:

»_dp, 5 _dp
V= i v, = Q- (54)

The concept of cracking was further extended by Ab-
reu [82] and Andreasson [83] to assess the stability of
stellar structures. This extension is represented by the fol-
lowing equations and inequalities. For a model to be
physically promising and potentially stable, it must ad-
here to the conditions outlined below:

~ { —1<v2-12<0, Potentially stable; (55)

0<v?—v?*<1, Potentially unstable.

Figures 8(a), 8(b), 8(c), and 9(a) illustrate the radial
and tangential velocities (v* and v?) and their differences.
As shown, the velocities remain within the specified re-
gions for both scenarios—varying f and »—which con-
firms the stability of our models. These results reinforce
the physical viability and consistency of the model and
further validates its capacity to represent a stable relativ-
istic system.

D. Adiabatic index

The adiabatic index, which describes the stiffness of
the EoS by measuring the change in pressure in response
to slight variations in matter density, is a critical factor in
analyzing the stability of stellar structures, both relativist-
ically and non-relativistically. Chandrasekhar [84] noted

w, & wy

with

8 variations
v = 0.009, a = 0.03

(color online) For the compact star Cen X-3 (M/My = 1.49, R =9.178), the variations in EoS with the radial coordinate r are
shown. Subfigure (a) EoS(w; & w,) for §=0.01 with n=0.5 (»), n=1 (m), n=2 (m), n=3 (m), and n=4 (m). Subfigure (b) shows
EoS(w, & w,) for n=0.1 with 5=0 (m), 5=0.5 (»), =1 (m), B=1.5 (m), and g =2.5 (m). All plots use 1=1x10712,
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dex (T,) with the radial coordinate r are shown. Subfigures (a) and (b) depict the velocities difference (v? —v? & v2—v?) and adiabatic
index for =0.01 with n=0.5 (»), n=1 (m), n=2 (m), n=3 (m), and n=4 (m). Subfigure (c) shows adiabtic index for n=0.1 with =0
(w),3=0.5(m),8=1(m),3=1.5 (m), and =2.5 (m). All plots use 1=1x 10712,

that the adiabatic index should adhere to I'>4/3, a cri-
terion that has been extensively examined by various au-
thors for both isotropic and anisotropic stellar models
[85—-86]. The adiabatic indices corresponding to the radi-
al and tangential components are as follows:

+p, (dp, + D,

r =" p(p>:p pvf’ (56)
pr “dp pr
+p;rd +

rl:p pt(ﬂ):p Ptv%. (57)

)4 dp Pr
Figures 9(b) and 9(c) illustrate the conduct of the adiabat-
ic index I',, demonstrating that its value consistently ex-

ceeds 4/3 in both scenarios when varying S and n. This

result confirmed the stability of the model under these
conditions. The adiabatic index I', was not plotted, as it
does not lead to any significant physical insight in this
context. Additionally, Moustakidis [87] discussed the
critical value of the adiabatic index I', emphasizing its
strong dependence on the mass-to-radius ratio (M/R).
The critical values of I" for the seven different stellar can-
didates are listed in Tables 3 and 4. For all the stellar can-
didates, I'.; exceeds 4/3. The calculation of Iy incor-
porates the modified mass resulting from gravitational de-
coupling. These findings further confirmed the stability
and physical consistency of our models.

4 192M

e daid g 58
crit 3 +42 R ( )
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Table 3.
A=1%10""2,a =0.03,y = 0.009).

Synopsis of total mass along with compactness factor values by utilizing the MGD contribution for parameters (3=0.2,

Star objects Mo/ Mg R(km) uy = My/R Zs M/ My u=MJ/R z5(MGD) T'eit(MGD)
Her X-1[69] 0.85 8.1 0.155 0.203153 0.839975 0.152772 0.19999 1.47156
LMC X-4 [70] 1.04 8.301 0.185 0.259026 1.02773 0.182395 0.254704 1.49836
Cen X-3 [71] 1.49 9.178 0.239 0.384532 1.47275 0.236397 0.377241 1.54722
4U 1608-52 [72] 1.74 9.528 0.269 0.471337 1.71993 0.265932 0.461549 1.57394
Vela X-1 1.77 9.56 0.278 0.483339 1.74958 0.269611 0.473173 1.57727
PSR J1614-2230 [73] 1.97 9.69 0.300 0.579186 1.94716 0.296032 0.565684 1.60117
PSR J0740+6620 [74] 2.07 12.34 0.247 0.406152 2.04937 0.244662 0.399352 1.55469

Table 4.
A1=1%10"12,a=0.03,y = 0.009).

Synopsis of total mass along with compactness parameter values by taking the MGD contribution for parameters (5 = —0.2,

Star objects Mo/ Mg R(km) up = Mo/R s M/ My u=M/R z;(MGD) I'eit(MGD)
Her X-1 [69] 0.85 8.1 0.155 0.203153 0.859676 0.156355 0.206229 1.4748
LMC X-4 [70] 1.04 8.301 0.185 0.259026 1.05183 0.186672 0.263238 1.50223
Cen X-3 [71] 1.49 9.178 0.239 0.384532 1.50664 0.241837 0.391676 1.55214
4U 1608-52 [72] 1.74 9.528 0.269 0.471337 1.75935 0.272028 0.480962 1.57945
Vela X-1 1.77 9.56 0.278 0.483339 1.78969 0.275792 0.493341 1.58286
PSR J1614-2230 [73] 1.97 9.69 0.300 0.579186 1.99201 0.302851 0.59253 1.60734
PSR J0740+6620 [74] 2.07 12.34 0.247 0.406152 2.08997 0.249509 0.412826 1.55908

E. Mass function, compactness factor, and redshift
function

In this section, we discuss the inter-connection
between the mass function, compactness, and redshift be-
cause these quantities are inherently related. It is well
known that the mass function must exhibit a positive in-
creasing behavior and be consistent with the radial co-
ordinate limit, that is, r — 0, M(r) — 0. The mass reaches
its maximum value at the boundary when r=R.
However, as previously discussed, gravitational decoup-
ling introduces an additional gravitational source that af-
fects the mass function. Therefore, the modified mass
function for the current theory is given by

M(r) = 4n / rpeﬁ‘(r.)rlzdrl =d4r / r[p(rl) +B95(r)]r 2 dry,
0 0
(59)

or
=517 5],

This modification to the mass relation reflects the impact
of supplemental gravitational contributions resulting from
the decoupling process, which further affects the struc-
ture and dynamics of the compact object. The revised

equation can be expressed as follows, with the first com-
ponent representing the mass at » = R derived solely from
f(R, L,,T) gravity, as follows:

M=M, —ﬁ’gW('R), where M, = ?(1 —e "0y, (61)

This formulation sets forth the contributions from the
standard f(R,L,,T) gravity from those introduced by
gravitational decoupling. The compactness factor [88] for
fR,L,,T) gravity owing to the MGD approach can be
written as

M M,
ut = R Tl ’gzp(R), where uy = % (62)

Owing to the impact of the compactness u°", the surface
gravitational redshift z, is also influenced by the decoup-
ling process. Thus, the modified surface redshift z, in the
context of the MGD for f(R,L,.T) gravity is expressed
as follows [89] :

t=(1-2u+puR) - 1. (63)

Following the discussion of mass, redshift, and compact-
ness under the gravitational decoupling effect, a few key
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points can be outlined from the graphical analysis.

e First, mass expansion can be achieved using the
MGD technique [90] within f(R,L,,,T) gravity. As seen
from Eq. (61), if the second term is positive, then the
overall mass increases. In our case, this is possible for
negative values of the interaction parameter S. As the
mass increases, both the redshift (z,) and compactness (u)
increase. Various authors have previously achieved simil-
ar results, as seen in [64], where mass expansion is ob-
served for negative f, whereas in [91-92], the authors re-
ported mass expansion for positive coupling parameter
values. Tables 3 and 4 display the values of mass, red-
shift, and compactness with and without the coupling ef-
fect for both negative and positive f values across the
seven star candidates. Notably, the mass increases only
for positive f values, whereas for negative f, the modi-
fied mass is less than the original. Additionally, the critic-
al values of the adiabatic index obtained using Eq. (58)

for the modified mass using the MGD approach are
shown in the table for all stars. The value is greater than
4/3 in both cases (positive and negative S values), con-
firming the stable trend of the proposed model within the
realm of f(R,L,,T) gravity. Moreover, Figs. 10 and 11
show plots of the modified mass, redshift, and compact-
ness for both cases.

e Second, the modified compactness due to MGD is
greater compared to compactness without this effect. Our
findings are also consistent with the Buchdahl limits [93]
for isotropic (u <4/9) and anisotropic fluids (u < 0.30),
which are crucial for establishing a physically acceptable
model.

Table 5 presents a clear comparative analysis of the
various anisotropic stellar models developed within dif-
ferent modified gravity frameworks. It highlights the dis-
tinct features of each model and illustrates how the
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(m), and n =3 (m). In all plots, the parameters are set to n=0.1, a = 0.0003, y = 0.0009, and 1= 1x 10712,

025103-17



M. Zubair, Hira Sohail, Saira Waheed et al.

Chin. Phys. C 50, 025103 (2026)

Table 5. Comparison of anisotropic stellar models in various modified gravity frameworks.

Gravity theory Metric Anstaz

Matter Configuration

Stability & Features

f(R,T) [94] Krori-Barua metric

f(T) [95] gravity Krori-Barua metric

Anisotropic quark matter; MIT

FR L, T)=R+aT Ly [96] Numerical (non-KB)

FR,. L., T)

Present Work approach

bag model

Physically acceptable; matched with Schwarzschild

Anisotropic fluid

exterior; consistent graphs for real stars
Regular and stable; consistent with 4U 1820-30, Her X-1,

and SAX J1808.4-3658; surface redshift analyzed
Mass—radius relation, adiabatic index, sound speed; a

Anisotropic fluid

constrained using observational data
Well-behaved energy density/pressures; negative f yields

Class-1 embedding; MGD Anisotropic fluid; radial metric

higher mass; stability via TOV and Herrera cracking

deformation

condition

present study based on Class-I solutions within the MGD
approach relates to and extends previous works. By ad-
opting a more generalized gravitational theory, namely
fR,L,,T), which encompasses earlier special cases, and
by utilizing realistic values of mass and radius of com-
pact stars, the model offers a physically consistent aniso-
tropic extension of an initially isotropic seed solution.
This comparative framework emphasizes the novelty and
physical viability of the present model within the broader
context of modified gravity theories.

It is important to note that mass—radius (M—R) curves
provide the most direct diagnostic of stellar configura-
tions. In the present analysis, we fixed the stellar mass
and adopted the assumed radii to examine the physical
behavior. However, previous studies on GR [97], f(R)
gravity [34, 98-99], and f(R,T) gravity [100—104], as
well as more recent studies on f(R,L,,,T) models [32,
105], have shown that matter—geometry couplings signi-
ficantly shift M—R relations. The compactness and red-
shift trends obtained are qualitatively consistent with
these results. Our approach differs by employing the gen-
eralized f(R,L,,T) framework together with the MGD
technique.

Unraveling the true mass and radius of pulsars re-
mains a central challenge in compact star astrophysics.
Despite notable observational progress, these parameters
still involve uncertainties owing to extreme physical con-
ditions and complex matter interactions inside such ob-
jects. In this study, we propose a refined modeling
strategy within the extended f(R,L,,T) gravity frame-
work to better capture the structure of pulsars under mod-
ified gravitational dynamics. To connect our theoretical
model with observational reality, we compared it to reli-
able data from well-studied pulsars, including Her X-1
[69], LMC X-4 [70], Cen X-3 [71], 4U 1538-52 [72],
Vela X-1, PSR J1614-2230 [73], and PSR J0740+6620
[74]. These compact objects span a wide mass range and
provide a robust testing ground for assessing the predict-
ive power and flexibility of the proposed model.

In future work, we plan to extend this analysis by nu-
merically constructing explicit M-R sequences in
fR,L,,T) gravity and comparing them directly to GR,
f(R), and f(R,T) predictions, thereby offering deeper in-

sights into the physics of ultra-dense stars.

V. CONCLUSION

In this research, we employed the MGD approach for
gravitational decoupling within the framework of
f(R,L,,T) gravity to construct anisotropic compact star
models based on a class-1 embedding spacetime. In the
literature, this method has proven to be highly effective
for developing interior solutions of self-gravitating sys-
tems, enabling the investigation of gravitational effects
from various perspectives within spherically symmetric
configurations. In the present study, we have utilized
Ovalle's gravitational decoupling technique [92] along
with the MGD approach in the context of f(R,L,,T)
gravity to formulate physically viable models of compact
stellar objects with anisotropic pressure. Within this
framework, one of the metric potentials is deformed by
introducing an additional gravitational source that de-
couples the original field equations into two separate sys-
tems. The first system corresponds to the standard per-
fect fluid Einstein equations described by 7,,, whereas
the second governs the anisotropic source ¥,,, forming a
quasi-Einstein system. Notably, these two sources inter-
act solely through gravitational interaction, without any
direct energy exchange. We introduced deformation by
modifying the radial component of the metric through an
appropriate choice of the function y(r) [64—65], ensuring
regularity in the metric functions and all essential physic-
al parameters throughout the stellar interior. It is import-
ant to note that setting the coupling parameter 3= 0 re-
covers the original field equations of the theory. Addi-
tionally, constants A, B, and ¢ were determined by
matching the interior solution to the exterior Schwarz-
schild geometry.

The effective radial pressure, p¢f = 0, at the boundary,
derived from the second fundamental form of the junc-
tion conditions, incorporates both the isotropic pressure
p, and deformation function ¢(r), which arises because
of the additional source 6,,. Using realistic observational
data, we determined the constants 4, B, and ¢ for seven
compact stellar candidates: Her X-1, Cen X-3, LMC X-4,
Vela X-1, PSR J1614-2230, 4U 1608-52, and PSR
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J0740+6620. The corresponding results are presented in
Tables 1 and 2. The compact star Cen X-3 was selected
for graphical examination because its radius (R=9.178)
lies in an optimal range that allows a comprehensive il-
lustration of all physical parameters, including energy
density, pressure profiles, anisotropy, energy conditions,
and equilibrium forces. Larger radii were required to ex-
hibit the full behavior of these quantities, making Cen X-
3 a suitable candidate. For graphical analysis, we evalu-
ated the physical behavior of the model under two dis-
tinct scenarios: one involving variations in the coupling
parameter 3, and the other involving changes in the de-
formation parameter n, both using Cen X-3 as the refer-
ence model. We summarize the key conclusions derived
from this study as follows:

e Figures 1(a) and 1(b) show how gravitational de-
coupling affects the metric potentials for both scena-
rios when using Cen X-3 star's observational data and
constants A =-0.0403881, B =-0.0306402, and C =
0.00454612. The metric potentials clearly indicate posit-
ive and monotonically decreasing behavior within the star
before diminishing at the boundary, fostering our model's
regularity and stability.

e Figures 2(a), 2(b), 2(c), and 3(a) show positive,
non-singular, and monotonically decreasing behaviors of
energy density and pressure inside the stellar structure. It
was noticed that the radial pressure vanished at the star's
surface, validating the model's physical consistency.

e Figures 4(c) and 5(c) depict the trend of the aniso-
tropy profile, which is a positive increasing function of
and is zero at the boundary (indicating that the radial and
tangential pressures are equal).

e Figures 3(b) and 3(c) illustrate the negative and
monotonically declining gradients of the energy density
and pressures, which satisfy the required constraint of
vanishing at r=0 given in Eq. (50), and hence assured
the model's physical validity.

e Furthermore, Figs. 4(a), 4(b), 5(a), and 5(b) show
the energy condition inequalities, which demonstrate that
all energy bounds (NEC, SEC, DEC, and WEC) have
been validated throughout the stellar interior given in Eq.

(51).

e Figure 6 depicts the hydrostatic equilibrium of the
model given by Eq. (52), which is derived from balan-
cing the hydrostatic force (F}), gravitational force (F,),
anisotropic force (F,), and modified force (F,) due to
f(R,L,,T) gravity. This ensures that the forces counter-
balance each other, preventing gravitational collapse and
confirming the stability of the model.

e The EoS, as shown in Figs. 7(a) and 7(b), indicates
that all values are between 0 and 1.

e Additionally, the speeds of sound (v* & v?) re-
mained lower than the speed of light throughout the stel-
lar interface, as shown in Figs. 8 and 9(a). This clearly
satisfies the criteria for causality and stability.

e Furthermore, the adiabatic index surpasses the es-
sential value of 4/3, thereby guaranteeing static stability.
Furthermore, Herrera's cracking conditions were satis-
fied.

Clearly, the TOV equation holds true in the re-de-
signed framework, indicating that our solutions reflect
physically viable, stable, and equilibrium compact star
models. Tables 3 and 4 show the mass, redshift, and com-
pactness values, with and without MGD. Notably, we ob-
served that negative values of the coupling parameter S
allow for greater mass packing, as evidenced by the in-
creased values of mass, redshift, and compactness com-
pared with that of the un-deformed case. Figure 10
clearly demonstrates that these values increase monoton-
ically with r, reaching the highest value at the surface of
the star for 8 =-0.5. Figure 11 shows the effect of vary-
ing n with these parameters, with the maximum values
occurring at n =3 for 8= -0.2.

This study concludes by highlighting the important
effects of gravitational decoupling via the MGD tech-
nique on the compactness (u = M/R) and total mass of the
compact star models. When f assumes negative values,
the additional gravitational source, induced and governed
by the coupling parameter S, enables a higher mass con-
finement within the stellar structure. This realization un-
derscores the flexibility and strength of the MGD ap-
proach for constructing stable and physically consistent
compact star solutions with anisotropic pressures and ex-
tended gravitational influences.

In particular, our findings differ from those of previ-
ous studies in other modified gravity models, as shown in
Table 5, where such significant variation in mass due to
deformation and coupling has not been reported within
the context of f(R, L,,T) gravity. Specifically, the simul-
taneous increase and decrease in mass and compactness
with different f values is a novel result of this theory, re-
vealing new physical insights that have not been previ-
ously explored. Table 5 presents a comparative summary
of our model with other recent studies, clearly emphasiz-
ing the theoretical and physical advancements achieved.
In f(R) theory, Sharif and Aslam [106] explored aniso-
tropic spherical symmetric solutions through an extended
gravitational decoupling approach. Two types of solu-
tions were presented by considering the Starobinsky mod-
el of f(R) gravity along with the Krori-Barua metric po-
tential. It was shown that one of the two developed mod-
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els exhibited locally unstable conduct when different
coupling parameter values were used. In another study
[58], the authors investigated the construction of aniso-
tropic static spheres by using the metric potentials of the
Tolman V solution and MGD scheme in f(R,T?) gravity.
Solutions were obtained by imposing three different con-
straints, and the first two models were physically viable
and stable only when small choices of decoupling para-
meters were considered. In the present study, we con-
sidered the linear f(R,L,,,T) models and found that for all
choices of parameter f, the obtained model exhibited
stable and physically valid behavior. In a recent study,
Singh et al. [65] explored anisotropic compact star con-
figurations for a self-gravitating structure using a MGD
scheme, along with embedding class-1 spacetime in the
GR framework. They performed a graphical analysis by
considering different variations of the coupling paramet-

ers o and n. It is shown that all the physical characterist-
ics are satisfied when positive values of a are considered.
Our study extends this work by involving curvature-mat-
ter coupling and the results obtained are quite similar. Us-
ing the same metric potential with the gravitational coup-
ling approach, Hira et al. [64] modeled compact stellar
structures using Rastall theory. Using different measures
of graphical analysis, physically valid models were ob-
tained when positive coupling parameter values were as-
sumed, and our results were also in agreement with their
findings.

The effective implementation of this technique with-
in the framework of f(R,L,,T) gravity offers promising
new directions for the study of compact stars in alternat-
ive gravity theories and enhances our understanding of
the internal composition and evolution of dense astro-
physical objects.
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