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Abstract: We  construct  a  formalism  that  describes  the  resonances  decaying  into  four  pseudoscalar  meson  final
states. This method is fully covariant and can be directly applied to the partial-wave analysis of high statistical data.
Two topologies  of  the  process  are  considered:  two intermediate  resonances,  each  decaying into  two final  mesons,
and cascade decay via three meson intermediate states. In particular, we consider the production of such states in the
central collision reactions and in radiative   decay.
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I.  INTRODUCTION

πN

J/Ψ

The main information about meson states comes from
  scattering  with  high  energy  pion  beams,  antiproton-

nucleon  annihilation,  decay  of  relatively  stable,  heavy
hadrons, and  production  of  mesons  in  the  central   colli-
sion. In most of the reactions analyzed, resonances decay
into final  states  with  two  stable  particles  (see,  for   ex-
ample,  [1−5]),  or  the  reactions  can  be  considered  as
quasi-two-particle  scattering  (for  example,  antiproton-
proton annihilation at rest into three pseudoscalar mesons
[6−8]). We  note  that  some  developments  for  multichan-
nel  decays  have  been  made  for  the  analysis  of  radiative
decay   [9], decay of heavy mesons [10−12], and anti-
proton-proton  annihilation  at  rest  into  five  pions  [13].
However,  no  systematic  formalism  for  the  analysis  of
data in which meson resonances decay to a four-meson fi-
nal state has been developed. Nevertheless, such a decay
mode  is  dominant  for  resonances  in  many  partial  waves
already at masses around 1400 MeV.
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In  the  scalar  isoscalar  sector,  the  decay  mode    is
already dominant for the   state. Moreover, in the
elastic  scattering  data    (extracted  from  the  reaction

),  this  state  can  only  appear  due  to  rescattering  with
other scalar states in the   channel and cannot be clearly
observed. This  property  stimulated  a  number  of   discus-
sions about the existence of this state. However, this state
was observed in antiproton-proton annihilation in the ana-

3π0 5πlysis  of  data  with  the  final  states    [6]  and    [13].
Note  that  the  scalar  isoscalar  sector  is  rather  difficult  to
analyze.  In  this  sector,  one  expects  a  strong  mixing
between  non-strange  and  strange  quark-antiquark  com-
ponents and the production of exotic states. For example,
many authors  treat  lowest-scalar  states  as  molecular-like
states or four-quark bound systems. Regarding the lowest
bound states of two gluons, glueballs are also expected in
this sector [14]. Such a picture makes the analysis of this
sector  rather  complicated,  and  information  about  four-
meson  final  states  could  be  vital  for  understanding  the
spectrum and properties of these mesons.
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In the  present  study,  we  construct  a  covariant   ap-
proach  for  the  analysis  of  resonances  decaying  into  four
pseudoscalar mesons and consider the production of these
resonances in   radiative decay and in the   central
collision  reactions  (pomeron-pomeron  scattering). 
radiative  decay  is  one  of  the  main  sources  of  the  search
for glueball  states.  In  fact,  the  partial  wave   decomposi-
tion  of  the  BES III  data  on  the    radiative  decay  into
two pseudo-scalar mesons [4, 5] demonstrated very com-
plicated resonant  structures  in  the isoscalar-scalar  partial
wave  in  the  mass  region  of  1500−2100 MeV.  The  com-
bined analysis of these data with the scattering data from
  and  data  on  proton-antiproton  annihilation  at  rest  in

three  pseudoscalar  mesons  revealed  the  contribution  of
ten  scalar  states  [15]. The  distribution  of  resonance  pro-
duction intensities  demonstrated  a  peak  in  the  mass   re-
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gion of 1850 MeV, which was explained by the presence
of  two-gluon  components  in  the  observed  scalar  states.
This idea was confirmed by the calculation of the mixing
angles between  ,  , and the glueball components [16].
In the alternative analysis of these data [17], it was found
that a resonance with mass at approximately 1750 MeV is
produced  dominantly  and  is  the  main  candidate  for  the
scalar glueball. The analysis of the data with a four-pion
channel should resolve this issue.
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Another issue is  the search for the tensor glueball.  If
the   radiative decay into two pseudoscalar mesons re-
veals the  production  of  a  scalar  glueball  in  the  mass   re-
gion 1700-1900 MeV, then one should expect the produc-
tion of a tensor glueball (for example, from lattice calcu-
lations [18, 19]) in the mass region 2200−2500 MeV. The
tensor  partial  waves  extracted  from  the  BES  III  data
showed a strong production of   (decaying into 
final  state)  and    (decaying  into    final  state)
and practically no structure at higher energies. In fact, no
clear signal was found in the analysis [20]. The only solu-
tion to this problem is related to the fact that tensor states
in  this  mass  region  decay  dominantly  into  four  pseudo-
scalar  mesons,  and  signals  from  the  tensor  glueball
should be searched in the data on   radiative decay in-
to these final states.

Another prominent source for the production of glue-
ball states is in the meson production at nucleon-nucleon
central  collision  reactions.  In  these  processes,  the  states
are  predominantly  produced  from the  pomeron-pomeron
collision.  Considering  that  the  pomeron  is  an  effective
way to describe the gluon lattice,  it  is  relevant  to expect
that  the  states  with  a  large  gluon  component  will  be
strongly  produced  in  such  a  reaction.  Therefore,  our
method  should  be  useful  for  planning  new  experiments
for newly constructed colliders, such as NICA.

J/Ψ

The covariant  approach  based  on  the  tensor   formal-
ism was proposed by Zemach [21] and developed further
in [22, 23]. A mathematical framework allowing the con-
struction of angular momentum operators using recursive
expressions  was  provided  in  [24]. This  method  was   de-
veloped for the case of fermions in [25]. We should men-
tion  that  in  several  of  the  analyses,  the  authors  used  an
approach based on the helicity formalism. In that formal-
ism,  particle  propagators  are  represented  as  a  product  of
polarization  tensors  (summed  over  possible  polariza-
tions). In this case, the total amplitude is equal to the sum
of products of amplitudes describing two particle scatter-
ing,  which  can  be  calculated  in  the  helicity  basis.  How-
ever, such two-particle amplitudes should be carefully ro-
tated, which is not a trivial task. For the case of  -radi-
ative decay into two pseudoscalar mesons, the exact cor-
respondence  between  the  helicity  and  tensor  approach
was given in [26]. However, in the case of resonance de-
cay  into  a  four-particle  state,  the  helicity  approach  is
much more complicated than a tensor formalism. 

II.  COVARIANT SPIN-ORBITAL

FORMALISM
 

A.    Orbital angular momentum tensor

P2 = s k1

k2

X(L)
µ1 ...µL

The most detailed description of the tensor formalism
was given in [25]. We briefly recall it here. Consider the
decay of a composite system with spin J and momentum
P  ( )  into  two  spinless  particles  with  momenta 
and  .  The  only  quantities  measured  in  such  a  reaction
are the particle  momenta.  The angular  dependent  part  of
the wave function of the composite state is  described by
tensors constructed out of these momenta and the metric
tensor. Such tensors (denoted as  , where L is the or-
bital  momentum)  are  called  orbital  angular  momentum
tensors  and  correspond  to  irreducible  representations  of
the Lorentz group. They satisfy the following properties:
 

● Symmetry under permutation of any two indices:
 

X(L)
µ1 ...µi ...µ j ...µL

= X(L)
µ1 ...µ j ...µi ...µL

. (1)

P = k1+ k2

● Orthogonality to the total momentum of the system
:

 

Pµi X
(L)
µ1 ...µi ...µL

= 0. (2)

● Traceless  property  for  convolution  of  any  two   in-
dices with metric tensor:
 

gµiµ j X
(L)
µ1 ...µi ...µ j ...µL

= 0. (3)

k⊥µ g⊥µν

The orthogonality  condition  (2)  is  automatically   ful-
filled if the tensors are constructed from the relative mo-
menta    and  tensor    orthogonal to  the  total   mo-
mentum of the system:
 

k⊥µ =
1
2

(k1− k2)νg⊥µν, g⊥µν = gµν−
PµPν

s
. (4)

P =
(P0, P⃗) = (

√
s,0) k⊥ k⊥ = (0, k⃗)

In  the  center-of-mass  system  (cms),  where 
, the vector   is space-like:  .

L = 0

L = 1 k⊥µ

The orbital  tensor for    is a  scalar  value (for  ex-
ample,  a  unit),  and  the  tensor  for  the  orbital  momentum

  is  a  vector  that  can  only  be  constructed  from  .
The orbital  angular  momentum tensors  for L up  to  three
have the following forms:
 

M.A. Matveev, A.T. Sitnikov, A.V. Sarantsev Chin. Phys. C 50, 023113 (2026)

023113-2



X(0) = 1 , X(1)
µ = k⊥µ ,

X(2)
µ1µ2
=

3
2

Å
k⊥µ1

k⊥µ2
− 1

3
k2
⊥g⊥µ1µ2

ã
,

X(3)
µ1µ2µ3

=
5
2

î
k⊥µ1

k⊥µ2
k⊥µ3
− k2

⊥
5
(
g⊥µ1µ2

k⊥µ3
+g⊥µ1µ3

k⊥µ2
+g⊥µ2µ3

k⊥µ1

)ó
.

(5)

X(L)
µ1 ...µL

L ≥ 1The tensors   for   can be constructed from the
tensors with  lower  orbital  momenta  in  the  form of  a   re-
current expression: 

X(L)
µ1 ...µL

= k⊥αZα
µ1 ...µL

,

Zα
µ1 ...µL

=
2L−1

L2

Ä L∑
i=1

X(L−1)
µ1 ...µi−1µi+1 ...µL

g⊥µiα

− 2
2L−1

L∑
i, j=1
i< j

g⊥µiµ j
X(L−1)
µ1 ...µi−1µi+1 ...µ j−1µ j+1 ...µLα

ä
. (6)

The normalization of the tensors is fixed by the convolu-
tion equality: 

X(L)
µ1 ...µL

k⊥µL
= k2

⊥X(L−1)
µ1 ...µL−1

. (7)

X(L)
µ1 ...µL

Iterating Eq. (6), one obtains the following expression for
the tensor  :
 

X(L)
µ1 ...µL

(k⊥) = α(L)
ï
k⊥µ1

k⊥µ2
k⊥µ3

k⊥µ4
. . .k⊥µL

− k2
⊥

2L−1

Å
g⊥µ1µ2

k⊥µ3
k⊥µ4

. . .k⊥µL

+g⊥µ1µ3
k⊥µ2

k⊥µ4
. . .k⊥µL

+ . . .

ã
+

k4
⊥

(2L−1)(2L−3)

Å
g⊥µ1µ2

g⊥µ3µ4
k⊥µ5

k⊥µ6
. . .kµL

+g⊥µ1µ2
g⊥µ3µ5

k⊥µ4
k⊥µ6

. . .kµL + . . .

ã
+ . . .

ò
, (8)

where 

α(L) =
L∏

l=1

2l−1
l
=

(2L−1)!!
L!

. (9)

Using normalization condition, we obtain 

X(L)
µ1 ...µL

X(L)
µ1 ...µL

= α(L)(k2
⊥)L. (10)

 

B.    Boson projection operator
Oµ1 ...µL
ν1 ...νL

(P)The projection operator   for the partial wave

with angular momentum L is defined as  ∫
dΩ
4π

X(L)
µ1 ...µL

(k⊥)X(L)
ν1 ...νL

(k⊥) =
α(L)

2L+1
(k2
⊥)LOµ1 ...µL

ν1 ...νL
(P).

(11)

This tensor satisfies the following relations: 

X(L)
µ1 ...µL

(k⊥)Oµ1 ...µL
ν1 ...νL

(P) = X(L)
ν1 ...νL

(k⊥) ,

Oµ1 ...µL
α1 ...αL

(P) Oα1 ...αL
ν1 ...νL

(P) = Oµ1 ...µL
ν1 ...νL

(P) . (12)

This  tensor  has  the  same  symmetry,  orthogonality,  and
traceless  properties  as X-tensors  (for  the  same  set  of  up
and down indices), but the O-operator does not depend on
the  relative  momentum  of  the  constituents  and  does  not
describe decay processes. It represents the structure of the
propagator of the composite system. Taking into account
the definition of the projection operators (12) and proper-
ties of the X-tensors (8), we obtain 

kµ1 . . .kµL Oµ1 ...µL
ν1 ...νL

=
1

α(L)
X(L)
ν1 ...νL

(k⊥). (13)

This equation  represents  the  basic  properties  of  the  pro-
jection operator: it projects any tensor with L indices onto
the tensor  that  satisfies  all  properties  of  the partial  wave
considered.

The  projection  operator  can  also  be  calculated  from
tensors with lower rank using the recurrent expression 

Oµ1 ...µL
ν1 ...νL

=
1
L2

Å L∑
i, j=1

g⊥µiν j
Oµ1 ...µi−1µi+1 ...µL
ν1 ...ν j−1ν j+1 ...νL

− 4
(2L−1)(2L−3)

L∑
i< j
k<m

g⊥µiµ j
g⊥νkνm

Oµ1 ...µi−1µi+1 ...µ j−1µ j+1 ...µL
ν1 ...νk−1νk+1 ...νm−1νm+1 ...νL

ã
. (14)

The low order projection operators are 

O = 1, Oµ
ν = g⊥µν,

Oµν
αβ =

1
2

Ä
g⊥µαg⊥νβ+g⊥µβg

⊥
να−

2
3

g⊥µνg
⊥
αβ

ä
. (15)

J = L ππ→ ππ

X(L)(k) X(L)(q)

The scattering of  the two spinless  particles  in  the partial
wave with total spin   (for example a   trans-
ition)  is  described  as  a  convolution  of  the  operators

  and  ,  where  k  and q  are  relative  momenta
before and after the interaction. 

X(L)
µ1 ...µL

(k⊥) Oµ1 ...µL
ν1 ...νL

X(L)
µ1 ...µL

(q⊥) = α(L)
Ä√

k2
⊥
√

q2
⊥

äL
PL(z) .

(16)
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PL(z) z = (k⊥q⊥)/
(
√

k2
⊥
√

q2
⊥)

Here,    are  Legendre  polynomials  and 
 which are,  in  c.m.s.,  functions of  the cosine

of the angle between initial and final particles. 

C.    Decay of bound system into two pseudoscalar meson
states

JP J = L
P = (−1)L

The system of two pseudoscalar  particles can form a
partial  wave  with  spin  and  parity  ,  where    and

. The  decay  vertex  of  such  a  system  is   de-
scribed by the orbital momentum tensor only: 

V J
µ1 ...µL

= X(L)
µ1 ...µL

(k⊥). (17)

|I1− I2| I1+ I2

C = (−1)L

IG = 0+, 1+, 2+ πη IG = 1− ηη (ηη′)
IG = 0+

I = 0, 1
G =C(−1)I CP = −1

P = (−1)J

In  the  two-meson  decay  the G-parity  corresponds  to
the product of the G-parities of the final particles, and the
isospin can have values from   to  . If the final
particles  are  neutral,  the C-parity of  the  two  meson   sys-
tem is  equal  to  the  product  of  the C-parities  of  the  final
particles.  In  the  case  where  the  final  particles  are  the
particle  and  its  own  antiparticle  ,  identical
particles  cannot  form  bound  states  with  the  odd  partial
waves;  such  amplitude  would  be  anti-symmetrical  and
disappear when particles are permuted. Then, for the scat-
tering of  two  pseudoscalar  particles,  the  combined   sys-
tem can have the quantum numbers listed in Table 1. For
the  two-pion  system,  the  isospin  and  G  parity  can  be

 for the   system   and the 
system  .  In  the  quark  model,  where  mesons  are
considered to be bound states of the quark and antiquark,
the isospin can be  , G-parity is connected with C-
parity  as  ,  and  states  with    and

 are forbidden. 

D.    Decay of the resonance into three spinless particles

IG12
12 JP12C12

12

Let  us  consider  the  composite  system  decaying  into
the  final  three  pseudo-scalar  mesons  via  an  intermediate
two-body system with spin  . The tensor that de-
scribes the  intrinsic  spin  is  constructed  by  the   convolu-
tion of the orbital momentum tensor, which describes the
two-particle intermediate state and projection operator of
the three particle system: 

S (3)
µ1 ...µn

(J12) = X(L12)
ν1 ...νn

(k⊥12)Oν1 ...νn
µ1 ...µn

(P3). (18)

k1 k2Here,   and   are the momenta of the particles from de-
cay of the intermediate system and 

k⊥12µ=
(k1+ k2)ν

2
g⊥P12
µν , g⊥P12

µν =gµν−
P12µP12ν

P2
12

, (19)

P12 = k1+ k2 P3 = k1+ k2+ k3 n = J12 = L12

J3

where  ,  ,  and  .  If
the  total  spin  of  the  three-particle  system is  equal  to  ,

L3 = |J3−J12|, . . . , J3+J12

(L3+J12−J3)

the orbital momentum between the intermediate state and
spectator  particle  can  be  .  If  the
combination   is an even number, then the de-
cay vertex can be constructed as follows: 

V (+1)
µ1 ...µJ3

(Q3) = S (3)
µ1 ...µiν1 ...νm

(J12)X(L3)
ν1 ...νmµi+1 ...µJ3

(k⊥3 ), (20)

k⊥3

m = (J12+

L3− J3)/2 i = J12−m Q3

Q3 ≡ J3, L3, J12

(J12+L3−J3)

where    is the  momentum  of  the  spectator  particle   or-
thogonal to the total momentum of the three particle sys-
tem.  The  number  of  convoluted  indices 

 and  . The multiindex   matches the
principal  quantum  numbers  . If  the   com-
bination    is an  odd  number,  then  the   amp-
litude is formed by means of the antisymmetric tensor: 

V (−1)
µ1 ...µJ3

(Q3) = εµ1αβP3 ×S (3)
αµ2 ...µiν1 ...νm

(J12) X(L3)
βν1 ...νmµi+1 ...µJ3

(k⊥3 ),

(21)

m = (J12+L3− J3−1)/2 i = J12−m,   and 

εµαβP3 ≡ εµαβνP3ν. (22)

The final tensor should be symmetrical, traceless, and or-
thogonal to the total momentum of the three particle sys-
tem,  which  can  be  performed  by  convolution  with  the
projection operator: 

A(3,α)
µ1 ...µn

(Q3) = V (α)
ν1 ...νn

(Q3)Oν1 ...νn
µ1 ...µn

(P3). (23)

α = +1,−1
Therefore,  there  are  two  classes  of  the  vertices  with

,  which  we  will  refer  to  below  as  natural
(tensor)  and  unnatural  (pseudo-tensor)  structures.  The
parity of these states is defined as 

P = (−1)L3+J12
3∏

i=1
Pi, (24)

 

Table  1.      Partial  waves  in  the  channel  of  two  pseudoscalar
particles.

L 0 1 2 3 4

π0π0 0++ 2++ 4++ . . .

π+π− 0++ 1− 2++ 3− 4++ . . .

π±π0 0+ 1− , 2+ 3− 4+ . . .

ηη 0++ 2++ 4++ . . .

π0η 0++ 1−+ 2++ 3−+ 4++ . . .

π±η 0+ 1− 2+ 3− 4+ . . .

ηη′ 0++ 1−+ 2++ 3−+ 4++ . . .
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023113-4



Pi

3π0
where    denote  the  parities  of  the  final  states.  Table  2
enumerates the potential states for the final state  , con-
sidering the intermediate states of the scalar and tensor.
  

3π0

JPC
mα

qq̄ 3π0 I = 1

Table 2.  List of partial wave states produced in   channel.
The  partial  waves  are  denoted  as    (see  Eqs.  (20),  (21),
(23)). The standard   states in   channel have iospin  .

J12 = 0 J12 = 2

L3 = 0 0−+0+ 2−+0+

L3 = 1 1++0+ 1++1+ 2++0− 3++0+

L3 = 2 2−+0+ 0−+2+ 1−+1− 2−+1+ 3−+0− 4−+0+

L3 = 3 3++0+ 1++2+ 2++1− 3++1+ 4++0− 5++0+

  

E.    Decay of the resonance into four spinless particles
through three body intermediate state

IG3
3 JP3C3

3

This case is  very similar  to the one described above.
If the 3-body bound state has quantum numbers  ,
then  the  intrinsic  spin  can  be  described  as  projection  of
the three body amplitude (Eq. (23)) into a 4-particle sys-
tem: 

S (4,α)
µ1 ...µJ3

(Q3) = A(3,α)
ν1 ...νJ3

(Q3)O
ν1 ...νJ3
µ1 ...µJ3

(P), (25)

P = k1+ k2+ k3+ k4

L4 = |J4−J3|, . . . , J4+J3 (L4+J3−J4)

where  . The orbital momentum between
the 3-body state and a spectator particle can be given by

.  If  the  combination    is
an even number, then the decay vertex can be written as
convolution of  the  intrinsic  spin  tensor  with  orbital  mo-
mentum tensor 

V (+1,α)
µ1 ...µJ4

(Q4) = S (4,α)
µ1 ...µiν1 ...νm

(Q3)X(L4)
ν1 ...νmµi+1 ...µJ4

(k⊥4 ), (26)

k⊥4

m =
(J3+L4− J4)/2 i = J3−m Q4

Q4 = J4, L4, J3, L3, J12

(J3+L4−J4)

where    is the  momentum  of  the  spectator  particle   or-
thogonal  to  the  momentum  of  the  four  particle  system.
The  number  of  convoluted  indices  is  equal  to 

 and  .  The multiindex    lists  all
relevant  quantum  numbers  .  If  the
combination   is an odd number, 

V (−1,α)
µ1 ...µJ4

(Q4) = εµ1ηβP×S (4,α)
ηµ2 ...µiν1 ...νm

(Q3)X(L4)
βν1 ...νmµi+1 ...µJ4

(k⊥4 ),

(27)

m = (J3+L4− J4−1)/2 i = J3−mwhere    and  .  The  final
tensor should be symmetrical, traceless, and orthogonal to
the  total  momentum  of  the  four  particle  system,  which
can be conducted by means of the projection operator 

A(4,β,α)
µ1 ...µJ4

(Q4) = V (β,α)
ν1 ...νJ4

(Q4)O
ν1 ...νJ4
µ1 ...µJ4

(P), (28)

β,α=−1,+1where  . Thus,  we  have  4  classes  of   amp-
litudes: 

+1,+1 : J3+L4−J4=2n, J12+L3−J3=2m; (29)

 

+1,−1 : J3+L4−J4=2n, J12+L3−J3=2m+1;

(30)
 

−1,+1 : J3+L4−J4=2n+1, J12+L3−J3=2m; (31)

 

−1,−1 : J3+L4−J4=2n+1, J12+L3−J3=2m+1.

(32)

The parity of the 4-particle state is defined as 

P = (−1)L4+L3+J12
4∏

i=1
Pi. (33)

4π0

J3=2
4π0 3π0

The  partial  wave  amplitudes  in  the    channel  in  the
case of cascade decay are listed in Table 3 for the  inter-
mediate  three  body states  up to  .  The exotic  states,
which can be produced in  the   and   channels,  are
also included in this table.
 
 

JPC
nβ

4π0

Table  3.   List  of  partial  wave  amplitude    states for   cas-
cade decay into  .

JPC
3 0−+ 1++ 1−+

L4 = 0 0++0+ 1−+0+ 1++0+

L4 = 1 1−+0+ 0++1+ 1++0− 2++0+ 0++0+ 1++0− 2++0+

L4 = 2 2++0+ 1−+1+ 2−+0− 3−+0+ 1−+1+ 2−+0− 3−+0+

JPC
3 2++ 2−+

L4 = 0 2−+0+ 2++0+

L4 = 1 1++0+ 2++0− 3++0+ 1−+1+ 2−+0− 3−+0+

L4 = 2 0−+2+ 1−+1− 2−+1+ 3−+0− 4−+0+ 0++2+ 1++1− 2++1+ 3++0− 4++0+

  

F.    Decay of resonance into two resonances decaying in-
to two spinless particles

J12 J34

k1, k2 k3, k4

X(J12)
µ1 ...µJ12

(k⊥12)
X(J34)
µ1 ...µJ34

(k⊥34)

Consider the  decay  of  the  resonance  into  two   reson-
ances with spins   and   that decay into two spinless
particles  with  momenta    and  ,  respectively.
The decay of these two states is described by 
and   tensors, where
 

k⊥i jµ=
kiν−k jν

2
g⊥Pi j
µν , g⊥Pi j

µν = gµν−
Pi jµPi jν

P2
i j

, (34)

Tensor formalism for the partial wave analysis of reactions with resonances decaying... Chin. Phys. C 50, 023113 (2026)

023113-5



Pi j = ki+ k j

S = |J12−J34|, . . . , J12+J34 J12+ J34−S
where  .  The  intrinsic  spin  can  have  values

.  If   =  2m,  the  tensor
that describes  this  spin  state  can  be  formed  by  convolu-
tion of the m indices: 

V (+1)
µ1 ...µS

(QS ) = X(J12)
µ1 ...µJ12−mν1 ...νm

(k⊥12)X(J34)
ν1 ...νmµJ12−m+1 ...µS

(k⊥34), (35)

QS = S , J12, J34

J12+J34−S =2m+1

where  . If the difference between intrinsic
spin  and  the  sum  of  spin  resonances  is  an  odd  number

,  the vertex is formed by means of the
antisymmetric tensor: 

V (−1)
µ1 ...µS

(QS ) = εµ1ηβP X(J12)
ηµ2 ...µJ12−mν1 ...νm

(k⊥12)

×X(J34)
βν1 ...νmµJ12−m+1 ...µS

(k⊥34), (36)

P = k1+k2+k3+k4where  .  The  symmetrization  of  indices
and traceless property can be satisfied in the standard way
by convolution with the projection operator: 

S (22,α)
µ1 ...µS

(QS ) = V (α)
ν1 ...νS

(QS )Oν1 ...νS
µ1 ...µS

(P). (37)

J4

L4 = |J4−S |, . . . , J4+S (L4+

S−J4) = 2n

If the spin of the 4-particle partial wave is equal to  ,
the orbital  momentum  between  the  two  resonances   be-
comes  .  If  the  combination 

 is an even number, then the decay vertex can
be written as 

V (+1,α)
µ1 ...µJ4

(Q22) = S (22,α)
µ1 ...µS−nν1 ...νn

(QS )X(L4)
ν1 ...νnµS−n+1 ...µJ4

(k⊥), (38)

k⊥where   is the relative momentum between two interme-
diate resonances: 

k⊥µ =
1
2

(k1+ k2− k3− k4)νg⊥µν, (39)

Q22 = J4, L4, S , J12, J34

(J3+L4−J4)
and  multi-index  . If  the   combina-
tion   is an odd number, then 

V (−1,α)
µ1 ...µJ4

(Q22) = εµ1ηβP×S (22,α)
ηµ2 ...µS−nν1 ...νn

(QS )X(L4)
βν1 ...νnµS−n+1 ...µJ4

(k⊥),

(40)

n= (S+L4−J4−1)/2. The  final  tensor  should  be   symmet-
rical, traceless, and orthogonal to the total momentum of
the four particle system, which can be achieved with the
projection operator 

A(22,β,α)
µ1 ...µJ4

(Q22) = V (β,α)
ν1 ...νJ4

(Q22)O
ν1 ...νJ4
µ1 ...µJ4

(P), (41)

Thus, we have 4 classes of amplitudes: 

+1,+1 : S+L4−J4=2n, J12+J34−S =2m; (42)

 

+1,−1 : S+L4−J4=2n, J12+J34−S =2m+1;

(43)

 

−1,+1 : S+L4−J4=2n+1, J12+J34−S =2m; (44)

 

−1,−1 : S+L4−J4=2n+1, J12+J34−S =2m+1.

(45)

The parity of the 4-particle state is defined as 

P = (−1)L4+J12+J34

4∏
i=1

Pi. (46)

 

G.    Construction of tensors for the decay of the reson-
ance into four pseudoscalar mesons

The formulas given in previous sections allowed one
to directly construct code for the decay of a resonance in-
to any four pseudoscalar meson states. Let us consider the
decay of the tensor resonance into two tensor final states
as an example.

S P = 0+, 1+, 2+, 3+, 4+

2+

S P
mα = 2+1+

It can be seen that the two final tensor states can form
intrinsic  spin    (see Table  4).  If  the
intrinsic  spin  is  equal  to  ,  the  tensor  for  this  state  is
constructed  with  ,  which  means  that  one  index
is convoluted and no antisymmetric tensors are involved.
Then: 

S (22,+)
µν (QS ) = Oµν

ηχ(P)X(2)
ηξ (k⊥12)X(2)

ξχ (k⊥34). (47)

L4 = 0 L4 = 2
nβ = 0+

If the initial state is the tensor one, it can be construc-
ted with   or    (see Table 5).  In the first  case,
the   and tensor for the decay into four mesons has
a simple form: 

V (2+,1)
µν = S (22,+)

µν (QS ). (48)

nβ = 1+In the second case,  , and one convolution with
orbital momentum tensor 

V (2+,2)
µν = X(2)

µχ (k⊥)S (22,+)
χν (QS ). (49)

Here, for convenience, we have changed the upper in-

M.A. Matveev, A.T. Sitnikov, A.V. Sarantsev Chin. Phys. C 50, 023113 (2026)

023113-6



V JP ,m
µ1 ...µJdices for the tensor   given the spin and parity of the

4-particle resonance and just the tensor number.

π0
The Appendix presents the tensor list associated with

the decay of a resonance into a final state of 4 . An ex-
tra  symmetry  arises  from  the  permutations  of  pions.
When  a  resonance  decays  into  two  other  resonances,
amplitudes in which the sum of intrinsic spin and orbital
momentum is odd are nullified. The scenario is more in-
tricate in cascade decays,  and all  possible configurations
are enumerated. 

H.    Production of states decaying into
4 pseudoscalar mesons

(++) (−)

(+−) (−+)

A partial  wave amplitude is  a  scalar  value.  The con-
volution of the tensors with an antisymmetric tensor cre-
ates a pseudo-tensor structure (unnatural). Thus, the scal-
ar value should be either a convolution of any number of
tensors  (natural  structures)  or  a  convolution  of  an  even
number of  unnatural  structures.  Therefore,  if  the   pro-
duced  state  is  a  natural  state,  the  decay  amplitude  can
have only   or   structures. If the produced state is
an  unnatural  state,  the  decay  should  be  described  by  the

 or   combination. 

f0 f0

π0π0

1.    Production of the state from pomeron-pomeron, 
or  collision

G=+1 C=+1

Consider the production of resonances in central colli-
sion reactions. In this case, the states can be produced, for
example, from the pomeron-pomeron collision. A similar
mechanism is  responsible  for  the  production  of   reson-
ances in two-scalar or two neutral pseudo-scalar mesons.
In such processes, only states with   and   are
produced.  In  the  standard  quark  model,  only  resonances

IG JPC = 0+J++ J = 2n
X(J4)
µ1 ...µJ4

(q⊥)

J4

with  isospin  0  and  even  spin  can  be  produced  in  such  a
reaction:   and  .  The produced vertex
is described by the orbital momentum tensor  ,
where q  represents  the  relative  momenta  of  the  collided
particles. Then, the partial wave amplitude for the partial
wave with spin   has the form 

A(tαβ)
J4
= X(J4)

µ1 ...µJ4
(q⊥)A(tαβ)

µ1 ...µJ4
(Qt), (50)

t = 4
t = 22

4π0 4η
IG JPC = 0+J++i j Ji j = 2n

J12 = J34 = 0 ++

where  index  t  describes  topologies    (cascade)  and
  (decay  into  two  resonances).  Consider  the  case

with  the  final  state    (or  ).  Then,  only  resonances
with  ,  where  ,  can  be  produced  in
the  two-particle channel.  If  we  have  two  scalar   reson-
ances   in the final states, only   amplitudes
are possible: 

A(22++)
J4

= X(J4)
µ1 ...µJ4

(q⊥)O
µ1 ...µJ4
ν1 ...νJ4

(P)X(J4)
ν1 ...νJ4

(k⊥)

= X(J4)
µ1 ...µJ4

(q⊥)X(J4)
µ1 ...µJ4

(k⊥). (51)

++ −

We obtain the standard Legendre polynomial depend-
ence in the rest system of the 4-particle state (see Eq. 16).
In  the  cascade  topology,  the  amplitudes  have    or 
signatures. Examples of other amplitudes are given in the
Appendix. 

J/Ψ

2.    Production of the states decaying into 4 pseudoscal-
ar particles in  radiative decays

J/Ψ

G=+1 C=+1
J/Ψγ

S = 0, 1, 2

The  states  produced  in  radiative  decay    can  be
natural  or  unnatural  states.  All  states  have  isospin  0,

 and  . This process can be considered as the
production of resonances in collisions  . In this case,
the intrinsic spin can have values  , and the cor-
responding spin tensors are 

S 0 = gµνϵΨµ ϵ
γ∗
ν , S = 0;

S 1
η = εηµνPϵ

Ψ
µ ϵ

γ∗
ν , S = 1;

S 2
ηξ = ϵ

Ψ
µ ϵ

γ∗
ν Oµν

ηξ(P), S = 2. (52)

S L
2S+1LJ

S =0 L= J P = (−1)J

In the spin-orbital basis ( ), the partial waves can be
described  as  .  In  this  basis,  the  partial  waves  with

  have    and  parity  .  These  production
vertices are described as 

V0
µ1 ...µJ

= S 0X(J)
µ1 ...µJ

(q⊥) 1JJ , (53)

L = J 3LJ

and all amplitudes are the natural ones. The natural amp-
litudes can be constructed with intrinsic spin 1 with only

 ( ): 

 

S P
mα

C=+1

Table  4.      List  of  possible  spin  combinations    states
( ) in four particle decay via two resonance decays.

JPC
12 0++ 0++ 2++ 2++

JPC
34 0++ 2++ 2++ 4++

S P
mα 0+0+ 2+0+ 0+2+ 1+1− 2+1+ 3+0− 4+0+ 2+2+ 3+1− 4+1+ 5+0− 6+0+

 

JPC
nβ 4π0

S PC

Table 5.    List of states   in   channel decaying into two
resonances forming intrinsic spin  .

S PC 0++ 1++ 2++

L4 = 0 0++0+ 1++0+ 2++0+

L4 = 1 1−+0+ 0−+1+ 1−+0− 2−+0+ 1−+1+ 2−+0− 3−+0+

L4 = 2 2++0+ 1++1+ 2++0− 3++0+ 0++2+ 1++1− 2++1+ 3++0− 4++0+

S PC 3++ 4++

L4 = 0 3++0+ 4++0+

L4 = 1 2−+1+ 3−+0− 4−+0+ 3−+1+ 4−+0− 5−+0+

L4 = 2 1++2+ 2++1− 3++1+ 4++0− 5++0+ 2++2+ 3++1− 4++1+ 5++0− 6++0+

Tensor formalism for the partial wave analysis of reactions with resonances decaying... Chin. Phys. C 50, 023113 (2026)
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V1,0
µ1 ...µJ

= εµ1ηξPS 1
ηX

(J)
ξµ2 ...µJ

(q⊥) 3JJ . (54)

S =2
L= J−2, J, J+2

This vertex can be symmetrized and traceless by con-
volution  with  the  projection  operator.  However,  we  al-
ready applied this operator to the decay vertices, and it is
not  necessary  to  apply  it  to  the  production  vertices.  For
the amplitudes with  , the natural amplitudes are pro-
duced with   : 

V5,−2
µ1 ...µJ

= S 2
µ1µ2

X(J−2)
µ3 ...µJ

(q⊥) 5(J−2)J ,

V5,0
µ1 ...µJ

= S 2
µ1η

X(J)
ηµ2 ...µJ

(q⊥) 5JJ ,

V5,+2
µ1 ...µJ

= S 2
ξηX

(J+2)
ξηµ1 ...µJ

(q⊥) 5(J+2)J . (55)

− ++

J ≥ 2
J = 0

J = 1

Recall that  the decay of  the natural  states  can be de-
scribed  with    or    amplitudes  in  the  decay  into  4
pseudoscalar mesons. In the gauge-invariant limit for the
partial  waves  with  , only  three  amplitudes  are   lin-
early  independent.  For  , only  one  amplitude  is   lin-
early independent, and for  , we have two linearly in-
dependent amplitudes (see Appendix).

S = 1, 2 L = J−1 L =
J+1

The  unnatural  amplitudes  are  formed  with  intrinsic
spin    and  orbital  momentum  ,  and 

: 

V3,−1
µ1 ...µJ

=S 1
µ1

X(J−1)
µ2 ...µJ

(q⊥) 3(J−1)J ,

V3,+1
µ1 ...µJ

=S 1
ηX

(J+1)
ηµ1 ...µJ

(q⊥) 3(J+1)J ,

V5,−1
µ1 ...µJ

=εµ1ηξPS 2
ηµ2

X(J−1)
ξµ3 ...µJ

(q⊥) 5(J−1)J ,

V5,+1
µ1 ...µJ

=εµ1ηξPS 2
ηχX(J+1)

ξχµ2 ...µJ
(q⊥) 5(J+1)J . (56)

J ≥ 2
J = 0
J = 1

In  the  case  of  the  decay  a  vector  meson  into  virtual
photon  (or  a  massive  vector  particle  like ω-meson)  and
four  pseudoscalar  mesons,  all  these  vertices  are  linearly
independent. However, in the case of the real photon and

, only three amplitudes are linearly independent. For
, only one amplitude is linearly independent, and for
, we have two linearly independent amplitudes. The

amplitudes'  basis  set  might  vary;  when  dealing  with  an
energy-independent fit,  the specific choice of amplitudes
does not  matter  for  the analysis.  Conversely,  in  the con-
text  of  an energy-dependent  fit,  it  is  essential  to  manage
the amplitudes'  asymptotic behavior.  From this perspect-
ive, we suggested using amplitudes with the lowest orbit-
al momentum and different intrinsic spins. The details of
the  amplitude  linear  dependence  for  the  case  of  the  real
photon are given in the Appendix. 

III.  CONCLUSION

We developed  a  formalism for  the  partial-wave  ana-
lysis  of  data  with  four  pseudoscalar  meson  states.  The
method is covariant and can be directly applied to event-

4π0 J/Ψ

by-event analysis  of  the data,  for  example,  in the frame-
work  of  the  maximum  likelihood  method.  In  particular,
we  consider    production  in  the  radiative  decay 
and  the  production  of  the  four  pseudo-scalar  mesons  in
the central collision. 

APPENDIX
 

J/ΨA.    Linearly dependent vertices for  radiative decay
J/ΨConsider the general structure of   radiative decay.

The production of the state with spin J can be described
as a convolution projection operator with vertex 

Oν1 ...νJ
µ1 ...µJ

(P)Vµ1 ...µJ (q⊥), (A1)

q⊥ J/Ψwhere   is the momentum of   orthogonal to the mo-
mentum of  the  resonance.  Considering  the  orthogonality
and  traceless  properties  of  the  projection  operator,  the
general structure of the vertex for the natural states is 

Vµ1 ...µJ = (ϵΨϵγ∗)q⊥µ1
. . .q⊥µJ

F1+ ϵ
Ψ
µ1
ϵγ∗µ2

q⊥µ3
. . .q⊥µJ

F2

+ ϵΨµ1
(ϵγ∗q⊥)q⊥µ2

. . .q⊥µJ
F3+ (ϵΨq⊥)ϵγ∗µ1

q⊥µ2
. . .q⊥µJ

F4

+ (ϵΨq⊥)(ϵγ∗q⊥)q⊥µ1
. . .q⊥µJ

F5,

(A2)

Fi

q⊥

(ϵγ∗q⊥) = 0
F1, F2 F4

J = 0
F1, F5 F1

J = 1
F1, F3, F4, F5

F1 F4

where   are scalar functions. Recall that the polarization
vector of the particle is orthogonal to its momentum, and
we  can  use    as  universal  momentum  in  convolution
with  both  polarization  vectors.  In  the  case  of  the  real
photon, its  polarization  vector  is  orthogonal  to  all   mo-
menta  in  the  vertex,  and  therefore,  .  Con-
sequently,  only  structures  with  ,  and   will  con-
tribute to the decay. In the case of the scalar state ( ),
the vertex has only structures  ,  and only    is  not
zero in this limit. For the vector state ( ), only struc-
tures   can contribute to the vertex, and only
 and   survive.
For the production of unnatural states, the vertex has

the structure 

Vµ1 ...µJ = εq⊥αβPϵ
Ψ
α ϵ

γ∗
β q⊥µ1

. . .q⊥µJ
F1

+εµ1αβPϵ
Ψ
α ϵ

γ∗
β q⊥µ2

. . .q⊥µJ
F2

+εµ1αq⊥P(ϵΨα ϵ
γ∗
µ2
+ ϵΨµ2

ϵγ∗α )q⊥µ3
. . .q⊥µJ

F3

+εµ1αq⊥P
(
ϵΨα (ϵγ∗q⊥)+ (ϵΨq⊥)ϵγ∗α

)
q⊥µ2

. . .q⊥µJ
F4.

(A3)

JPC = 0−+

F1

ϵΨα q⊥

q⊥

For  the    state,  there  is  only  one  structure
(with  ).  Decomposing  the  polarization  vector  of  the
real photon   into components parallel to  , parallel to
P and orthogonal to both   and P, we have 
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ϵΨα =Cq⊥α + ϵ
⊥⊥
α +δPα,

εµ1αβPϵ
Ψ
α =Cεµ1q⊥βP+εµ1αβPϵ

⊥⊥
α ,

εµ1αβPϵ
Ψ
α ϵ

γ∗
β =Cεµ1q⊥βPϵ

γ∗
β +εµ1αβPϵ

⊥⊥
α ϵγ∗β . (A4)

ϵ⊥⊥α , ϵγ∗β q⊥As both   are orthogonal to momentum   and
P, then 

εµ1αβPϵ
⊥⊥
α ϵγ∗β = Bq⊥µ1

. (A5)

Then, we obtain the following structures  for  the ver-
tex: 

Vµ1 ...µJ = B(q2
⊥F1+F2)q⊥µ1

. . .q⊥µJ

− (C F2+ (ϵΨq⊥)F4)εµ1βq⊥Pϵ
γ∗
β q⊥µ2

. . .q⊥µJ

+F3εµ1αq⊥P(ϵΨα ϵ
γ∗
µ2
+ ϵΨµ2

ϵγ∗α )q⊥µ3
. . .q⊥µJ

. (A6)

F1, F2, F4

JP = 1+

F3

J ≥ 2

The  amplitudes    have only  two   independ-
ent structures. This means that only two of them are lin-
early  independent.  This  corresponds  to  the  case  ,
where  the  structure  with    cannot  be  produced.  Thus,
for  , only three partial waves are linearly independ-
ent for every unnatural state. The list of the lowest partial
waves is given in Table A1. 

4π0B.    Decay of resonances into  final state
Let us list the basic momenta and tensors: 

P12µ = (k1+ k2)µ , g⊥P12
µν = gµν−

P12µP12ν

P2
12

,

k⊥12µ =
1
2

(k1− k2)νg⊥P12
νµ , P34µ = (k3+ k4)µ ,

g⊥P34
µν = gµν−

P34µP34ν

P2
34

, k⊥34µ =
1
2

(k3− k4)νg⊥P34
νµ ,

 

P3µ = (P12+ k3)µ , g⊥P3
µν = gµν−

P3µP3ν

P2
3

,

k⊥3µ =
1
2

(k3−P12)νg⊥P3
νµ ,

Pµ = (P3+ k4)µ , g⊥µν = gµν−
PµPν

P2
,

k⊥4µ =
1
2

(k4−P3)νg⊥νµ,

k⊥µ =
1
2

(k1+ k2− k3− k4)νg⊥νµ,

Oν1 ...νJ
µ1 ...µJ

≡ Oν1 ...νJ
µ1 ...µJ

(P). (B1)

4π0Consider the decay of states into the   channel. Let
us  start  from  decay  via  two  intermediate  resonances  for
natural states : 

JPC → JPC
n,β(L4(S PC

mα→ fJ12 fJ34 )),

0++→ 0++0,+(0(0++0+ → f0 f0)),

V (0+,1) = 1; (B2)

 

0++→ 0++2,+(2(2++0+ → f0 f2)),

V (0+,2) = X(2)
αβ (k⊥)X(2)

αβ (k⊥34); (B3)

 

0++→ 0++0,+(0(0++2+ → f2 f2)),

V (0+,3) = X(2)
αβ (k⊥12)X(2)

αβ (k⊥34); (B4)

 

0++→ 0++0,+(2(2++1+ → f2 f2)),

V (0+,4) = X(2)
αβ (k⊥)X(2)

αξ (k⊥12)X(2)
βξ (k⊥34); (B5)

 

2++→ 2++0,+(2(0++0+ → f0 f0)),

V (2+,1)
αβ = X(2)

αβ (k⊥); (B6)

 

2++→ 2++0,+(0(2++0+ → f0 f2)),

V (2+,2)
αβ = X(2)

αβ (k⊥34); (B7)

 

2++→ 2++1,+(2(2++0+ → f0 f2)),

V (2+,3)
αβ = X(2)

αχ (k⊥)Oµν
βχX(2)

µν (k⊥34); (B8)

 

2++→ 2++0,+(2(0++2+ → f2 f2)),

V (2+,4)
αβ = X(2)

αβ (k⊥)X(2)
ηζ (k⊥12)X(2)

ηζ (k⊥34); (B9)

 

2++→ 2++0,+(0(2++1+ → f2 f2)),

V (2+,5)
αβ = X(2)

αζ (k⊥12)X(2)
βζ (k⊥34); (B10)

 

2++→ 2++1,+(2(2++1+ → f2 f2)),

V (2+,6)
αβ = X(2)

αχ (k⊥)Oµν
χβX

(2)
µζ (k⊥12)X(2)

νζ (k⊥34); (B11)

 

 

J/ΨTable  A1.      List  of  partial  waves  produced  in  radiative 
decay. The partial waves that became linearly dependent from
other partial waves are shown in third column. The states that
are forbidden in the quark model are not listed.

0++ 1S 0
5D0

2++ 1D2
3D2

5S 2    5D2
5G2 

4++ 1G4
3G4

5D4    5G4
5I4 

0−+ 3P0

1++ 3S 1
3D1  5D1

2−+ 3P2
5P2

3F2    5F2

3++ 3D3
3G3

5D3    5G3
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4++→ 4++0,+(2(2++0+ → f0 f2)),

V (4+,1)
αβµν = X(2)

αβ (k⊥)Oηζ
µνX

(2)
ηζ (k⊥34); (B12)

 

4++→ 4++0,+(2(2++1+ → f2 f2)),

V (4+,2)
αβµν = X(2)

αβ (k⊥)Oηζ
µνX

(2)
ηχ (k⊥12)X(2)

χζ (k⊥34); (B13)
 

4++→ 4++0,+(0(4++0+ → f2 f2)),

V (4+,3)
αβµν = X(2)

αβ (k⊥12)X(2)
µν (k⊥34); (B14)

 

4++→ 4++1,+(2(4++0+ → f2 f2)),

V (4+,4)
αβµν = X(2)

αη (k⊥)Oζχδγ
ηβµνX

(2)
ζχ (k⊥12)X(2)

δγ (k⊥34). (B15)

L4 ≤ 2
J = 2

J ≥ 2

Here, we provide the amplitudes with   and res-
onances decaying into two pions up to  . The unnat-
ural states can only decay into two resonances with  .
In the case of two tensor states, we get the following: 

0−+→ 0−+1,+(1(1++1− → f2 f2)),

V (0−,1) = X(1)
χ (k⊥)εχµνPX(2)

µζ (k⊥12)X(2)
νζ (k⊥34); (B16)

 

2−+→ 2−+0,+(1(1++1− → f2 f2)),

V (2−,1)
αβ = X(1)

α (k⊥)εβµνPX(2)
µζ (k⊥12)X(2)

νζ (k⊥34). (B17)

L4, L3 ≤ 2

For the cascade decays, we provide examples of amp-
litudes  or  cascade  decays  for  the  orbital  momentum

: 

JPC → JPC
n,β(L4(πJ3

PC
mα→ L3(π fJ12 )),

0++→ 0++0,+

(
0
(
π0−+0+ → 0(π f0)

))
,

V (0+,5) = 1; (B18)
 

0++→ 0++1,+

(
1
(
π1++0+ → 1(π f0)

))
,

V (0+,6) = X(1)
ν

(
k⊥4
)

X(1)
ν

(
k⊥3
)

; (B19)
 

0++→ 0++2,+

(
2
(
π2−+0+ → 2(π f0)

))
,

V (0+,7) = X(2)
νµ (k⊥4 )X(2)

νµ

(
k⊥3
)

; (B20)
 

0++→ 0++2,+

(
2
(
π2−+0+ → 0(π f2)

))
,

V (0+,8) = X(2)
αβ (k⊥4 )Oνµ

αβ(P3)X(2)
νµ

(
k⊥12

)
; (B21)

 

0++→ 0++1,+

(
1
(
π1++1+ → 1(π f2)

))
,

V (0+,9) = X(1)
µ

(
k⊥4
)

X(1)
ν

(
k⊥3
)

Oξζ
µν(P3)×X(2)

ξζ

(
k⊥12

)
;

(B22)
 

0++→ 0++0,+

(
0
(
π0−+2+ → 2(π f2)

))
,

V (0+,10) = X(2)
ν1ν2

(
k⊥3
)

X(2)
ν1ν2

(
k⊥12

)
; (B23)

 

0++→ 0++2,+

(
2
(
π2−+1+ → 2(π f2)

))
,

V (0+,11) = X(2)
αβ (k⊥4 )Oηζ

αβ(P3)X(2)
ηµ

(
k⊥3
)

Oµζ
ξν (P3)X(2)

ξν

(
k⊥12

)
;

(B24)

 

2++→ 2++0,+

(
2
(
π0−+0+ → 0(π f0)

))
,

V (2+,7)
αβ = X(2)

µ1µ2

(
k⊥4
)

; (B25)

 

2++→ 2++0,+

(
1
(
π1++0+ → 1(π f0)

))
,

V (2+,8)
αβ = X(1)

α

(
k⊥4
)

X(1)
β

(
k⊥3
)

; (B26)

 

2++→ 2++0,+

(
0
(
π2−+0+ → 2(π f0)

))
,

V (2+,9)
αβ = X(2)

αβ

(
k⊥3
)

; (B27)

 

2++→ 2++1,+

(
2
(
π2−+0+ → 2(π f0)

))
,

V (2+,10)
αβ = X(2)

αν

(
k⊥4
)

X(2)
νβ

(
k⊥3
)

; (B28)

 

2++→ 2++0,+

(
0
(
π2−+0+ → 0(π f2)

))
,

V (2+,11)
αβ = Oµν

αβ(P3)X(2)
µν

(
k⊥12

)
; (B29)

 

2++→ 2++1,+

(
2
(
π2−+0+ → 0(π f2)

))
,

V (2+,12)
αβ = X(2)

αν

(
k⊥4
)

Oνβ
ξζ (P3)X(2)

ξζ

(
k⊥12

)
; (B30)

 

2++→ 2++0,+

(
1
(
π1++1+ → 1(π f2)

))
,

V (2+,13)
αβ = X(1)

α

(
k⊥4
)

X(1)
ν1

(
k⊥3
)
×Oρ1ρ2

βν1
(P3)X(2)

ρ1ρ2

(
k⊥12

)
;

(B31)

 

2++→ 2++0,−
(
1
(
π2++0− → 1(π f2)

))
,

V (2+,14)
αβ = εν1ρ2αPX(1)

ν1

(
k⊥4
)

Oρ2β
ρ3ρ4

(P3),

×εν2ν3ρ3P3 X(1)
ν2

(
k⊥3
)

X(2)
ν3ρ4

(
k⊥12

)
; (B32)

 

2++→ 2++0,+

(
2
(
π0−+2+ → 2(π f2)

))
,

V (2+,15)
αβ = X(2)

αβ

(
k⊥4
)

X(2)
ν1ν2

(
k⊥3
)

X(2)
ν1ν2

(
k⊥12

)
; (B33)

 

2++→ 2++0,+

(
2
(
π0−+2+ → 2(π f2)

))
,

V (2+,15)
αβ = X(2)

αβ

(
k⊥4
)

X(2)
ν1ν2

(
k⊥3
)

X(2)
ν1ν2

(
k⊥12

)
; (B34)
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2++→ 2++0,+

(
0
(
π2−+1+ → 2(π f2)

))
,

V (2+,16)
αβ = O

ρ1ρ2
αβ (P3)X(2)

ρ1ν1

(
k⊥3
)

Oν1ρ2
µν (P3)×X(2)

µν

(
k⊥12

)
;

(B35)
 

2++→ 2++1,+

(
2
(
π2−+1+ → 2(π f2)

))
,

V (2+,17)
αβ = X(2)

ρ1α

(
k⊥4
)

Oβρ1
ρ3ρ2

(P3),

×X(2)
ρ3ν1

(
k⊥3
)

Oρ4ρ5
ν1ρ2

(P3)X(2)
ρ4ρ5

(
k⊥12

)
; (B36)

 

2−+→ 2−+0,−
(
2
(
π1++0+ → 1(π f0)

))
,

V (2−,2)
αβ = εν1ν2αPX(2)

ν1β

(
k⊥4
)

X(1)
ν2

(
k⊥3
)

; (B37)

 

2−+→ 2−+0,−
(
1
(
π2−+0+ → 2(π f0)

))
,

V (2−,3)
αβ = εν1ν2αPX(1)

ν1

(
k⊥4
)

X(2)
ν2β

(
k⊥3
)

; (B38)

 

2−+→ 2−+0,−
(
1
(
π2−+0+ → 0(π f2)

))
,

V (2−,4)
αβ = εν1ν2αPX(1)

ν1

(
k⊥4
)

Oρ1ρ2
ν2β

(P3)×X(2)
ρ1ρ2

(
k⊥12

)
;

(B39)

 

2−+→ 2−+0,−
(
2
(
π1++1+ → 1(π f2)

))
,

V (2−,5)
αβ =εν1ν2αPX(2)

ν1β

(
k⊥4
)

X(1)
ν3

(
k⊥3
)
×O

ρ1ρ2
ν3ν2 (P3)X(2)

ρ1ρ2

(
k⊥12

)
;

(B40)

 

2−+→ 2−+0,+

(
0
(
π2++0− → 1(π f2)

))
,

V (2−,6)
αβ = εν1ν2αPX(1)

ν1

(
k⊥3
)
×O

ρ1ρ2
ν2β

(P3)X(2)
ρ1ρ2

(
k⊥12

)
;

(B41)

 

2−+→ 2−+1,+

(
2
(
π2++0− → 1(π f2)

))
,

V (2−,7)
αβ = X(2)

ρ2α

(
k⊥4
)

Oρ2β
ρ3ρ1

(P3)

×εν1ν2ρ3P3 X(1)
ν1

(
k⊥3
)

X(2)
ν2ρ1

(
k⊥12

)
; (B42)

 

2−+→ 2−+0,−
(
1
(
π2−+1+ → 2(π f2)

))
,

V (2−,8)
αβ = X(1)

ν1
(k⊥4 )εν1ρ2αP3 Oρ2β

ρ3ρ1
(P3)

×X(2)
ν2ρ3

(
k⊥3
)

Oρ4ρ5
ν2ρ1

(P3)X(2)
ρ4ρ5

(
k⊥12

)
; (B43)

 

0−+→ 0−+2,+

(
2
(
π2++0− → 1(π f2)

))
,

V (0−,2) = X(2)
ρ1ρ2

(
k⊥4
)

O
ρ1ρ2
ρ3ρ4

(P3)εν1ν2ρ3P3

×X(1)
ν1

(
k⊥3
)

Oρ5ρ6
ν2ρ4

(P3)X(2)
ρ5ρ6

(
k⊥12

)
; (B44)

 

1++→ 1++0,−
(
1
(
π1++0+ → 1(π f0)

))
,

V (1+,1)
α = εαν1ν2PX(1)

ν1

(
k⊥4
)

X(1)
ν2

(
k⊥3
)

; (B45)

 

1++→ 1++1,−
(
2
(
π2−+0+ → 2(π f0)

))
,

V (1+,2)
α = εαν1ν2PX(2)

ν1ν3

(
k⊥4
)

X(2)
ν2ν3

(
k⊥3
)

; (B46)

 

1++→ 1++1,−
(
2
(
π2−+0+ → 0(π f2)

))
,

V (1+,3)
α = εαν1ν2PX(2)

ν1ν3

(
k⊥4
)

Oρ1ρ2
ν2ν3

(P3)×X(2)
ρ1ρ2

(
k⊥12

)
;

(B47)

 

1++→ 1++0,−
(
1
(
π1++1+ → 1(π f2)

))
,

V (1+,4)
α = εαν1ν2PX(1)

ν1

(
k⊥4
)

X(1)
ν3

(
k⊥3
)
×Oρ1ρ2

ν3ν2
(P3)Xρ1ρ2

(
k⊥12

)
;

(B48)

 

1++→ 1++1,+

(
1
(
π2++0− → 1(π f2)

))
,

V (1+,5)
α = X(1)

ρ1

(
k⊥4
)

O
ρ3ρ2
αρ1

(P3)εν1ν2ρ2P3

×X(1)
ν1

(
k⊥3
)

Oρ4ρ5
ν2ρ3

(P3)X(2)
ρ4ρ5

(
k⊥12

)
; (B49)

 

1++→ 1++1,−
(
2
(
π2−+1+ → 2(π f2)

))
,

V (1+,6)
α = εαν1ρ1PX(2)

ν1ρ2

(
k⊥4
)

O
ρ1ρ2
ρ3ρ4

(P3)

×X(2)
ν2ρ3

(
k⊥3
)

Oρ5ρ6
ν2ρ4

(P3)X(2)
ν2ρ4

(
k⊥12

)
; (B50)

 

4++→ 4++0,+

(
2
(
π2−+0+ → 2(π f0)

))
,

V (4+,5)
αβµν = X(2)

αβ

(
k⊥4
)

X(2)
µν

(
k⊥3
)

; (B51)

 

4++→ 4++0,+

(
2
(
π2−+0+ → 0(π f2)

))
,

V (4+,6)
αβµν = X(2)

αβ

(
k⊥4
)

Oρ1ρ2
µν (P3)X(2)

ρ1ρ2

(
k⊥12

)
; (B52)

 

4++→ 4++0,+

(
2
(
π2−+1+ → 2(π f2)

))
,

V (4+,7)
αβµν = X(2)

αβ

(
k⊥4
)

Oρ3ρ4
µν (P3)

×X(2)
ν1ρ3

(
k⊥3
)

Oρ1ρ2
ν1ρ4

(P3)X(2)
ρ1ρ2

(
k⊥12

)
; (B53)

The  code  for  the  generation  of  these  tensors  can
be  found  at  https://pwa.hiskp.uni-bonn.de/version/jpsi.
html. 

f0 f0

C.    Transition amplitudes for the central production
due to pomeron-pomeron ( ) collision

f0 f0In  the  pomeron-pomeron  central  collision  (or  in 
collision), only isoscalar states with even spin and posit-
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P,Cive  -parity  are  produced.  The  produced  vertices  are
described  by  the  orbital  momentum  tensors.  Therefore,
we obtain the following expressions for  the partial-wave
amplitudes:
 

A(0+,i) =V (0+,i), i = 1−11,

A(2+,i) =X(2)
µν (q⊥)Oµν

αβV
(2+,i)
αβ , i = 1−17,

A(4+,i) =X(4)
µνχξ(q

⊥)Oαβηζ
µνχξV

(4+,i)
αβηζ , i = 1−7. (C1)

 

J/Ψ 4π0D.    Radiative  decay into  final state
J/ψ

cc̄

I = 0
C = +1

J = 4

In the case of radiative  , it is usually assumed that
after emission of the photon, the   system is annihilated
to a resonance that decays into hadron final states. From
this  perspective,  all  states  that  are  allowed  in  the  quark
model  can  be  produced.  These  states  have  isospin 
and  charged  parity  .  Let  us  give  the  list  of  the
amplitudes up to   as follows:
 

A(0+,i) =S 0V (0+,i), i = 1−11,

A(2+,i)
1 =S 0X(2)

µν (q⊥)Oµν
αβV

(2+,i)
αβ , i = 1−17,

A(2+,i)
2 =εµηξPS 1

ηX
(2)
ξν (q⊥)Oµν

αβV
(2+,i)
αβ , i = 1−17,

A(2+,i)
3 =S 2

µνO
µν
αβV

(2+,i)
αβ , i = 1−17,

A(4+,i)
1 =S 0X(4)

µναβ(q
⊥)Oµναβ

ηχζϱV (4+,i)
ηχζϱ , i = 1−7,

A(4+,i)
2 =εµηξPS 1

ηX
(4)
ξναβ(q

⊥)Oµναβ
χζϱδV (4+,i)

χζϱδ , i = 1−7,

A(4+,i)
3 =S 2

µνX
(2)
αβ (q⊥)Oµναβ

ηχζϱV (4+,i)
ηχζϱ , i = 1−7,

A(0−,i) =S 1
ηX

(1)
η (q⊥)V (0−,i), i = 1−2,

A(1+,i)
1 =S 1

µV
(1+,i)
µ , i = 1−6,

A(1+,i)
2 =S 1

ηX
(2
ηµ(q

⊥)V (1+,i)
µ , i = 1−6,

A(2−,i)
1 =S 1

µX(1)
ν (q⊥)Oαβ

µνV (2−,i)
αβ , i = 1−8,

A(2−,i)
2 =S 1

ηX
(3)
ηµν(q

⊥)Oαβ
µνV (2−,i)

αβ , i = 1−8,

A(2−,i)
3 =εµηξPS 2

ηνX
(1)
ξ (q⊥)Oαβ

µνV (2−,i)
αβ , i = 1−8. (D1)
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