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I. INTRODUCTION

The main information about meson states comes from
7N scattering with high energy pion beams, antiproton-
nucleon annihilation, decay of relatively stable, heavy
hadrons, and production of mesons in the central colli-
sion. In most of the reactions analyzed, resonances decay
into final states with two stable particles (see, for ex-
ample, [1-5]), or the reactions can be considered as
quasi-two-particle scattering (for example, antiproton-
proton annihilation at rest into three pseudoscalar mesons
[6—8]). We note that some developments for multichan-
nel decays have been made for the analysis of radiative
decay J/¥ [9], decay of heavy mesons [10—12], and anti-
proton-proton annihilation at rest into five pions [13].
However, no systematic formalism for the analysis of
data in which meson resonances decay to a four-meson fi-
nal state has been developed. Nevertheless, such a decay
mode is dominant for resonances in many partial waves
already at masses around 1400 MeV.

In the scalar isoscalar sector, the decay mode 4r is
already dominant for the f,(1370) state. Moreover, in the
elastic scattering data nr (extracted from the reaction
nN), this state can only appear due to rescattering with
other scalar states in the 47 channel and cannot be clearly
observed. This property stimulated a number of discus-
sions about the existence of this state. However, this state
was observed in antiproton-proton annihilation in the ana-
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lysis of data with the final states 37° [6] and 5z [13].
Note that the scalar isoscalar sector is rather difficult to
analyze. In this sector, one expects a strong mixing
between non-strange and strange quark-antiquark com-
ponents and the production of exotic states. For example,
many authors treat lowest-scalar states as molecular-like
states or four-quark bound systems. Regarding the lowest
bound states of two gluons, glueballs are also expected in
this sector [14]. Such a picture makes the analysis of this
sector rather complicated, and information about four-
meson final states could be vital for understanding the
spectrum and properties of these mesons.

In the present study, we construct a covariant ap-
proach for the analysis of resonances decaying into four
pseudoscalar mesons and consider the production of these
resonances in J/W¥ radiative decay and in the NN central
collision reactions (pomeron-pomeron scattering). J/¥
radiative decay is one of the main sources of the search
for glueball states. In fact, the partial wave decomposi-
tion of the BES III data on the J/y radiative decay into
two pseudo-scalar mesons [4, 5] demonstrated very com-
plicated resonant structures in the isoscalar-scalar partial
wave in the mass region of 1500—2100 MeV. The com-
bined analysis of these data with the scattering data from
nr and data on proton-antiproton annihilation at rest in
three pseudoscalar mesons revealed the contribution of
ten scalar states [15]. The distribution of resonance pro-
duction intensities demonstrated a peak in the mass re-
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gion of 1850 MeV, which was explained by the presence
of two-gluon components in the observed scalar states.
This idea was confirmed by the calculation of the mixing
angles between ni, 55, and the glueball components [16].
In the alternative analysis of these data [17], it was found
that a resonance with mass at approximately 1750 MeV is
produced dominantly and is the main candidate for the
scalar glueball. The analysis of the data with a four-pion
channel should resolve this issue.

Another issue is the search for the tensor glueball. If
the J/¥ radiative decay into two pseudoscalar mesons re-
veals the production of a scalar glueball in the mass re-
gion 1700-1900 MeV, then one should expect the produc-
tion of a tensor glueball (for example, from lattice calcu-
lations [18, 19]) in the mass region 2200—2500 MeV. The
tensor partial waves extracted from the BES III data
showed a strong production of f,(1275) (decaying into 2z
final state) and f;(1525) (decaying into KK final state)
and practically no structure at higher energies. In fact, no
clear signal was found in the analysis [20]. The only solu-
tion to this problem is related to the fact that tensor states
in this mass region decay dominantly into four pseudo-
scalar mesons, and signals from the tensor glueball
should be searched in the data on J/¥ radiative decay in-
to these final states.

Another prominent source for the production of glue-
ball states is in the meson production at nucleon-nucleon
central collision reactions. In these processes, the states
are predominantly produced from the pomeron-pomeron
collision. Considering that the pomeron is an effective
way to describe the gluon lattice, it is relevant to expect
that the states with a large gluon component will be
strongly produced in such a reaction. Therefore, our
method should be useful for planning new experiments
for newly constructed colliders, such as NICA.

The covariant approach based on the tensor formal-
ism was proposed by Zemach [21] and developed further
in [22, 23]. A mathematical framework allowing the con-
struction of angular momentum operators using recursive
expressions was provided in [24]. This method was de-
veloped for the case of fermions in [25]. We should men-
tion that in several of the analyses, the authors used an
approach based on the helicity formalism. In that formal-
ism, particle propagators are represented as a product of
polarization tensors (summed over possible polariza-
tions). In this case, the total amplitude is equal to the sum
of products of amplitudes describing two particle scatter-
ing, which can be calculated in the helicity basis. How-
ever, such two-particle amplitudes should be carefully ro-
tated, which is not a trivial task. For the case of J/W-radi-
ative decay into two pseudoscalar mesons, the exact cor-
respondence between the helicity and tensor approach
was given in [26]. However, in the case of resonance de-
cay into a four-particle state, the helicity approach is
much more complicated than a tensor formalism.

II. COVARIANT SPIN-ORBITAL
FORMALISM

A. Orbital angular momentum tensor

The most detailed description of the tensor formalism
was given in [25]. We briefly recall it here. Consider the
decay of a composite system with spin J and momentum
P (P?=5) into two spinless particles with momenta k,
and k,. The only quantities measured in such a reaction
are the particle momenta. The angular dependent part of
the wave function of the composite state is described by
tensors constructed out of these momenta and the metric

tensor. Such tensors (denoted as X' where L is the or-

M1--HL?
bital momentum) are called orbital angular momentum
tensors and correspond to irreducible representations of

the Lorentz group. They satisfy the following properties:

e Symmetry under permutation of any two indices:

(L) - YW
Xplu.p,-.“,ujmuL - Xy]myjmy,x“;q' (1)

e Orthogonality to the total momentum of the system
P=k +ky:

L —

P/IiX[g]?N/,li“./JL - O (2)

® Traceless property for convolution of any two in-
dices with metric tensor:

L -
gﬂiHjX,l(th.u,-...p,-.NyL - O (3)
The orthogonality condition (2) is automatically ful-
filled if the tensors are constructed from the relative mo-
menta k; and tensor g, orthogonalto the total mo-
mentum of the system:

PP,
g;;_v = 8w~ #T 4)

G = 5 ~ka)g
In the center-of-mass system (cms), where P =
(Py, P) = (+/s,0), the vector k* is space-like: k* = (0,1?).
The orbital tensor for L =0 is a scalar value (for ex-
ample, a unit), and the tensor for the orbital momentum
L=1 is a vector that can only be constructed from k; .
The orbital angular momentum tensors for L up to three
have the following forms:
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xXO=1, XV=k;,

X(Z) _ 3 kl kL k2 L
mipy T wi § 18

x® 5 [kJ_ pny ki Lo Lo Lo }
oy s T ? (gm#z s T 81Ky T 81y m) :

©)
The tensors X{") ~for L>1 can be constructed from the

tensors with lower orbital momenta in the form of a re-
current expression:

X(L) - k(tzﬁl ML ?

H1-pL
21
@ — (L-1)
Zm uL - 12 (ZXM Mi-1Mi+1 - ﬂLg,lMl

i=1
L

_ 2 1 (L-1) ) (©)

2L—1 ) iy S AR LTS T RS Y AR I L X o

ij=1
i<j

The normalization of the tensors is fixed by the convolu-
tion equality:

X(L) kL — kZ X(L 1) (7)

H1- ML HL H1efL-1"

Iterating Eq. (6), one obtains the following expression for

(L)
the tensor Xt

X© (kY = a(L) {kl ek K Lk

Hi-HL M2 M3 M

kZ
1 1 1 gL L
<gu1uzk kK,

S 2L-1 H3 s
+g;1#3k;2k:4 k:L +.. )
k4
171
m (glllﬂzgﬂl}ukyskp& . k
+ g#lﬂzgﬂwsklzk:e ey > +.. } s ()
where
20— (2L D!
(L) = H — ©)
Using normalization condition, we obtain
X(L) #LX;(JLI) - (I(L)(ki)L. (10)

B. Boson projection operator

The projection operator O4!-4:(P) for the partial wave

with angular momentum L is defined as

dQ a( L)
/ Te Xl KOXE, ) = S-S kDO (P),
(11)
This tensor satisfies the following relations:
XD, (RHOu2P) = X1, (k)
041 (P) O51-1(P) = O-4(P). (12)

This tensor has the same symmetry, orthogonality, and
traceless properties as X-tensors (for the same set of up
and down indices), but the O-operator does not depend on
the relative momentum of the constituents and does not
describe decay processes. It represents the structure of the
propagator of the composite system. Taking into account
the definition of the projection operators (12) and proper-
ties of the X-tensors (8), we obtain

1
K- R OU0E = S X (), (13)

This equation represents the basic properties of the pro-
jection operator: it projects any tensor with L indices onto
the tensor that satisfies all properties of the partial wave
considered.

The projection operator can also be calculated from
tensors with lower rank using the recurrent expression

4
Olll ML — 7< E QM HimMisiftl
V9..VL L2 g'u,v, VieVj-1Vjsl-VL (2L— 1)(2L_3)

i,j=1

l Hi-1Hit 1o -1 ] LI
Zglh#/ngm V9 Vi=1Vk+1- -mel"m+]~-VL)' (14)

i<j
k<m

The low order projection operators are

021’ Oﬁzg;-v’

1

, 2
OZ E(gyagvﬂ gﬂﬁgva_ gg/jvg;ﬂ) (15)

The scattering of the two spinless particles in the partial
wave with total spin J = L (for example a 7z — 7z trans-
ition) is described as a convolution of the operators
XP(k) and XP(g), where k and ¢ are relative momenta
before and after the interaction.

x (kl)

ML

oux® (g =) (VEVE) P,
(16)
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Here, P;(z) are Legendre polynomials and z=(k*q")/
(/K2 \/¢%) which are, in c.m.s., functions of the cosine
of the angle between initial and final particles.

C. Decay of bound system into two pseudoscalar meson
states

The system of two pseudoscalar particles can form a
partial wave with spin and parity J”, where J=L and
P =(-1)t. The decay vertex of such a system is de-
scribed by the orbital momentum tensor only:

Vi =X (g, (17)

Hi---HL Hi---HL

In the two-meson decay the G-parity corresponds to
the product of the G-parities of the final particles, and the
isospin can have values from |I, — I,| to I + I,. If the final
particles are neutral, the C-parity of the two meson sys-
tem is equal to the product of the C-parities of the final
particles. In the case where the final particles are the
particle and its own antiparticle C = (-1)*, identical
particles cannot form bound states with the odd partial
waves; such amplitude would be anti-symmetrical and
disappear when particles are permuted. Then, for the scat-
tering of two pseudoscalar particles, the combined sys-
tem can have the quantum numbers listed in Table 1. For
the two-pion system, the isospin and G parity can be
I° =0%, 1*, 2* for the 7y system I° = 1~ and the nm (')
system 16 =0*. In the quark model, where mesons are
considered to be bound states of the quark and antiquark,
the isospin can be 7 =0, 1, G-parity is connected with C-
parity as G=C(-1), and states with CP=-1 and
P =(-1)’ are forbidden.

D. Decay of the resonance into three spinless particles

Let us consider the composite system decaying into
the final three pseudo-scalar mesons via an intermediate
two-body system with spin 1> /1> The tensor that de-
scribes the intrinsic spin is constructed by the convolu-
tion of the orbital momentum tensor, which describes the
two-particle intermediate state and projection operator of
the three particle system:

S5 (J12) = X32) (kin) O (Ps). (18)

M1 Mn Vi-Vn H1--Hn

Here, k; and k, are the momenta of the particles from de-
cay of the intermediate system and

(ki + k), Py, Py
K== 8w & =8 (19
12

where P12 = kl +k2, P3 =k1 +k2 +k3, and n= J12 = L12. If
the total spin of the three-particle system is equal to Js,

Table 1. Partial waves in the channel of two pseudoscalar
particles.
L 0 1 2 3 4
71'071'0 ot 2+t 4+
e o+ - 2+t 3" 4+
a0 ot 1-, 2+ 3- 4+
i 0++ 2++ 4++
ﬂO,7 o++ 1-+ 2++ 3+ 4+
7 0* - 2t 3- 4+
7]77' ott 1+ 2+t 3-+ 4+t

the orbital momentum between the intermediate state and
spectator particle can be L; =|/3—Jpl,..., 3+, If the
combination (L;+J;,—J3) 1s an even number, then the de-
cay vertex can be constructed as follows:

V(+1) (Qg) - S(3)

Hiepy H1 iV Vi

(Ji)X) (k3), (20)

Vi) Ly

where k3 is the momentum of the spectator particle or-
thogonal to the total momentum of the three particle sys-
tem. The number of convoluted indices m=(J;+
L;—J3)/2 and i = J;, —m. The multiindex Q; matches the
principal quantum numbers Qs = J;, L3, Jp. If the com-
bination (Ji,+L3;—J3) is an odd number, then the amp-
litude is formed by means of the antisymmetric tensor:

(=1 — 3) (L3) 1
v/l] el (Q3) = Eujapps X Sa,uz.“,ui\/] “.vm(‘112)Xﬁv?mvm;l,url...ph (k3 )’

2

m=(J12+L3—J3—1)/2, i=J12—m and

EuapPrs = gmrﬁvp3v' (22)

The final tensor should be symmetrical, traceless, and or-
thogonal to the total momentum of the three particle sys-
tem, which can be performed by convolution with the
projection operator:

AR, (Q3) = Vi1, (Q3) Oy (Ps). (23)

Therefore, there are two classes of the vertices with
a=+1,-1, which we will refer to below as natural
(tensor) and unnatural (pseudo-tensor) structures. The
parity of these states is defined as

3
P=(-1)b+n 112 (24)
=1
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where P; denote the parities of the final states. Table 2
enumerates the potential states for the final state 37°, con-
sidering the intermediate states of the scalar and tensor.

Table 2. List of partial wave states produced in 37° channel.
The partial waves are denoted as JLS (see Egs. (20), (21),
(23)). The standard ¢g states in 37° channel have iospin I = 1.

Ji2=0 Jip=2
Ly=0 05 27
L1 TS 125 3
Ly=2 %1 030 177 27 3" 452
=3 30! 1324 317 44 S

E. Decay of the resonance into four spinless particles
through three body intermediate state

This case is very similar to the one described above.
If the 3-body bound state has quantum numbers 15°J3>“,
then the intrinsic spin can be described as projection of
the three body amplitude (Eq. (23)) into a 4-particle sys-

tem:

ViV

S /(jt'fl.L13 (Q3) = A(viﬂl.y.)vfg (Q3)O0u;..pus, (P), (25)

where P = k; + k, + ks + k4. The orbital momentum between
the 3-body state and a spectator particle can be given by
Ly, =|J4s—J;3l,...,J4+J5. If the combination (L,+J3-J,) is
an even number, then the decay vertex can be written as
convolution of the intrinsic spin tensor with orbital mo-
mentum tensor

Vit (@0 =S, L (0IXI, L L k), (26)

M1y M1 V1o VimHiv1 My

where k; is the momentum of the spectator particle or-
thogonal to the momentum of the four particle system.
The number of convoluted indices is equal to m=
(J3+Ls—Jy)/2 and i = J3—m. The multiindex Q, lists all
relevant quantum numbers Q4 = Jy, Ly, J3, L3, Jp2. If the
combination (J3+Ls—J4) is an odd number,

(-1a) _ (4,@) (L4) 1
Vpl...y/4 (Q4) = Eupnpp X S']}lz...}l,vl...Vm(Q:i)XBV].4.Vm/.l,‘+14../.l/4 (k4 ),
(27)

where m=(J3+Ls—Js—1)/2 and i=J;—-m. The final
tensor should be symmetrical, traceless, and orthogonal to
the total momentum of the four particle system, which
can be conducted by means of the projection operator

ABED (Qy) = VI (Q)O0M 4 (P), (28)

1y VieViy

where B,a=-1,+1. Thus, we have 4 classes of amp-
litudes:

+1,+1: Js3+Ls—Js=2n, Jin+L3—J3=2m; (29)

+1,-1 :J3+L4—J4=2n, J12+L3—J3=2m+1;

(30)
—1,+1 :J3+L4—J4=27’l+1, J12+L3—J3=2m; (31)
—1,—1 IJ3+L4—J4=21’1+1, J12+L3—J3=2m+1.
(32)
The parity of the 4-particle state is defined as
4
P = (-1t I P, (33)
i=1

The partial wave amplitudes in the 42° channel in the
case of cascade decay are listed in Table 3 for the inter-
mediate three body states up to J;=2. The exotic states,
which can be produced in the 47° and 37° channels, are
also included in this table.

Table 3. List of partial wave amplitude J/¥" states for cas-
cade decay into 4x°.

ke 0+ 1 1+
Ly=0 03y 1o} 157
Ly=1 lov 017 157 257 05+ 15* 257
Ly=2 21 197 257 357 I 207 307
Jé’C 2+t 2-+
Ly=0 200 26!
Li=1 15F 28+ 3¢ 17 207 307
Li=2 031 177 271 357 45t 037 172 217 352 467

F. Decay of resonance into two resonances decaying in-
to two spinless particles

Consider the decay of the resonance into two reson-
ances with spins Jj, and Js4 that decay into two spinless
particles with momenta kj, k, and ks, k4, respectively.
The decay of these two states is described by X,Sf{f,)ljlz(kfz

J
and X,ﬂfﬁlm (k3;) tensors, where

1 _kiV—ij LPij
=g 8w s

PPy
g,i_fij = 8w~ j;;; =, (34)
ij
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where P;; =k;+k;. The intrinsic spin can have values
S = |J12—J34|,...,J|2+J34. If J12+J34—S = 2rn, the tensor
that describes this spin state can be formed by convolu-
tion of the m indices:

yeD (Qs) = xWi2)

Hi.--Hs M1 yp-mV1-

o ()X k%), (35)

< YmMp—m+1--HS

where Qg =S, Ji,, Ja4. If the difference between intrinsic
spin and the sum of spin resonances is an odd number
Jin+J3—S =2m+1, the vertex is formed by means of the
antisymmetric tensor:

(=1 —_ (J12) L
V#1~~-lis (Qs) = S#I'IﬁpX'i/l2~~+l112—m\/1u-vm(k12

x X5 (k33)s (36)

BY1-Ym gy —m1 S

where P = k;+k,+ks+k,. The symmetrization of indices
and traceless property can be satisfied in the standard way
by convolution with the projection operator:

S0 (Qs) = V¥, (Q5)0p-5 (P). (37)

If the spin of the 4-particle partial wave is equal to J4,
the orbital momentum between the two resonances be-
comes L,=|J4=S|,...,Js+S. If the combination (L,+
§—J,) =2n is an even number, then the decay vertex can
be written as

(+1,@) — (220 (L4) L
V/lJlr-»»/(llu (QZZ) - Sll]-»»(/l;sfnvlwvn(QS )le f"“’ll“S*’H»l“'u./‘t (k )’ (38)

where k* is the relative momentum between two interme-
diate resonances:

1
k: = E(kl +k2 _k3 _k4)Vg;y’ (39)

and multi-index Oy = Js, Ly, S, Jin, Ja,. If the combina-
tion (J3+L4—J,) 1s an odd number, then

(-1,@) _ (22,) (Ls) 1
Vul TN (QZZ) - 8#1 nppP N U2 . IS —p V] .-V (QS )Xﬁvl VS —p 1oy (k )7
(40)

n=(S+Ls—Js—1)/2. The final tensor should be symmet-
rical, traceless, and orthogonal to the total momentum of
the four particle system, which can be achieved with the
projection operator

AT (Dr) = V), (022)Ou i (P), (41)

Thus, we have 4 classes of amplitudes:

+1,+1:S+Ly—Js=2n, Jip+J33—S =2m; (42)

+1,—1 :S+L4—J4=2n, J12+J34—S =2m+1;

(43)
—1,+1 :S+L4—J4:2n+l, .]12+.]34—S :2m; (44)
—1,—1 :S+L4—J4=21’l+1, 112+J34—S:2m+1.
(45)
The parity of the 4-particle state is defined as
4
P= (-1l T TP, (46)

i=1

G. Construction of tensors for the decay of the reson-
ance into four pseudoscalar mesons

The formulas given in previous sections allowed one
to directly construct code for the decay of a resonance in-
to any four pseudoscalar meson states. Let us consider the
decay of the tensor resonance into two tensor final states
as an example.

It can be seen that the two final tensor states can form
intrinsic spin S¥ =07, 1%, 2%, 3*, 4* (see Table 4). If the
intrinsic spin is equal to 2*, the tensor for this state is
constructed with S” =27, which means that one index
is convoluted and no antisymmetric tensors are involved.
Then:

S@29(Qs) = 0% (P)X,g (ki) XE) (k). (47)

If the initial state is the tensor one, it can be construc-
ted with Ly =0 or Ly =2 (see Table 5). In the first case,
the nB = 0+ and tensor for the decay into four mesons has
a simple form:

Ve =S (Qs). (48)

In the second case, nB = 1+, and one convolution with
orbital momentum tensor

Ve = XA (kS 29(Q). (49)

Here, for convenience, we have changed the upper in-
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P
ma

Table 4.
(C=+1) in four particle decay via two resonance decays.

List of possible spin combinations S/, states

J{’ZC o+t o+t o+t o+
J€’4C o+t o+t o+t 4++

Spa O, 2 03 1727, 35 45, 25, 31 44, 506G,

Table 5.  List of states /" in 47° channel decaying into two
resonances forming intrinsic spin §7¢.
S PC 0++ 1+ 2+t
L-0 o 1 %
O T S T R T
L=2 W IRTEDof Al
S PC 3+t 4+t
Li=0 30 4
Li=1 253 45 34755

++ 9+t ++ g+t g+ ++ R++ g++ gH+ g+t
12+ 21— 31+ 40— 50+ 22+ 31— 4'1+ 50— 6O+

dices for the tensor V,{IP ., given the spin and parity of the
4-particle resonance and just the tensor number.

The Appendix presents the tensor list associated with
the decay of a resonance into a final state of 47°. An ex-
tra symmetry arises from the permutations of pions.
When a resonance decays into two other resonances,
amplitudes in which the sum of intrinsic spin and orbital
momentum is odd are nullified. The scenario is more in-
tricate in cascade decays, and all possible configurations
are enumerated.

H. Production of states decaying into
4 pseudoscalar mesons

A partial wave amplitude is a scalar value. The con-
volution of the tensors with an antisymmetric tensor cre-
ates a pseudo-tensor structure (unnatural). Thus, the scal-
ar value should be either a convolution of any number of
tensors (natural structures) or a convolution of an even
number of unnatural structures. Therefore, if the pro-
duced state is a natural state, the decay amplitude can
have only (++) or (-) structures. If the produced state is
an unnatural state, the decay should be described by the
(+-) or (—+) combination.

1. Production of the state from pomeron-pomeron, f,fo

or 1°7° collision

Consider the production of resonances in central colli-
sion reactions. In this case, the states can be produced, for
example, from the pomeron-pomeron collision. A similar
mechanism is responsible for the production of reson-
ances in two-scalar or two neutral pseudo-scalar mesons.
In such processes, only states with G=+1 and C=+1 are
produced. In the standard quark model, only resonances

with isospin 0 and even spin can be produced in such a
reaction: I°JF¢ =0*J** and J =2n. The produced vertex
is described by the orbital momentum tensor X", (¢"),
where g represents the relative momenta of the collided
particles. Then, the partial wave amplitude for the partial
wave with spin J,; has the form

AGP = X0 (qHALP), (), (50)
where index ¢ describes topologies =4 (cascade) and
t =22 (decay into two resonances). Consider the case
with the final state 47° (or 47). Then, only resonances
with [9J7¢ =0*J}*, where J;;=2n, can be produced in
the two-particle channel. If we have two scalar reson-
ances Ji, = J34 = 0 in the final states, only ++ amplitudes
are possible:

22++) _ v(Js)
AJ4 - X,“] ety

=X, @HX, (kY). (51)

1y

(@O0 (PXSY, (k)

ViV

We obtain the standard Legendre polynomial depend-
ence in the rest system of the 4-particle state (see Eq. 16).
In the cascade topology, the amplitudes have ++ or —
signatures. Examples of other amplitudes are given in the
Appendix.

2. Production of the states decaying into 4 pseudoscal-

ar particles in J/¥ radiative decays

The states produced in radiative decay J/¥ can be
natural or unnatural states. All states have isospin O,
G=+1 and C=+1. This process can be considered as the
production of resonances in collisions J/W¥y. In this case,
the intrinsic spin can have values S =0, 1, 2, and the cor-
responding spin tensors are

S =guwe, €, S =0;
S,ll = 87””,[363,63*, S=1;
Sy =€ €0 (P), S =2. (52)

In the spin-orbital basis (S L), the partial waves can be
described as **'L;. In this basis, the partial waves with
S =0 have L=J and parity P =(-1)’. These production
vertices are described as

0 _ g0
Vi =S°X50 () ', (53)

1M 1-

and all amplitudes are the natural ones. The natural amp-
litudes can be constructed with intrinsic spin 1 with only
L=1J(CLy):

023113-7



M.A. Matveev, A.T. Sitnikov, A.V. Sarantsev

Chin. Phys. C 50, 023113 (2026)

VAo = EunerSiXen (@) 3T, (54)

This vertex can be symmetrized and traceless by con-
volution with the projection operator. However, we al-
ready applied this operator to the decay vertices, and it is
not necessary to apply it to the production vertices. For
the amplitudes with S =2, the natural amplitudes are pro-
duced with L=J-2, J, J+2 :

5-2 _ @2 (J-2) 5
Vﬂl---l‘! - SﬂlllzXlls---w(ql) (J=2),,
5,0 _ Q2 J) 5
VHImHJ - Sﬂlﬂxﬂﬂzmﬂj (ql) J1s
542 _ @2 yU+2) 5
Vlllmuj - anX&]:]“.p, (ql) (J+2)J (55)

Recall that the decay of the natural states can be de-
scribed with — or ++ amplitudes in the decay into 4
pseudoscalar mesons. In the gauge-invariant limit for the
partial waves with J >2, only three amplitudes are lin-
early independent. For J =0, only one amplitude is lin-
early independent, and for J = 1, we have two linearly in-
dependent amplitudes (see Appendix).

The unnatural amplitudes are formed with intrinsic
spin S =1, 2 and orbital momentum L=J-1, and L=
J+1:

3-1 _gl yU-D 3

Vi =S X (@) J=Dy,
341 _qly(U+l) 3

mew =S ']X’I#T---M (q") J+1)y,
o J-1)

V;lu-lﬂl _gﬂl’l‘fPS iyzxfy_;.“;l.,(qL) S(J— 1)],

S5+1 _ 2 y(J+1) 1
meuJ _8H1"fPSnxX§X#zmw(q )

SJ+1),.  (56)

In the case of the decay a vector meson into virtual
photon (or a massive vector particle like w-meson) and
four pseudoscalar mesons, all these vertices are linearly
independent. However, in the case of the real photon and
J >2, only three amplitudes are linearly independent. For
J =0, only one amplitude is linearly independent, and for
J =1, we have two linearly independent amplitudes. The
amplitudes' basis set might vary; when dealing with an
energy-independent fit, the specific choice of amplitudes
does not matter for the analysis. Conversely, in the con-
text of an energy-dependent fit, it is essential to manage
the amplitudes' asymptotic behavior. From this perspect-
ive, we suggested using amplitudes with the lowest orbit-
al momentum and different intrinsic spins. The details of
the amplitude linear dependence for the case of the real
photon are given in the Appendix.

III. CONCLUSION

We developed a formalism for the partial-wave ana-
lysis of data with four pseudoscalar meson states. The
method is covariant and can be directly applied to event-

by-event analysis of the data, for example, in the frame-
work of the maximum likelihood method. In particular,
we consider 47° production in the radiative decay J/¥
and the production of the four pseudo-scalar mesons in
the central collision.

APPENDIX

A. Linearly dependent vertices for J/¥ radiative decay

Consider the general structure of J/¥ radiative decay.
The production of the state with spin J can be described
as a convolution projection operator with vertex

O (PYWouy (g,

i (A
where g* is the momentum of J/¥ orthogonal to the mo-
mentum of the resonance. Considering the orthogonality
and traceless properties of the projection operator, the
general structure of the vertex for the natural states is

_ Yy L L Y _yx L L
Vinw, =(€€)qy, -..q F1+e€,€,q,, ...q, F2

+ E:: (67’%#)&1:2 .. .q;JF3 + (e\”qL)EZ:‘q:Z .. .q;JF4
+ (e‘yql)(e“/*ql)q}f] .. .q}fj Fs,
(A2)

where F; are scalar functions. Recall that the polarization
vector of the particle is orthogonal to its momentum, and
we can use g* as universal momentum in convolution
with both polarization vectors. In the case of the real
photon, its polarization vector is orthogonal to all mo-
menta in the vertex, and therefore, (¢*¢*)=0. Con-
sequently, only structures with F,, F,, and F, will con-
tribute to the decay. In the case of the scalar state (J = 0),
the vertex has only structures F,, Fs, and only F; is not
zero in this limit. For the vector state (J = 1), only struc-
tures Fy, Fs, Fy, F5 can contribute to the vertex, and only
F, and F, survive.

For the production of unnatural states, the vertex has
the structure

_ ¥ oyr 1 n
V/J[“,/J_[ = EgtapP€, 6[3 Qu] "'unF]

Y _yx 1 L
+ EapPEy €5 Gy - - .q”_,Fz

Y _yx ¥y L L
+ Euyaqrp(€, €, T €,€ )q#3 gy, F3

+Euagtp (e:f(ey*ql) + (e‘PqL)eg*) ‘1:2 .. .qjj Fy.
(A3)

For the JP©=0* state, there is only one structure
(with F;). Decomposing the polarization vector of the
real photon €' into components parallel to ¢*, parallel to
P and orthogonal to both ¢* and P, we have
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v o_ n 11
€, =Cq, +€, +0P,,
v 11
Euapp€q = CEuig pp + Euiapr€y s

¥ oyx _ y* L1y
Euapr€a § = CEugipp€s +Euapr€y € - (A4)

@

As both e;l,eg* are orthogonal to momentum ¢* and
P, then

Enopr€s €5 = Bqy,. (AS)

Then, we obtain the following structures for the ver-
tex:

Vi = B F1+ Fa)gs .. q,
—(CFy+ (equ)F4)aﬂlﬂqlpe;*qu oy,

+ F3sﬂlaqip(efe£ + e:; &Ny, -, - (A6)

The amplitudes F,, F,, F4 have only two independ-
ent structures. This means that only two of them are lin-
early independent. This corresponds to the case J* = 1%,
where the structure with F; cannot be produced. Thus,
for J > 2, only three partial waves are linearly independ-
ent for every unnatural state. The list of the lowest partial
waves is given in Table Al.

B. Decay of resonances into 47° final state

Let us list the basic momenta and tensors:

Py, Pioy
Py =(ki+k)ys &' = gu— 1,’?721’
12

1
ki, = E(kl —ka) gt Payy, = (ks +ka),,

Vi

1P3y _ _ P34;1P34v

gyv = 8uv 2 o0
P34

1
kg, = E(k3 —ky) gl

P3, = (Pia+ks),, gijs =8uw — P3;§3V s
= %(k3 —Plz)ngL,,PS,
Pu=(Pyky =g
ki, = %(kzt = P3),8
K= 5k ks—k),gd,
Oy = 0 (P). (B1)

Consider the decay of states into the 47° channel. Let
us start from decay via two intermediate resonances for
natural states :

023113-9

Table Al. List of partial waves produced in radiative J/¥
decay. The partial waves that became linearly dependent from
other partial waves are shown in third column. The states that
are forbidden in the quark model are not listed.

0+ lS() SDO
2+ 'D,y 3D, 38, 3D, 3G,
4+t 1G4 3G4 5D4 5G4 514
0+ 3Py

1++ 3S1 3D1 SD1
2 3P, 5P, 3F, °F>
3+ 3D3 3G3 5D; °G;

TPC = JELA(S e = fr0f1)s
0" — 053000 = fofo))
vorb =1 (B2)

0% = 0312247 = foh),
VO = X)X (ks (B3)

0" = 05500037 = fo2)),
VO = X0 (ki) X (ki) (B4)

07" — 051 Q21T = L)),
VO = XX (ki) X (ki) (BS)

27— 2505 = fofo)),
Ve = XQkh); (B6)

2 > 2510257 = S,
Vos™” = XipUsy); (B7)

ey C

2 5 275225 > i),
V((j;.j) — X(Z)(kL) VX(Z)(k'J{At)’ (B8)

ay By v

27 = 2512005 = o),
Vg ¥ = XGUNXD (ki) X2 gy ); (B9)

27 = 257027 - L),

Ve = XQ (ki) X (k3y); (B10)
2" > 270221 - LA
Ve = XQ M0 X,7 (ki) XS (hy); (BI1)



M.A. Matveev, A.T. Sitnikov, A.V. Sarantsev

Chin. Phys. C 50, 023113 (2026)

47 = 457121201 = foh)
V(4+,1) — (2)(kL)0r](X(2)(k3l4);

apuy Wl

47 = 45221 - L)),
V(4+ 2) _ X(z) (kJ_)Or/{XQ)(kJ_ X(z)(k

afuy vy

47 = 45704 = fo12),
VA 2 X ()X kL, );

afuy

47 = 472400 = fof)s
V(4+ 4 _ X(()[Z]])(kL)OZstyx(z)(k )X(Z)(k34)

afuy nBuv

(B12)

(B13)

(B14)

(B15)

Here, we provide the amplitudes with L, <2 and res-
onances decaying into two pions up to J =2. The unnat-
ural states can only decay into two resonances with J > 2.
In the case of two tensor states, we get the following:

07" = 0,107 = fih)),
VO = XDk e, p X3 (ki) XE (k)

27 = 250 = ),
Vig " = XS0 X2 (i) X2 (h3y).

(B16)

(B17)

For the cascade decays, we provide examples of amp-
litudes or cascade decays for the orbital momentum

Ly, L3 <2:

JPC - JPC(L4(71'J;PC - Ly(mfy,)),
0" = 05" (0 (n057 = 0(nf)))
Yo — 1.

07 = 0% (1 (13t = 1))
V(0+’6) — X(l) (ki) X(l) (kf) :

0" — 037 (2 (7257 = 2(nfy)),

VOrD = XX (k) ;

0" — 057 (2(n257 = 0 ),
VoS = XD Ol (PHX2) (ki) ;
0" = 071 (1 (x1}f = 1(xf)),

VO = XD (k) XE (k5) OS5 Py X X2 (i)

(B18)

(B19)

(B20)

(B21)

(B22)
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07 - 034 (0 (057 > 2(nf)),

VO = X2 (k) X2, (2): (823

0" - 031 (2 (721 = 2(7f)),

VOrID = XO )OI (P)XD (kt) O (P)XE) (ki) :
(B24)

27 = 25% (2(n057 — 0(nfy)),

Vi = X2, () 29

2% =207 (1(nlgr - L)),

V=X () %) (): ®26)

27 =247 (0 (257 = 2(nfy)),

V= X3 (): @20

2% =21 (2(n257 = 2(n ),

VG = X2 (k) X (k)5 (B28)

2" 5250 (0 (25 - 0(w /).,

V(ﬁ;—,ll) _ OﬁE(PﬁX,(lzv) (kfz) : (B29)

27 527 (2 (725 - 0(nf)),

Vﬁ;—,lZ) =X (k4 ) 0 (p3)x(? (kfz) : (B30)

27 = 20% (1(nlt = 1(nh)),

Ve = X0 (k) X0 (k3) x O (PXS), (ki) 5
(B31)
2% = 20% (1 (25 = 1)),
VB = b XD () O (P,
X Errpur, X, (k3) X130, (Kiz) 5 (B32)
20 ( (7r02+ - Z(Ffz)))
V(2+ 15) _ X(z (k )Xf)m( )Xf)v? (k1i2); (B33)
=255 (2705 > 2(x ).
V(2+ J15) _ X(Z) ( k- ) Xf)V2 ( ) Xflz (k,*z) ; (B34)
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27 5280 (0 (727 = 2(nf)),
V{(Ii;,lf)) — 0‘21/’2(1_)3)){(2) (ki) OZV)Z(P3) XX,(j/) (kll2> :

PV
(B35)
2% =2 (2 (n27 - 2(nf)),s
Ve = X2 (k) O (Py),
XX, () 0L (POX,E, (Kkia) : (B36)
27 > 20 (2(x15F > 1(nfy)),
Vg 2 = enmarXy (k) X1 (k) 5 (B37)
27" > 207 (1 (77251 — 2(7rfo))) ,
Vas”' = Bvmar X)) (k) X5 (k) (B38)
27" > 207 (1 (772(: — 0(7rf2))) )
Vi ¥ = nnarX,)) (k) 005 (P) X X[, (ki)
(B39)

27525t (2 (7l - 1)),
VD =ear Xy (ki) X (k3 ) xOWE(PHXT), (k) ;

(B40)

27 =201 (0(n25F = 1(nf)).
Vg ' = nmarX,)! (k) X O3 (POXE, (ki)
(B41)

27521t (2 (7257 - 1)),
VD = X0 (ki) 028 (P3)

2 P3P1

X v X () X2 (k) (B42)
2o 2 (12 = 26h).
Vc(yff_’g) = Xf,i)(ki_)gvmzﬂp»ﬂ Oﬁzgl (P3)

XX (k) 0L (POXEL (ki) -
07 =01 (2(n252 = 1))
y0-2) X;(;Z.foz (k) Oz§Zi(P3)‘9VIVz/’3F3

XX, (k5) OV (P)X, (kio) : (B44)

17 = 155 (1 (715 - 1 f)),
VED = g, XSV (k) X0 (k) 5 (B45)

1™ =17t (2 (7T26:_' - 2(7Tf0))) ,

Ve = eanne X, (ki) X0, (k3) 5 (B46)
1™ - 17 (2 (7r2(§j — O(ﬂfz))) ,

VI = X2, () O P XX, ()

V1v3

B47)

1 > 155 (1 (717 = 1(xf)),
Vi = e XD (k) X0 (k) X 002 (P3) X (Ki)
(B48)

1" S 177 (1 (228 - 1)),
Vi = X0 (ki) 00 (P3)Evimng,p,

XX} (k3) 0L (P)X, (kia) : (B49)

1" > 171 (2 (227 - 2(nf)),
(k3 ) Opip2(P3)

(1+.6) _ @
Vo = Eavp, FXV,,O2

x X©® (kzl) OPsPs (P3)X(2)

V203 v2p4 v2p4 (k ILZ) > (B50)
47 =45 (2(m25) = 2(nfo))) s
Vi = X (ki) X2 (k3 ) (BS1)
4 5458 (2(n25) - 0(mf))
Vigr = Xop (ki) 002X (ki) s (B52)
4% 545 (2 (72 - 2 ),
ViD= X3 (ki) 002 (Ps)

xXih), (k3) 0002 (POXG,, (ki) : (B53)

V1p3

The code for the generation of these tensors can
be found at https://pwa.hiskp.uni-bonn.de/version/jpsi.
html.

C. Transition amplitudes for the central production
due to pomeron-pomeron (f;f;) collision

In the pomeron-pomeron central collision (or in fyfy
collision), only isoscalar states with even spin and posit-
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ive P,C-parity are produced. The produced vertices are
described by the orbital momentum tensors. Therefore,
we obtain the following expressions for the partial-wave
amplitudes:

AOHD 0D i=1-11,
AR XDV i=1-17,
A XD GOV, i=1-1. (€

D. Radiative J/¥ decay into 47° final state

In the case of radiative J/y, it is usually assumed that
after emission of the photon, the c¢ system is annihilated
to a resonance that decays into hadron final states. From
this perspective, all states that are allowed in the quark
model can be produced. These states have isospin /=0
and charged parity C=+1. Let us give the list of the
amplitudes up to J = 4 as follows:

A0 g0y 0+ i=1-11,
AP =8°XD(gh OV, i=1-17,
AT =gepS ) XE (@O V™D, i=1-17,
AGD =520V =11,
A SNV =1
A =&unepS ,;XSLE(CIL)%ZZ?VSZ?, i=1-7,
ASD =SLXAGIOREVED, =1,
A(O—,i) :SIIYX'(II)(qJ.)V(O—,i), i= 1_2,
A(11+,i) :S,LIIVI(IHJ)’ i=1-6,
AS =S IXC (g VI, i=1-6,
AT =8 XD (g 0wV, i=1-8,
A0 =5 IX0 (OIS, i=1-8,
AT =g,epS 2 X (gHOBVE, i=1-8. (D)
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