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Application of the Woods-Saxon potential in studying quadrupole and
octupole excited states using machine learning”
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Abstract: In this study, the energy bands of quadrupole and octupole excited states are investigated. This is
achieved by employing the Bohr Hamiltonian, incorporating quadrupole and octupole deformations whose variables
are accurately separated. Subsequently, the Woods-Saxon potential is added to the problem. Because this problem
cannot yield suitable solutions using conventional approximations, we solve it numerically using machine learning.
A detailed description is given of how wave functions and their associated energies are obtained. Throughout this
procedure, we demonstrate how machine learning aids us in easily accomplishing our objective. We examine and
analyze the energy spectrum and possible multipole transitions for candidate isotopes 22°Ra and 220 Th.
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I. INTRODUCTION

The study of protons and neutrons is the primary fo-
cus of atomic physics, which studies nucleons and their
constituent parts. Nuclear deformation is one of the most
thoroughly researched topics; in it, the non-spherical
shape of a nucleus is described by quadrupole and octu-
pole moments. Nuclear dynamics and organization are
known to be significantly impacted by such deformation.
The study of quadrupole [1] and octupole [2—4] deforma-
tions in nuclei has advanced recently, particularly in cases
when these two anharmonic forms interact. Nonuniform
spatial charge distributions are the driving force underly-
ing this interaction, and deformations affect nuclear char-
acteristics including energy levels and electromagnetic
moments. Several models have been presented to invest-
igate the collective dynamics of nuclei [5—8] (such as
those with Davidson potentials and the analytical quadru-
pole-octupole axially symmetric model enclosed in an in-
finite well potential). Alternative possibilities are still be-
ing investigated, although these models have limitation
and do not always perform better than others.

Quadrupole deformations have long been linked to
nuclear rotational spectra, and octupole deformations, or
pear-shaped nuclei, are known to occur in some places,
most notably among light actinides. A negative-parity
band with levels L =17,37,57,---, efc., that are near in
energy to the ground-state band and form a single band
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with L™ =0%,17,2%,37,4%, ..., etc., is one of the character-
istics of octupole deformation [1]. Octupole vibrations
are indicated by a negative-parity band that is higher than
the ground-state band. Numerous authors have examined
the shift from octupole vibrations to octupole deforma-
tion [9—11]. Although it has movable parameters, the sp-
df-interacting boson model (IBM) [12, 13]is a compre-
hensive algebraic classification of states in the presence
of both quadrupole and octupole degrees of freedom.

According to a recent review [14] and its references,
machine learning (ML) has been combined with statistic-
al techniques over the past ten years to address nuclear
physics problems ranging from fundamental particles to
the behavior of dense celestial bodies. A few of the ap-
plications focus on teaching ML models to predict nucle-
ar observables directly, including fission yields [15], nuc-
lear masses [16—20], charge radii [21—23], and beta-de-
cay half-lives [24, 25]. Other applications of ML seek to
enhance nuclear many-body simulations by using ML
models to replace computationally intensive procedures.
For example, collective Hamiltonians for low-lying nuc-
lear states have been refined using deep neural networks
[26], and density profiles for nuclear radii and binding
energies calculations using density functional theory have
been determined using back-propagation neural networks
[27] and kernel Ridge regression [28].

One of the most well-known potentials in nuclear
physics is the Woods-Saxon potential [29]. This potential
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has deep roots in nuclear physics studies. However, it
presents a significant challenge: the lack of an appropri-
ate analytical solution. In other words, no exact analytic-
al solution exists for such a potential for general angular
momentum. One way to address this problem is to use the
Pekeris approximation, but this approach leads to solu-
tions involving Jacobi polynomials. Owing to the limita-
tions on the arguments of Jacobi polynomials, these solu-
tions cannot be used for our purposes and multiple bands
[30]. However, the aforementioned problem can be re-
solved using a different method, which we will discuss in
detail later in the paper.

Our objective in this paper is to use the Woods-Sax-
on potential to investigate excited states resulting from
quadrupole and octupole deformations. We aim to invest-
igate the nuclei ?*Ra and 2*Th by considering the
Woods-Saxon potential in a Hamiltonian that includes
quadrupole and octupole deformations. Additionally, the
optimization process required to reproduce experimental
data relies on optimization algorithms, for which we will
employ ML techniques. Furthermore, the steps for obtain-
ing eigenvalues and eigenvectors will be implemented us-
ing a numerical approach. Therefore, we have organized
the paper as follows: Sec. Il presents the theoretical
foundations necessary for investigating such states. To re-
produce the experimental data, which is the subject of
Sec. III, we first examine the foundations of numerical
calculations based on ML algorithms and then reproduce
experimental data, including the excitation spectrum and
multipole transitions.

II. ANALYTIC QUADRUPOLE-OCTUPOLE AXI-
ALLY SYMMETRIC MODEL

Two basic assumptions underlie the analytic quadru-
pole-octupole axially symmetric model [5, 6]. First, the
axes of the quadrupole and octupole deformations are ex-
pected to align. In other words, the y degree of freedom is
ignored, but axial symmetry is assumed. Moreover, be-
cause they occur at extremely high energy levels, levels
with none zero K (where K represents the projection of
angular momentum along the body-fixed z-axis) are ex-
cluded [31]. In contrast, this simplification makes the sys-
tem easier to analyze. Thus, the form of the correspond-
ing Hamiltonian is [31, 32]

i n s 0 nL?
ZBABA 6/34 9By 6(Ba3+2B3f3)

=23

+ V(B2.53),
(1

where the quadrupole and octupole deformations are de-
noted by B, and s, respectively. The related masses that
are connected to these distortions are B, and B;. In the
intrinsic reference frame, L is the angular momentum op-

erator.
The following consideration can be used to determ-
ine the answers to the Schrodinger equation [32]:

O} (B2,B3,0) = (Baf3)~* W5 (B2, B3)ILMO, £), 2

where the set of Euler angles, 6, is necessary to under-
stand and illustrate the orientation of the body-fixed co-
ordinate system, defined by the axes x’,y’, and 7, with re-
spect to the fixed laboratory coordinate system, defined
by the axes x,y, and z. This model uses the mathematical
expression |[LMO,+) to illustrate the rotation associated
with an axially symmetric nucleus, focusing on the angu-
lar momentum projection M along the laboratory-fixed z
axis and maintaining a projection K equal to 0 along the
body-fixed 7z’ axis [1]. The explicit form of the functions
|ILMO,+) and |[LMO,-) are provided in [1, 5]. These func-
tions transform in accordance with the irreducible repres-
entations (irreps) 4 and B, of the group D,, respectively
[31, 32].

2L+ 1
MO, 2y = | (1 x-09DE, 0 O

where Wigner functions of Euler angles are represented
by D(6). The + label indicates positive parity states with
L=0,2,4,---, whereas the — label denotes those with
L=1,35,-

We can simplify the Schrodinger equation by consid-
ering new deformation variables.

Bz=ﬂ2\/%, ﬁ3=,33\/%, B:BZ;—B3, 4)

the polar coordinates in the range of 0<fB <o and
—n/2 < ¢ <n/2 with the goal of the new deformation
variables

P> =Beos,

b= B +B

with the reduced energy €= (2B/i*)E, and the reduced
potential u = (2B/1*)V. Thus, we have

B3 =PBsing,

_ai_la LL+) 1 &
op? B[)ﬂ 382(1 +sin’¢p) B2 0¢?
- 3 -
B o —a | HBH =0 (©)

As a simplification, let us assume that the potential
energy u(B,$) can be separated into the form u(B,¢)=
u(B) + u(¢)/B*: a function of only u(3) and a function of ¢.
Such a hypothesis permits us to separate Eq. (6) into two
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independent equations. We further assume that u(¢) is a
very steep, double-well potential centered around =+¢y.
Thus, we have

S d 1d N N 3
2 {—dﬁz “sg HP e VB =i, ()
and
d2
LW —u($) —ur(@) | x*(8) = =0’ x* (@), (8)
L(L+1) 3

ur(¢) = Q)

+ b
3(1+sin’¢)  sin’2¢

where the total wave function has been assumed as
Wi(B,¢) = v (B)xi(¢), the separation constant . Here-
after, for the sack of simplicity, + will be omitted. An im-
portant exciting a periodic term, u;(¢), exists. It will im-
pact the later calculation of the electromagnetic trans-
itions.

Equation (8) contains the function u;(¢) in this separ-
ation process. Having a term such as that in the equation
makes it much more difficult to solve and analyze. Be-
causeit is a well-defined, smooth, and differentiable func-
tion, this problem can be solved by applying the Taylor
expansion of this function around its minimum value, as
described in [33]. Consequently, we have

u’(¢r)
2

ur(@) = ur(¢r) + @-¢0), (10)

where, for a given L, ¢, is the minimum of u;(¢). Note
that because u;(¢) attains its minimum value at ¢;, the
first derivative of u;(¢) at ¢, will be zero. Consequently,
the first derivative does not appear in the Taylor expan-
sion. To transform the differential equation into the famil-
iar form of the harmonic oscillator differential equation,
we must not only substitute the Taylor expansion into the
differential Eq. (8), but also, as outlined in [33], neglect
the potential u(¢). Thus, we have

dz)(

e +x = ey, (11)

which introduces the following new parameters:

17 2 —
uy (¢r) (¢_¢L)2’ & = Y ML(¢L). (12)

2 [l (6r)
2

This differential equation has eigenvalues given by

(P =

e =2n+1, where n is the oscillation quantum number.
Therefore, we may have

uy(¢r)
2

Qn+1)+u(¢y). (13)

Additionally, henceforth, we will restrict our analysis
to the case n = 0. We emphasize here that the parameter o
is dependent on the angular momentum, g, . This depend-
ence is evident in our calculations of electromagnetic
transitions. This is because this parameter appears in the
eigen function of the ¢ part:

_4@
2

pni®=Norewo (<5 m, Gw), a4

where N,,; is the normalization constant, and Hermit
polynomials are represented by H,,. If the arguments of
the Hermite and polynomial functions were independent
of angular momentum, the normalization constant would
be simplified to a function of n,. However, this is not true
in our case. The angular momentum dependence adds dif-
ficulties that prevent us from obtaining an analytical solu-
tion for the normalizing constant. However, a numerical
calculation can be easily used to calculate its value:

/2 =172
Nn¢,L = {/ |Xn4,,L(¢)|2d¢:| . (15)
-n/2

Now that the separation parameter has been determ-
ined based on the problem's known information, we can
analyze the beta part of the differential equation.

We can now present the potential that we are inter-
ested in: the Woods-Saxon potential [1, 29, 30].

u@) = ——2o

- 1 +eaB-Bo)’ (16)
where the non-negative parameters U,, a, and B, are
present. This potential lacks a hard core, and its shape
simplifies to a square well potential in the limit of ¢ — co.
The Schrodinger equation including such potential can-
not be solved correctly and analytically, although it satis-
fies physical predictions well. This is another significant
mathematical point regarding this potential [30]. Natur-
ally, approximations such as the Pekeris approximation
have been used to present analytical solutions for this
purpose. However, the final answer contains Jacobi poly-
nomials, which impose restrictions on their parameters.
Upon numerical evaluation of the physical constants, we
find that these restrictions are not satisfied, and practic-
ally, we are unable to extract appropriate experimental
data from those analytical solutions. Stated differently,
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we can only address a limited amount of the experiment-
al data using these answers. This is because the system in
question cannot be sufficiently described by such math-
ematical approximations.

We employ an alternative approach to obtain the solu-
tion of the differential Eq. (7) in the presence of the
Woods-Saxon potential (16). This method has been ap-
plied to several problems. The problem of single-particle
levels in deformed nuclei is among the most significant of
them [34—-36]. In essence, we want to use this method to
estimate the solution to a specific degree of precision.
Hence, we begin by assuming appropriate basic func-
tions. We indicate whole sets of functions that enable us
to fully expand a function by using the proper base func-
tions. We may save only a few selected terms of this in-
finite expansion, as the name approximation implies. This
is achieved when the results no longer differ significantly
for a certain number of terms considered in the expan-
sion. Therefore, we must begin by adopting suitable ba-
sic functions. A strong basis is one that can accurately
characterize the system states across the same domain.
The harmonic oscillator the basis provided by is among
the most often used bases.

2y!

70 —B*12 cpo (732
r(v+g+1)ﬁ e P LB, (17)

gv,rz¢,L(B) =

where v indicates the number of nodes in the 3 direction,
I' represents the gamma function, a known special func-
tion, and .Z is the corresponding laguerre polynomials.
By solving Eq. (7) for a system with the potential
u(B) = 32, we can directly obtain this particular basis set.

We can obtain the answer as follows by applying this
principle [37]:

> () =1 as)

Yni(B) = Z C:/lfo’uogv,L(B)v
The numerical values of the free parameters in the differ-
ential Eq. (7) have a significant impact on the coeftfi-
cients Cy2"" . Essentially, for any distinct state of Eq. (7),
we will have an appropriate linear combination of the
harmonic oscillator basis functions. The matrix eigen-
value problem is solved to obtain the coefficients of this
expansion, and the elements are computed as follows:

V| Hlvy = / BB gy (B)Hz8,.(B), (19)
0
2 2
-4 _1d a_ U (20)

FRBR Tres

I:IBIn,L;(bL;a,ﬁO,Uo) = eﬁ|n,L;¢L;a,[i’0,U0). 21

The following is a description of the methods used to
address this problem: The matrix elements, as expressed
in Eq. (19), must be calculated for each quantized angu-
lar momentum inside each nucleus. Subsequently, by
solving the eigenvalue problem, we may obtain the relev-
ant eigenvalues and eigenvectors, which can be used to
determine the energy levels of states with different num-
bers of nodes according to the given angular momentum.
The manner in which the solution's numerical precision is
considered is another important aspect of this. The num-
ber of terms considered in the expansion (18) has a direct
correlation with accuracy. We easily observe that the res-
ults converge to a certain value when more terms are ad-
ded to this expansion. The degree of precision required to
solve the problem determines the degree of convergence.
Consequently, we estimate 10 terms in this expansion
based on the facts considered in this study. This number
of terms renders a level of precision to our answer that is
sufficient. In contrast, the ideal values for the free para-
meters must be determined for this process. Although the
factors involved in this methodology will be explained in
the next part, the observations of this segment are sum-
marized in the appendix, the specifics of which are dis-
cussed in the section on numerical calculations.

The experimental results can now be reproduced us-
ing numerical computations in the following section.

III. NUMERICAL RESULTS

In this section, we aim to reproduce the experimental
data of some nuclei using the information gathered in the
previous section. As mentioned in the introduction, ML
techniques form the basis of the computational investiga-
tions in this work. Specifically, our objective is to use a
ML optimization technique to determine the optimal val-
ues for the problem-relevant free parameters to repro-
duce the experimental results. Gradient descent [38], an
algorithm for determining a function's minimum value
that is frequently used to lower errors in prediction mod-
els, is one of the most significant optimization strategies
in ML. Gradient descent reduces the difference between
the model's predictions and the real empirical data (i.e.,
the loss function or the deviation function) by progress-
ively changing the parameters during the model's train-
ing phase.

Gradient descent systematically refines the model
parameters from an initial approximation by moving to-
ward error minimization. According to [38], if we gather
all of the parameters that affect the deviation function or
the loss function in a vector notation ¥ = (;,%,,--), they
are revised after each iteration:
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9 —d-n-Vo, (22)

where o is the deviation function defined according to our
objective, and 7 is the learning rate.

- =

_ |1 (Eexp(L,ﬂ _ Eneo( L) - Etm(w))z i
N Eexp(2+) Ethe0(2+) - Elheo(0+) |

(23)

where N is the number of data used for each isotope, and
E.p (from Ref. [39]) and Ey., represent the experiment-
al and theoretical energies, respectively. By determining
how steeply the loss function changes in relation to each
parameter, we can obtain the slope or rate of adjustment.
The method basically "descends" towards a minimum er-
ror threshold by traveling in the opposite direction of the
gradient to arrive at an optimal or nearly optimal solution
[38]. Unlike instructional resources such as [38], text-
book optimization tasks often employ a simple mathemat-
ical function. However, the function we are attempting to
improve is not mathematical and does not have a continu-
ous domain. This is because, to retrieve the energies, we
must first determine the matrix of each angular mo-
mentum in (19) and then calculate the pertinent energies
using diagonalization. Consequently, the optimization
technique must incorporate district theoretical data.

A. Energy spectrum

After describing the fundamental computations in the
previous section, we now present the findings. Only the
isotopes of ??Ra and ?*°Th are examined in this article.
Table 1 shows the values that were acquired during the
optimization procedure for every isotope. Each row in the
table corresponds to a distinct isotope because the iso-
topes are identified in the table. The number of digits in
free parameters to the right of the decimal point is a
highly special feature of the ML approach. In other
words, using more basic approaches, such as search al-
gorithms, obtaining free parameters with such accuracy
would require time that cannot be quantified in normal
units of time to accomplish the level of accuracy offered
in the preceding equations. The last column also shows
the ¢ parameter for each isotope.

The appendix to this paper provides a summary of the
outcomes obtained using these values. The tables in the
appendix give the state's angular momentum value in the
first column, the experimental normalized energy value in

the second, the theoretical normalized energy in the third,
and the coefficients in the wave function expansion in the
remaining columns. These tables are organized accord-
ing to the isotopes discussed in this work, and locating
the information required for each isotope and angular mo-
menta value in each of them is reasonably simple. Note
that only the level of nz =0, and hence n, =0, has been
included in the energy level computations. Therefore, in
the subsequent discussions, these will not be included
when using the aforementioned numbers as indices.

The first step in analyzing the study's findings is plot-
ting the potential that produced the best fit for each iso-
tope. Figure 1 is plotted using the information in
Table 1 and Eq. (16). Each isotope's potential is shown in
a different color in this picture. An interesting pattern is
observed: the potential shape shifts from the well-known
Woods-Saxon form to a finite well as the mass number
increases. The reason for this behavior is in increase in
the parameter a as the optimization process progresses.

The following step shows the experimental and ex-
pected spectra for the nuclei under consideration in Fig.
2. The precision of the theoretical predictions in compar-
ison to the experimental data is better shown in this im-
age. The graphical representations display the theoretical
predictions in red and the experimental data in black. Ad-
ditionally, to better compare excitation states with differ-
ent parities, we plot them separately. For better comparis-
on and understanding of the discrepancy between the the-
oretical prediction and experimental data, these levels are
connected by dotted lines. Naturally, the steeper the slope
of these dotted lines, the greater the difference between
them. Furthermore, we have shown the predictions from
Ref. [33] (indicates as PFM) in green in this figure for a
visual comparison between our calculations and the refer-

T

O - -

ZZGRa

ZZGTh
—~ —5F .

D
3
—10kL i
1 1 1 1 1

Fig. 1.  (color online) Visualization of the potential energy
shape for each isotope after optimizing the parameters.

Table 1. Values of free parameters for each isotope.

Isotope a Bo Uy O Ours ORef. [33]
226Rq 5.558247546040683 5.836410397132373 10.03477806863556 0.949 1.163
226TH 19.654234566878788 6.574464293524817 12.356356546357798 0.942 1.093
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ence.

A noteworthy finding from this figure is that, in every
instance, the trend of the experimental values in the posit-
ive parity band is correctly predicted. However, in the
negative parity band, this tendency is slightly different.
The theoretical predicted values are typically marginally
lower than the experimental results for the lowest few
levels of the negative parity band. This is because, as oth-
er investigations have shown, these levels require slightly
more energy to reproduce, which is not achievable with
this Hamiltonian structure and potential [30].

Before we calculate electromagnetic transitions, we
must examine the wave functions that have been com-
puted for these isotopes. The wave functions of the ¢ part
are Hermite polynomial expressions, whereas those of the
B section are obtained using linear combinations of the
basis functions given in Eq. (17). The corresponding ex-
pansion coefficients for 2**Ra and ?*°Th are given in full
detail in Table 2 and Table 3, respectively, in the ap-
pendix. To illustrate their differences, we have included
both the basis and wave functions for ?**Ra in Fig. 3.
This figure consists of four panels. The upper panels
show positive parity, whereas the lower panels show neg-
ative parity. The left panels display the wave functions as
a function of §, and the right panels display the basis
functions. The difference between the basis and wave
functions is evident. For instance, they have different val-
ues at different places. To understand this, consider the
size of the vertical axis.

226Ra
70.779
28* 68,606 68.875
27~ 65.080 65.099
62.940
59.164
E— 25~ 57.931 57.793
55.483
= 24% 54,440 54.264
51.898 23~ 51.032 50.820
48410 22*  47.750 47.461
15.018 21~ 44.412 44.189
41.724 20" 41.375 11.004
38.527 19~ 38.099 37.908
35.428 18" 35.30 34.900
32.427 17~ 32126 31.982
29.526 167 29.523 29.155
26.724 15~ 26.536 26.419
24.023 14 24,061 23.776
21.424 13- 21.388 21.227
18.928 127 18.931 18.774
16.537 11~ 16.743 16.418
14.254 101 14185 14.165 B
12.081 Q- 12,677 12.017
10.025 8t 9801 9.980 . 0.264
6.297 6" 6.155 —6.279 4657 3’?73533 4.647
007 . (4 4.047
3.200 4+ 3.127 3.196 - 1- 2.560 6
1000 27 1000 1.000 67 <
0.000 0¥ 0.000 0.000
PFM Exp. WS PFM Exp. WS
Fig. 2.

model [33] (PFM).

B. B(EL) transition rates

The electric dipole, quadrupole, and octupole operat-
ors in the presence of axial symmetry are [31]

B ,sin2¢
(E) _ M oy — 2 0
THE =125 D, 0(0) =11 7 B3'B Dy, (0),  (24a)
E2) _ @ gy — B @
T, =06pD,,0),=1 EﬁCOS¢D0,H(9), (24b)
T _ 3oy _ B A® 24
w O =663D,0(0) =13 Eﬁ singDy;,(6), (24¢)

where ¢, is a constant, and

3Ze 3Ze
=" _—R, #h="FR,
4r i
Combining Eq. (3) and Wi(B,¢) results in the final
wave function. To obtain the transition rate B(EL) for this

wave function, we use the following formula:

h R=(12)A3. (25

|(Lyas || T Lias) |*
2L;+1

B(EL; Lia; — Lsay) = (26)

in which the Wigner-Eckart theorem [40] is applied to
calculate the reduced matrix element.

226Th

41.724 20" 142896 42.387

38.527 19 39.627 39.160
35.428 18% 36497 36.029

32.427 17— 33.418 32.994
29.526 167 30413 30.053

26.724 157 27.554 27.205
24.023 14" 24,675 24.451

21.424 137 22.105 21.793
18.928 127 19.394 19.234

16.537 - 17152 16.779
14.254 107 14.409 14.434 ]

12.081 9-  12.785 12.206
10.025 8T 9.999 10103 o

8.093 - 9102 8,136
6.297 6+ 6.195 6.317 5 6.240

4.657 4950 1.663
3.200 4t 3136 3.201 — 34259 -
1.000 27 1.000 1.000 LIGT 1 3101 1.967
- - - ).337 1338
0.000 0F  0.000 0.000
PEM Exp. ws PEM Exp. ws

(color online) Comparison of predicted and experiments spectra of the considered nuclei and predictions of the parameter-free
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(a) Basis functions for positive-parity of 225Ra
0.8 i a
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!
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(C) Basis functions for minus-parity of 226Ra

Fig. 3.
functions.

(LiLL glpipapay)

\/ZLf+1

<prfaf| TED |Lipia;) = (Lfaf ||TELH L,-a,»)

27)

where (L;LL|u;puy) represents the Clebsch-Gordan coef-
ficient.

In Eq. (26), the integration over angles 6 uses a typic-
al integral over three Wigner functions [40], yielding
(L;LLf|000). The remaining integrations are performed
across [ B3dB2 B3dBs, where the 83 and A factors are ob-
tained from the volume element. The integration is over
[ BdBde, up to constant factors, according to Egs. (4) and
(5) and the relevant Jacobian.

By examining the formulas in (24), we observe that
the calculation of the electromagnetic transition can be
decomposed into four factors. The first factor is a purely
constant parameter that depends only on the fundamental
properties of the isotope in question. However, the other
three factors depend entirely on the initial and final state
information and the transition order. Thus, the formula
for calculating the electromagnetic transition can be ex-
pressed as follows [6]:

0.2 | |
18 0
E
kg
=
—021| —
- %ﬁo(@
- wr‘o(@)
¥a0(8)
Py — : : : =
0 1 2 3 4 5 6
s
(b) Wave functions for positive-parity of 226Ra
0.2 - |
a0
E
£E
=
—-0.2 |- N
- 19’0,1([?)
- Url([f)
Yy 1(8)
—0.4 L | | | i i =
0 1 2 3 4 5 6

B

(d) Wave functions for minus-parity of 226Ra

(color online) Graphical comparison between the bases and actual wave functions obtained as linear combinations of basis

BEALL — L) = C (1) (1Y) (LLLA000Y,  (28)

where C is a constant, and

I/gEZ) _ I/gm) _ / leﬁm,L;an,Lfdré’ (29)
IéEl) = /B3lﬂni,Li¢nf,Ldea (30)
(E1) _ : :
= ] SiN2¢X, 1. Xn, .1, 40, 31
-2
z
I(;EZ) — / COS BX g, LXng Ly do, (32)
2
%
I(;ES) = / Sin¢Xn¢,.,L,Xn¢f,Lf d¢’ (33)

x
2

and we suggest readers to see Ref. [6] for more valuable
information on the integrals and equations.
Unfortunately, we could not find sufficient experi-

044107-7



Hadi Sobhani, Yan-An Luo

Chin. Phys. C 49, 044107 (2025)

mental data for electromagnetic transitions of the con-
sidered nuclei in Ref. [38]. However, a comparison of the
trends obtained in this study would still be interesting and
informative. If readers refer to the section on solving dif-
ferential equations in this article, they will observe that,
unlike the case of approximate separation, electromagnet-
ic transitions are influenced by both parts of the solution,
namely 8 and ¢. For approximate separation, because the
¢ part is merely a constant factor, it is automatically elim-
inated by calculating the ratio of electromagnetic trans-
itions. However, this is no longer applicable here. Al-
though we have limited ourselves to ns =0 and we have
H, = lin the Hermite functions, the normalization con-
stant will be a function of the angular momentum value
because the argument of the exponential function £* con-
tains ¢, which takes a specific value for each value of
angular momentum. This is what causes the difference in
the trend of theoretical predictions in the calculation of
electromagnetic transitions in the present model.

To illustrate the trend of theoretical predictions of our
model, we have plotted the calculated electromagnetic
transitions in Figs. 4, 5, and 6. In Fig. 4, we have calcu-
lated the electromagnetic transitions B(E1,L — L-1)
for the model [33] and our results, and we finally normal-
ize them to the value of B(E1,1~ — 0%). We believe that
the authors of [33] used the same approximate separation
[5] formulae of B(EL) transitions because the values of
their electromagnetic transitions were obtained similarly.
In this case, the theoretical prediction predicts an upward
trend with increasing L, but this is not the case for the
predictions made by the results of this article. If we ex-
amine this trend more closely, the theoretical predictions
for the B(E1) transition suggest an oscillatory trend, but
overall, this trend is upward. The change in this oscillat-
ory trend is more significant and severe in 2?Th than in
226Ra, whereas for the parameter-free model, the theoret-
ical prediction trend for the B(E1) transition is strictly up-
ward.

For the B(E2) electromagnetic transition, a behavior

N
ot
T

o PFM
—m— 226Ra (WS)
—e— 226Th (WS)

1.5

B(E2; L — L — 2)/B(E1;2+ — 0%)
(==
&
T

| | | |
10 12 14 16 18

L
Fig. S.
whereas the right panel is for the minus-parity states.

different from the parameter-free model is predicted. In
this case, for transitions involving positive parity states,
an initial increase in the transition value is predicted, fol-
lowed by a decrease. In contrast, for B(E2) electromag-
netic transitions involving negative parity states, an ini-
tial decrease followed by a relative growth is predicted.
In contrast, the parameter-free model does not predict any
decrease in B(E2) transition values with increasing angu-
lar momentum. This is clearly shown in Fig. 5. The trans-
ition values in this figure are normalized B(E2,2* — 0%).
The left panel of this figure shows electromagnetic trans-
itions involving states with positive parity, whereas the
right panel corresponds to states with negative parity.
However, the predicted trends for B(E3) electromag-
netic transitions in the parameter-free model and the
model discussed in this paper are somewhat similar. We
have examined these transitions in two different categor-
ies. All values considered in this figure are normalized to
the B(E3;3~ — 0*) transition. This category includes
transitions in which the difference in angular momentum
between the starting and ending states is three units. In
the left panel of Fig. 6, we observe the predicted behavi-

T T T T
— 3 ]
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T . —=—226R4 (WS)
Lo 20 e o ws) l
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& 27 i
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=
I 151 -
N
T
S Ir i
)
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L
Fig. 4. (color online) Comparison of theoretical calculations
of B(E1) electromagnetic transitions in parameter-free and WS
models.
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(color online) Same as Fig. 4, but for B(E2) electromagnetic transitions. The left panel belongs to the positive-parity sates,
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(color online) Same as Fig. 4, but for B(E3) electromagnetic transitions. The left panel shows transitions with a AL of three

units between initial and final states, whereas the right panel shows transitions with a AL of one unit.

or for these transitions. The figure shows that the model
predicts an increasing trend for these transitions, and the
slope becomes gentler as the angular momentum value
increases. However, in our calculations, although the
overall behavior is upward, the rate of change is signific-
antly different. For 2?Ra, for angular momenta less than
15, the slope of this change is gentle, but for angular mo-
menta greater than 15, the slope of this trend becomes
steeply upward. In contrast, for 22Th, in the angular mo-
mentum range of 4 < L; <9, this trend experiences a relat-
ive decline, then either a steep upward slope.

The second category of B(E3) electromagnetic trans-
itions is those with a one-unit difference between the ini-
tial and final states. The result of this investigation is
shown in the right panel of Fig. 6. The overall trend for
all three cases is similar but not identical. In all three
cases, the values of these transitions initially experience a
decrease, and then an increase. This trend for the para-
meter-free model has a nearly uniform rate, whereas for
our model, both the decreasing trend is more pronounced
and the slope of the increasing values is steeper.

IV. CONCLUSION

In this study, we investigate the application of the
Woods-Saxon potential to describe excited states arising
from quadrupole and octupole deformations. Hence, we
employ a numerical method to compute the eigenfunc-

tions and eigenvalues of the Hamiltonian. This process is
coupled with a machine learning optimization algorithm
to evaluate the optimal solutions. Subsequently, we ana-
lyze the results. Energy levels with different parities for
226Ra and **Th are examined using both this model and
the parameter-free model. Thereafter, we calculate elec-
tromagnetic transitions and discuss the effect of the exact
separation of variables in the model presented in this pa-
per on the calculation of electromagnetic transition val-
ues. Electric dipole, quadrupole, and octupole transitions
are extensively analyzed and visualized. We observe that
the trend predicted by our model differs significantly
from that predicted by the parameter-free model. The
reason for this difference is investigated, we find that the
angular part of the Hamiltonian becomes a function of an-
gular momentum in the exact separation. This manifests
itself in the overlap of wave functions during the calcula-
tion of electromagnetic transitions.
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APPENDIX

The appendix contains a detailed list of each isotope's
normalized energies and wave function expansions. For
more information on how to understand this data, refer to
the main text of the article.
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