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Abstract: A formalism is developed for calculating the signal of the violation of time-reversal invariance, provided
that space-reflection (parity) invariance is conserved during the scattering of tensor-polarized deuterons on vector-
polarized deuterons. The formalism is based on Glauber theory and fully considers the spin dependence of NN elast-
ic scattering amplitudes and the spin structure of colliding deuterons. Numerical calculations are performed in the
laboratory proton energy range 7, = 0.1-1.2 GeV using the SAID database for spin amplitudes and in the energy re-
gion of the SPD NICA experiment corresponding to the invariant mass of the interacting nucleon pairs
VSyn = 2.5-25 GeV, using two phenomenological models of pN elastic scattering. It is found that only one type of
the time-reversal non-invariant parity conserving NN interaction gives a non-zero contribution to the signal in ques-

tion, which is important for isolating an unknown constant of this interaction from the corresponding data.
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I. INTRODUCTION

Discrete symmetries with respect to time reversal (T),
space reflection (P), and charge conjugation (C) play a
key role in the theory of fundamental interactions and as-
trophysics. Under CPT-symmetry, which takes place in
local quantum field theory [1, 2], the violation of T-in-
variance also indicates the violation of CP-symmetry,
which is necessary to explain the baryon asymmetry of
the Universe [3]. CP violation observed in the decays of
K, B, and D mesons is consistent with the standard model
(SM) of fundamental interactions; however, it is far from
sufficient to explain the observed baryon asymmetry [4].
Therefore, there must be other sources of CP violation in
nature beyond the SM.

One of these sources is associated with the electric di-
pole moments (EDMs) of free elementary particles, neut-
ral atoms, and the lightest nuclei, the search for which has
attracted significant attention over the last few decades
[5]. The observation of a non-zero EDM value indicates
that T-invariance and parity are violated simultaneously.
Considerably less attention has been paid to experiments
on the search for the effects of T-invariance violation
with parity conservation (TVPC) and flavor conservation.
This type of interaction was introduced in [6] to explain
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the CP violation observed in kaon decays and is related to
physics beyond of the SM [7, 8]. As demonstrated in a
model-independent manner within the effective field the-
ory [9], owing to an unknown mechanism of EDM gener-
ation, the available experimental limitations on EDMs
cannot be used to estimate the appropriate restrictions on
TVPC effects. The detection of these at the current level
of experimental sensitivity would represent direct evid-
ence of physics beyond the SM.

In the scattering of two polarized nuclei, the signal of
the violation of T-invariance while conserving parity is
the component of the total cross section, which corres-
ponds to the interaction of a transversely polarized (P,)
incident nucleus with a tensor-polarized (P,,) target nuc-
leus [10]. This observable cannot be simulated by the in-
teraction in the initial or final states and is not zero only
in the presence of the discussed TVPC interaction, just as
EDMs are a signal of a T- and P-violating interaction.

Following the description of the experimental COSY
project for studying the TVPC effect in pd interactions
[11], this type of component of the total cross section
(known in the literature as the TVPC null-test signal) can
also be measured in dd scattering by measuring the asym-
metry of the event counting rate in this process. This
asymmetry appears, when the sign of the vector polariza-
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tion of one of the colliding deuterons (P{") is changed,
whereas the tensor polarization (P2)) of the second deu-
teron is unchanged.

When using this method, the transverse vector polar-
ization P{? of the second (tensor-polarized) deuteron
must be zero [12]. Another method of measurement that
does not require such a restriction on P{> but uses the ro-
tating polarization of the incoming beam in combination
with Fourier analysis of the time-dependent counting rate
of the number of events was proposed in Ref. [13]. A
possible measurement procedure for the TVPC null-test
signal in dd scattering was recently discussed in Ref.
[14].

Here, we focus on the theoretical calculation of the
TVPC null-test signal. Its dependence on the collision en-
ergy for pd [15, 16] and *Hed [17] scattering was invest-
igated within Glauber theory in the laboratory energy
range 0.1-1 GeV considering the full spin dependence of
NN scattering amplitudes and the S and D components of
the deuteron wave function.

In this paper, we calculate the TVPC null-test signal
in dd scattering for the first time using fully spin-depend-
ent Glauber theory for this process and generalize the
method developed in [14—16]. In the following, Sec. II
provides the basic mathematical formalism for this calcu-
lation, Sec. I1I presents and analyzes the results of numer-
ical calculations, and Sec. IV provides the conclusions. A
detailed derivation of the final formulas for the TVPC
signal is given in the appendix.

II. CALCULATION OF THE TVPC SIGNAL IN dd
SCATTERING

In pd collisions, the TVPC signal is determined by
the component of the total cross section corresponding to
a vector-polarized proton interacting with a tensor-polar-
ized deuteron [13]. Unlike pd scattering, dd scattering
has two symmetric components of the total cross section
corresponding to the vector polarization of one deuteron
and the tensor polarization of the other. Accordingly, the
TVPC transition operator dd — dd at zero angle includes
two terms:

MTVPC(O) =8101 +g202. (D

Here, the operators 0, and O, are defined as

A& Ad e
01 = knQeuS ks

A 2 oAn e

02 = km any),gnlrsg )kr, (2)

where k is a unit vector directed along the incident beam,
S are the components of the spin operator of the j-th

” 1 o 4
deuteron, Q) = 3 (S§4)52’)+55,J)55,{)—§5mn1) is the sym-

metric tensor operator, and g,;, is the fully antisymmetric

tensor (m, n, I, r = x, y, z). Henceforth, we assume j=1

for the incident deuteron and j = 2 for the target deuteron.
We find the TVPC signal using the optical theorem:

Trvee = 4 VrIm Tr(p; Mrypc(0)) = o (TI\)/pc +o (Tz\)/Pc’ 3

where p; is the spin density matrix of the initial state,
which includes vector and tensor polarizations of both
deuterons, and the cross sections oRpe (i = 1,2) are ex-
pressed through the amplitudes g; as follows:

e =4 Viim (51 ) (PP - PYPD),
O'(TZ\)/pc =4+/rlm (%) (pf;p;U _ Pg)Pﬁ”). (4)

In turn, the amplitudes g, and g, can be expressed in
terms of matrix elements from the transition operator
over the spin states of the incident and target deuterons in
the initial and final states, < m’l,mlleTvpc(O)|m1 L,y >

N +
< =1, 1|Mrype(0)/0,0 >= i 2g2,

< 1O[Wrypc(0))0, 1 >= ;5! ;gz. )

Let us find the transition operator Mrypc(0) in the
Glauber model, taking spin effects into account. A single-
scattering mechanism, as well as in the case of pd colli-
sions, does not contribute to the TVPC signal because the
corresponding TVPC NN amplitude is vanishing at the
zero scattering angle [12]. In this paper, we calculate the
TVPC signal in the double-scattering approximation, neg-
lecting the contributions of triple and quadruple NN colli-
sions, which give only a small correction to the dd elast-
ic differential cross section at forward scattering angles
[14, 18].

The amplitude of the double-scattering mechanism in
an elastic dd collision consists of two terms, the so-called
"normal" and "abnormal" terms. The first ("normal") cor-
responds to the sequential scattering of both nucleons of
the incident deuteron on one of the nucleons of the target
deuteron, and similarly, of one of the nucleons in the in-
cident beam on both nucleons of the target. The second
("abnormal™) is the simultaneous collision of one nucle-
on from the incident beam with one of the target nucle-
ons and another nucleon of the beam with another nucle-
on of the target. The corresponding scattering amplitude
at zero angle takes the form
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MP(0) = M®(0) + M>(0),
. i
M®(0) = e / / / & pd®rd®q ¥ 15 (0¥ a0 (0)

x [0 (q) + 0" ()] Pua)(P)Puain(T),

i

M(2a)(0) — T / / / d3pd3 rdzq‘P;'(,2)(r)‘1’;’(34)(p)eiq(s_6)

x [0°(q) + O] Waizs (0) a1 ().

(6)

The operators 0??(q), 0'®"(q), 0%(q) , and O'?*(q) are
expressed in terms of spin-dependent NN amplitudes:

A 1
0" (q) = 5 (Ms1(q). Ma (-}

1
+ 5{M3(@), Mi(-9)},
X 1
0" (q) = E{]\/131(q),M3z(—(1)}

1
+ = {M4u(q), Mp(—q)},

2
0% (q) = M3, (Q) My (—q),
O'(za)(q) = M3 (qQ)Mu(—q). (7

Here, the subscripts 1 and 2 refer to the nucleons of the
target deuteron, and 3 and 4 refer to the nucleons of the
incoming deuteron; r=r;—-r;, p=r3;—1r, by s and J are
the components of the vectors r and p, respectively, per-
pendicular to the direction of the incident beam. In the
Glauber approximation, qr = qs and qpo =qé. In (7), {,}
denotes the anticommutator of two spin NN amplitudes.

The deuteron wave function is represented in a stand-
ard way:

Waip =

1 .
(u(r) + ——=w(r)S 12(f'§0'i,0'j)> ,

1
Vanr 242

where u(r) and w(r) are the S- and D-wave radial func-
tions, S,(#;0,,0;) =3(0;-#)(0o;-7)—0;-0; is the tensor
operator, and 107 is the spin operator of the ith nucleon.

For T-even P-even NN amplitudes, we use the fol-
lowing representation [19]:

M;i(q) = Ay +Cy(o;-1) + Cy(0; - )

+(Gy+Hy)(o;-@)(T;-q)
+(Gy - Hy)(o;-h)(0 ;- ). )

Here, the unit vectors k, g, correspond to the vectors

1
k=§(p+p’), q=p-p’, n=[p’ xp], (10)

where p and p’ are the momenta of the incident and
scattered nucleons, respectively, and the invariant amp-
litudes Ay,Cy,Cy,By,Gy,Hy (which correspond to pN
amplitudes with N =p for {ij} ={31},{42} and N=n for
{ij} = {32},{41}) depend on the momentum ¢ = |q|. To cal-
culate M;;(—q), we replace ¢ » —q, n — —n in Eq. (9). In
the laboratory frame traditionally used to derive scatter-
ing amplitudes in the Glauber model, the amplitudes Cy
and C}, are different.
The amplitudes (9) are normalized in such a way that

dO'l'j
dr

1

In turn, the amplitudes M of dd elastic scattering are re-
lated to the differential cross section as follows:

do 1 NN
— = —Tr(MM™). 12
-9 r( ) (12)

This relationship is consistent with the optical theorem
3).

Furthermore, we take the TVPC NN — NN transition
operator in the form [12]

tij = hyl(o-K)(0 ;- @) + (0 - ) (0 - K)
2
—g(o'i'a'j)(Q'k)]/mz
+evloixo]l- [qx Kl —7))./m’

+g;v(0'i_0-j)'i[qu][TiXTj]z/mza (13)

where m is the nucleon mass. In the calculations, we use
the TVPC NN amplitudes 7;; normalized in the same
manner as the 7-even P-even amplitudes (9) and related
to the amplitudes (13) as [12]

m
T,;= ——t, 14
! 4\/;kNN ! 19

where kyy is the nucleon momentum in the NN center-
of-mass frame. Considering TVPC interactions, the
products of NN amplitudes included in the operators of
normal and abnormal double scattering (7) take the form
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[(M;j(q) + T ([ Mu(—q) + Ti(—q)]
=M;(@QMyu(-q) + T;;(Tu(-q)
+ T (Mu(—q) + M (@ Tu(—q), (15)

where the first two terms correspond to the spin-depend-
ent 7-even P-even amplitude of dd scattering (the second
term can be neglected), and the last two correspond to the
T-odd P-even (TVPC) amplitude.

Let us separately consider the contributions of three
types of TVPC NN interactions.

i) The NN amplitude of the g’ type contributes only
to the charge-exchange process pn—np. In dd colli-
sions, a double scattering process is possible with two se-
quential (or simultaneous in the case of abnormal scatter-
ing) charge-exchange collisions: pn — np and np — pn.
The product of the corresponding amplitudes has a form
similar to Eq. (15), where NN amplitudes are charge-ex-
change ones. In this case, 7-even amplitudes are the same
for the processes pn — np and np — pn, whereas T-odd
amplitudes have an equal magnitude but an opposite sign
for these two processes. Therefore, the net contribution of
the g’-type amplitude to the TVPC signal becomes zero,
as in the case of pd scattering [15].

ii) The contribution of the g-type NN amplitude be-
comes zero for identical nucleons, owing to the isospin
factor (7;—7,), (see Eq. (13)). In this case, the operators
of normal (or abnormal) double scattering, considering
the decomposition (15), contain the sum of g-type pn and
np amplitudes multiplied by the same T-even pp (or pn)
amplitude. Because the g-type amplitudes for prn and np
elastic scattering have different signs owing to the same
isospin factor, the net g-type contribution to the TVPC
signal also tends to zero. This can be easily shown by ex-
plicitly writing the operators 0", 0’®, 0®® | and O’
and employing the symmetry of the deuteron wave func-
tions with respect to index permutations 1 « 2 and 3 < 4.

ii1) Thus, among the three types of TVPC NN interac-
tions, only the A-type amplitude contributes to the TVPC
signal in dd scattering. To calculate the respective contri-
bution, we substitute the expansion (15) with the A-type
TVPC NN amplitude into the operators (7) and then per-
form integration by the nucleon coordinates in the expres-
sions for double-scattering amplitudes (6). It is a straight-
forward but rather cumbersome procedure in the case of
spin NN amplitudes and the D-wave included in the deu-
teron wave functions. Finally, by calculating the spin
matrix elements (5), we find the TVPC amplitudes of dd
scattering g; (i=1,2). The detailed derivation of the 4-
type TVPC signal is given in the appendix.

As a result, we obtain the following expressions for
the amplitudes g; and g,:

)

6 = 5o [0 20+ Z@) @Iy @ (o) + Cole)
0

)

&= 5o [ 44 (204 Z@) @@ (C.la)+ Cfa). (16)
0

where the first term in square brackets refers to normal,
and the second term refers to abnormal double scattering.
In Eq. (16), we assume h, = h, = hy, which is justified in
the beginning of the next section. The quantities Z,, Z(q)
, and {(q) in Eq. (16) are the linear combinations of the
deuteron form factors:

1 3
Zy=50)-=SP(0)=1-=Pp,
2 2
1
2 =S"@)~ 555" (@)
L
V2
1
(@) =S5"(@+ 3556 @
1 V2

2 13
~ 55 @7 8Y @+ 550, ()

S+ V282 (g),

where Pp is the D-state probability in the deuteron.
Moreover, note that Z, = Z(0). If the D-wave contribu-
tion is neglected, both Z(g) and ¢(g) are reduced to a
purely S-wave form factor S E)O)(q), and Z, turns to unity.
The deuteron form factors arising in (17) are defined as
follows:

50(q) = / dri®(r) jo(gr),
0

S§(q) = / drw?(r) jo(qr),
0

)

(g =2 / dru(rw(r) j2(qr),

0

1 (o)
SP(p=-—2 / drw?(r) ja(gr),
V2 /

1
$P@ =3 [ ian, 18)
0

034108-4



Time-reversal invariance violation effect in dd scattering

Chin. Phys. C 49, 034108 (2025)

Note that the form factor S{’(g) is absent in the electro-
magnetic structure of the deuteron.

The TVPC signal is eventually found from the amp-
litudes g; and g, using the formulas (3)-(4) for a given
combination of polarizations of colliding deuterons.

III. NUMERICAL RESULTS

For numerical calculations, spin amplitudes of pp and
pn elastic scattering are required, that is, both T-even P-
even amplitudes from (9) and 7-odd P-even amplitudes
from (13). As shown in the previous section, the g and g’
type interactions do not contribute to the TVPC signal in
dd scattering. Therefore, we consider only the A-type in-
teraction. The numerical value of the constant in the re-
spective amplitude Ay (13) is unknown; therefore, it is
impossible to calculate the absolute value of the TVPC
signal, but it is possible to calculate its dependence on the
collision energy.

The amplitude iy dependence on the momentum ¢
can be given under the assumption that the A4-type NN in-
teraction is determined by the exchange of the 4,(1170)
meson with quantum numbers I°(J7¢) = 0~(1*") between
nucleons (see [15] and references therein). Under this as-
sumption, according to the studies [15, 20], we take the
following expression for the amplitude Ay:

.. 2GE )
hy = —igy, WFhNN(q ) (19)

where ¢, = G,/G, is the ratio of the coupling constant of
the h;-meson with a nucleon for the T-non-invariant in-
teraction (G,) to the corresponding constant of the T-in-
variant interaction (G,), and Fuyn(q?) = (A2—m32)/
(A% —q?) is the phenomenological monopole form factor
at the ANN vertex. The numerical parameters are taken
from Ref. [20]: m;, = 1.17 GeV, G, =4nx 1.56, and A =2
GeV, from the Bonn NN-interaction potential. At the
same time, owing to the isoscalar nature of this meson,
we have the equality of the amplitudes h,=h, =hy,
which is taken into account in the formulas (16) for the
dd TVPC amplitudes g; (i =1,2).

In the range of laboratory proton beam energies
0.1-1.2 GeV in pN scattering (corresponding to the inter-
val of the invariant mass of colliding nucleons
\VSpn =1.9-2.4 GeV), the T-even P-even amplitudes
Ay,--+,Hy are available in the SAID database [21], which
we use in the numerical calculations of the TVPC signal
at these energies. In the calculations at higher energies
Vswn 2 2.5 GeV, corresponding to the conditions of the
NICA SPD experiment, we employ the phenomenologic-
al models for the spin amplitudes of pN elastic scattering
available in the literature.

In the formulation of pp scattering models in the
high-energy region, the helicity amplitudes ¢, +¢s are

used, with the conventional notation (see [22]). The spin
amplitudes Ay, By, Cy, Cy, Gy , and Hy, defined in (9),
are related to the helicity amplitudes via the following re-
lations, which are valid at small momentum transfers and
high energies specific for the Glauber model (see [19]
and references therein):

Ay =(d1+¢3)/2, By=(d3—¢1)/2,
Cy=i¢s, Gy=¢2/2, Hy=¢4/2;

i
Cly=Cy+ %AN. (20)

Here, we use two different models for the helicity
amplitudes of pN elastic scattering. The first one [22] in-
volves the Regge parameterization of data on the pp dif-
ferential cross section and spin correlations Ay, Ayy in
the range of laboratory momenta 3 + 50 GeV/c. This mod-
el includes the contributions from four Regge trajectories,
, p, f», a, and the P pomeron exchange. As noted in
[22], in the Regge model, because of isospin symmetry
and relations due to G parity, the pp and pn scattering
amplitudes can be represented as the following linear
combinations of these five contributions:

¢(pp) = _¢w - ¢p + ¢f2 + ¢az + ¢P»

@1
¢(P”) = -, +¢p + ¢fz _¢a2 +¢p;

¢., 1s the contribution of the w Regge trajectory, etc. The

energy domain, in which Regge parameterization was

performed in [22], corresponds to the range of the pp in-

variant mass +/s,, =2.8-10 GeV.

The second model is based on the Regge-eikonal
model developed by Selyugin (see [23] and references
therein) and was coined the High Energy Generalized
Structure (HEGS) model by its author. This model con-
siders pp, pp , and pn elastic scattering at small angles
and the nucleon structure based on data on the general-
ized parton distributions of nucleons. The helicity amp-
litudes of NN elastic scattering obtained in this model al-
low us to describe the available experimental data on the
differential cross section and single-spin asymmetry
An(s,t) in pp scattering in the energy range +/s from 3.6
to 10 TeV with a minimal number of variable parameters
[24]. In both models, at the energies +fs,, >3 GeV con-
sidered in this study, the following approximate relation-
ships hold for the helicity amplitudes of pp elastic scat-
tering: ¢, = ¢3, ¢ =0,¢4 = 0.

When calculating the TVPC signal according to the
optical theorem, the Coulomb contributions are excluded
from pp amplitudes. The explanation for this is given in
[15, 25]. The reason is that the Coulomb interaction does
not violate 7 invariance and therefore cannot directly
contribute to the TVPC signal. Indeed, the spin structure
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of the transition operator for scattering on the deuteron at
zero angle is such that the spin-independent amplitude Ay
and the amplitudes By, Gy, and Hy, additively contain-
ing the Coulomb contribution, do not enter the expres-
sions for dd TVPC amplitudes (16). At the same time, the
Coulomb term enters the spin-flip amplitude Cj}, through
the amplitude Ay; however, Ay is multiplied by the trans-
ferred momentum ¢ (see Eq. (20)), which compensates
for the Coulomb singularity at ¢ — 0 when integrating
over g in Eq. (16). Numerically, the contribution of the
Coulomb interaction to the TVPC signal is negligible
[15].

The figures below show the results of our calcula-
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Fig. 1. (color online) Energy dependence of TVPC signals

(cross sections) corresponding to the amplitudes g; (a) and g
(b) in dd scattering for the spin pN amplitudes taken from the
SAID database [21]. (a) g1: S-wave (dotted line), D-wave
(thin dashed line), S-D interference (dash-dot-dotted line), and
total S + D (dash-dotted line). (b) g»: S-wave (dashed line), D-
wave (thin dashed line), S-D interference (dash-dash-dotted
line), and total S + D (solid line). The invariant mass of the in-
teracting NN pair (one nucleon from the beam and another
from the target) is shown along the X-axis. On both panels, the
straight thin dotted line shows the zero level for easy visualiz-
ation.

tions of the TVPC signal in dd scattering using the SAID
database (Fig. 1) and two phenomenological models for
spin NN amplitudes: Regge parameterization (Fig. 2) and
the HEGS model (Fig. 3) in the energy intervals corres-
ponding to these parameterizations.
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Fig. 2. (color online) Energy dependence of TVPC signals

corresponding to g; and g, amplitudes in dd scattering for the
spin pN amplitudes taken from Ref. [22]. The notations are
the same as in Fig. 1, panels (a) and (b).
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As shown in Fig. 1 , the maximum of the signal is
located in the energy range 1.95-2.05 GeV, and its abso-
lute value unevenly decreases with further increase in
collision energy and demonstrates a second local maxim-
um at ~ 2.2 GeV in ope and a plateau in o\ypc.

Note that the S-wave of the deuteron dominates in
both amplitudes g; and g, in the entire range of the in-
variant mass +/s,, = 1.9-2.4 GeV covered by the SAID
database, whereas the contribution of the pure D-wave is
negligible. The S —D interference is essential and de-
structive for the g, amplitude but constructive for the g,
amplitude. The numerical difference between the amp-
litudes g, and g, occurs because one of them (g,) is cal-
culated in the rest frame of a tensor-polarized (P?) deu-
teron target d,, on which a vector-polarized (P{") deuter-
on beam d; scatters, and the other (g;) is calculated in a
collision when a tensor-polarized (P!))) deuteron beam d,
falls on a vector-polarized (P?) target d,.

The results obtained using the Regge parameteriza-
tion of pN amplitudes from [22] are shown in Fig. 2.
With this pN input, the amplitudes g; and g, are numer-
ically similar to each other for the S- and D-wave contri-
butions and for the total S + D calculation. The D wave is
negligible and the S — D interference is destructive for
both the g; and g, amplitudes. Note that the maximum of
the TVPC signal is obtained at the minimal energy
sy =2.666 GeV from the range considered, and the
signal decreases monotonically with an increase in the
collision energy +/syw.

With the HEGS parameterization [23, 24], at ener-
gies +/syy ~5 GeV, the TVPC signal is obtained to be
approximately an order of magnitude lower than that with
the parameterization [22] and decreases with increasing
energy (see Fig. 3). As for the parameterization from
Refs. [21] and [22], when using the HEGS model, the
contribution of the deuteron D wave to the TVPC signal
is negligible in magnitude compared to the S-wave contri-
bution, and S — D interference is significant. Furthermore,
as for the parameterization from Ref. [21], the S — D in-
terference is destructive for the g; amplitude and con-
structive for the g, amplitude.

IV. CONCLUSION

In this study, the TVPC signal is calculated (up to an
unknown constant) for dd scattering. The calculation is
based on the Glauber diffraction theory with full consid-
eration of the spin dependence of the NN scattering amp-
litudes. We consider the contributions of the single and
double scattering mechanisms dominating in the amp-
litude of the elastic process dd — dd in the region of the
first diffraction maximum, which gives the main contri-
bution to the TVPC signal [14]. For the first time, the D-
component of the deuteron wave function is considered in
the calculation of this effect together with the S-compon-

ent previously accounted for in [14]. The S-D interfer-
ence is found to be significant in the TVPC signal.

The TVPC scattering amplitude is considerably smal-
ler in magnitude than the corresponding 7-even hadron
amplitude. However, owing to the different symmetry
properties of these amplitudes, the 7-odd amplitude of
elastic scattering does not interfere with the correspond-
ing T-even amplitude. Therefore, the typical accuracy of
a Glauber theory calculation of the total cross section is
similar to that of the TVPC signal calculation. To a large
extent, this accuracy is determined by our knowledge of
NN elastic scattering amplitudes, which are included in
the TVPC signal as multipliers.

Here, for the pN amplitudes, we use the database [21]
at lower energies as well as an available parameterization
[22] and a phenomenological model [24] at higher ener-
gies. The energy ranges of pN collisions correspond to
the intervals of the invariant mass of the NN pair
Vswy = 1.9-2.4 GeV (the laboratory kinetic energy of the
proton 7;=0.1-1.2 GeV) and +fsyy =2.5-25 GeV (the
laboratory momentum of the proton beam P;=2.2-332
GeV/e.)

The maximum value of the TVPC signal corresponds
to the invariant mass +/syy ~ 1.95-2.05 GeV. At the col-
lision energies corresponding to the conditions of the
SPD NICA experiment, +/syy 2 2.5 GeV, the magnitude
of the signal essentially depends on the model used for
the T-even P-even spin amplitudes of pN scattering and
decreases with increasing energy, under the assumption
that the TVPC interaction constant does not depend on
energy. This is consistent with the general trend of spin
phenomena, that is, the decrease in the T-even P-even
spin effect in magnitude with increasing energy.
However, at the energies of the NICA complex corres-
ponding to the conditions of the early baryon Universe,
the possible growth of an unknown TVPC constant is not
excluded.

We find that only one of the three types of the TVPC
NN interaction that do not disappear on the mass shell,
i.e., hy, gives a non-zero contribution to the TVPC signal,
whereas the contributions of other two (gy and gj) van-
ish owing to their specific symmetry properties. There-
fore, the search for a TVPC signal in dd scattering dif-
fers from the previously considered processes of pd and
3Hed scattering, where two types of the TVPC NN inter-
actions, hy and gy, give non-zero contributions [15—17].
This is one of the main results of this study, which is im-
portant for extracting the unknown constant of the TVPC
interaction from the data.
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APPENDIX: DERIVATION FOR h-type TVPC
AMPLITUDES

To find the operators of normal and abnormal double
scattering (7) in the case of the TVPC NN interaction of
the 4 type, we use expression (15) and omit the linear
terms in q (or fi), which become zero when integrated
over the direction of the vector q in (6). Then, consider-
ing the symmetry of the deuteron wave functions with re-
spect to permutation of the nucleon indices, the spin de-
pendence of the operators (7) can be represented as
(henceforth, by O®, O®" | etc., we refer to operators for
the A-type TVPC interaction)

0 (q) = o -V, (073, 074),
0'C(q) = 073- V, (01, 02),
0%(q) = oy - V(073,04),

0'%(q) = o73- Vi (01, 02), (A1)
where
V. (o3,04) = = 211(h,C,, + h,C))
X [k(o3-Q)(074-1) + § (073 K) (04 D)),
Vi (01,07) = - ZH(hpC;l + hnC]’,)
x [k(o1-@)(02-) + (oK) (o2R)]  (A2)
q
Mm=—2—
and Amm’ The vector operators V,(o3,04) and

V/(01,0,) are similar to V,(03,04) and V/(0,07,), re-
spectively, with the replacement 4, < h,,.

Such a representation allows us to easily integrate
over the coordinates of nucleons inside one of the collid-
ing deuterons. Thus, after integrating the normal double-
scattering operator O®” over the coordinates of nucleons
in the target, we obtain the operator

a(q) = / P81, @0 (@) Wa2)(r)

= ZOS(z) : Vn(0-3, 0-4)’ (A3)
where S@ is the spin operator of the target deuteron, and
the factor Z, is defined in (17). For 0’®", we obtain a
similar expression after integration by the coordinates of
nucleons in the beam:

QO (q) = / d3plP;(34)(P)OA/(zn)((l)‘Pd(M)(p)

= ZOS(I) . V/n(o-ls 0-2)9 (A4)

where SU is the spin operator of the incident deuteron.

In the same manner, the abnormal double-scattering
operator O?? is integrated by d*r (with the factor eldr),
and 0'®® by d’p (with the factor e7%), and we obtain the
following expressions:

Q(Z“)(q) — /dSrT;(]2)(r)eiqr0(20)(q)‘{*’d(lz)(r)

=15"(9) - §s53><q>1s<2> Vul(073.0)
1 1
SOg)— —§W
BRI

XSAIZ((AI;S(Z)aVa(O-,% 0’4))’ (AS)

C(q) = / & pW a4 (0)e %O (@)Y 430 ()
1
= 155" (@ = 555" @18" - Vi(o1,0)

1o, L
+\/§[Sz (@) \/5

xS 12((1;5(1),";(0'1 ,02)),

$5(@)]

(A6)

where the deuteron form factors S fj)(q) are defined in Eq.
(18).

Next, note that in a calculation of the TVPC signal,
only non-diagonal spin matrix elements (5) are needed.
Therefore, the components of the vectors V, and V/ par-
allel to k (see the definition (A.2) and the text below it)
do not contribute to the TVPC signal (with the standard
choice of k||0z). For the component of V’, parallel to 4
(we denote it as V/7), we have

$12(g: 8. V1) =28V Vi, (A7)
and a similar relation is fulfilled for the component V¢
(with the replacement S’ — S@). We denote the parts of
the operators (A.5) and (A.6), including only the compon-
ents V¢ and V77, via Q%9(q) and Q*(q), respectively.
Considering the relations (A.7), we obtain expressions for
them similar to (A.3) and (A.4), respectively:

Q9(q) = Zg)S? - Vi(os,04), (A8)
2 () = Z(@)8" - Vit ), (A9

where the factor Z(g) is defined in (17).
We now integrate by the coordinates of the nucleons
inside the second deuteron. To do this, it is convenient to
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represent the vector V/(o,07) (see Eq. (A.2)) as

V;,(0'1,0'2) =W,{;}0'1i0'2j, (A10)

where

~

Wi = <211(h,C, +h,C)[k i, +a k). (All)
Similarly, V,(03,04) = W}0304;, where W}, has the
same form (A.11), but with the replacement of Cj — Cy.

iqr A2n 1
/d3’"\1’§(12)(r)elqr9 (@)W a2 (r) = Zo( {S 6 (q)— 5562)(@

L3
22

where Wi6,; = W}§,q; = 0 is taken into account (see Eq.
(A.11)). The 1ntegra1 in Eq. (A.12) is easy to calculate if
represented as

0 0 elar 2(r)A @ «@
6q, 6q i @ r47T}’2 $(BS7.87)
a 0 / J2(qr) & 2
drw? S 12(q;S?,8? Al3
6q, aq] nN=— )y 2(q ) (A13)

where $1,(q;S®,8?) =3(8?-q)> - 24>. After calculating
the integral, we obtain four terms proportional to sym-
metric tensors, &, i, S4;+8P4; , and {S?.S'?}. The
first two terms are vanishing when multiplied by the vec-
tor W7, and the third becomes zero when multiplied by
its §-component, which is involved in calculating the
TVPC signal (when taking non-diagonal spin matrix ele-
ments from the product S- W;7). Thus, the contribution
to the TVPC signal is given only by a term proportional
to {5, 5-2)}, which is obtained by differentiating the op-
erator S 1,(q;S?,8?) in (A.13). By rewriting % via a
linear combination of spherical Bessel functions
Ju(gr),n =0,2,4, we obtain the following contribution to
the TVPC signal from the last term in Eq. (A.12):

3 6\/_

18
SV WiS .S 555 @) - CACTTCI S<2>(q)}

(Al14)

where the form factor §{”(g) is defined in (18).

iqr
[S9(q) + S ()] 8- WIHISP x 41:,[S® x 1,} +38-W! / d3r4€ﬂr2

In turn, for the vectors V, and V’,, we introduce a simil-
ar representation with Wy, and W, respectively, which
differ from W}, and W} by replacing A, < h, only. Such
arepresentation allows integration by the nucleon co-
ordinates inside the second deuteron in the same manner
as done for pd scattering (for example, using formula
(12) from Ref. [26]).

Thus, by integrating the operator '**(q) (A.4) with
the factor !9 over the nucleon coordinates inside the tar-
get deuteron and employing the definition of the deuter-
on form factors (18), we obtain

S5V @+ s@(q)}S“)-W:;?{S?%S?}

2xf V2

WS n(ES SO0, ).

(A12)

When integrating the operator Q'(q) with the factor
e'% by the coordinates of the nucleons in the incident
deuteron, we obtain an expression similar to (A.12), with
the replacements W} — Wy, and S <> 8®. For abnor-
mal scattering, we also obtam similar express10ns (with
the replacement Z, — Z(q)) when integrating ©22'(q) with
the factor e over the nucleon coordinates in the beam,
and €/>(q) with the factor e over the nucleon coordin-
ates in the target.

Now, to obtain the amplitude M1vpc(0) in the double-
scattering approximation, we take the sum of all expres-
sions of the form (A.12) with substitution of (A.14) for
normal and abnormal scattering, integrate by the mo-

1
mentum ¢, and multiply by a factor G (see Eq. (6)).

From the resulting operator, we calculate the spin matrix
elements (5) necessary to find the TVPC amplitudes g;,
i = 1,2. To do this, we use the following relations:

<-1,118V - {S?-1,8?-k}/0,0 >

= —<—1,118"-§{IS® x 4] -, [S? x §]-Kk}[0,0 >= —%,

< 1,08 ¢{S?®-1,8?-k}|0,1 >

= — < 1,087 §{[S? x ] -, [S? x ] - k)0, 1 >= %

(A15)

When replacing S < S@, both matrix elements in

1
(A.15) are found to be the same and equal to 5

As a result, we obtain formulas (16).

034108-9



M. N. Platonova, Yu. N. Uzikov

Chin. Phys. C 49, 034108 (2025)

References

[10]

[11]
[12]

[13]

G. Luders, Kgl. Danske Vidensk. Selsk. Mat.-Fys. Medd.
28,1 (1954)

W. Pauli, in Niels Bohr and the Development of Physics
(Pergamon Press, London), 1955

A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967)

A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35
(1999), arXiv: hep-ph/9901362

T. Chupp, P. Fierlinger, M. Ramsey-Musolf et al., Rev.
Mod. Phys. 91, 015001 (2019), arXiv: 1710.02504

L. B. Okun, Yad. Fiz. 1, 938 (1965)

V. P. Gudkov, Phys. Rept. 212, 77 (1992)

S. N. Vergeles, N. N. Nikolaev, Y. N. Obukhov et al., Phys.
Usp. 66, 109 (2023), arXiv: 2204.00427

A. Kurylov, G. C. McLaughlin, and M. J. Ramsey-Musolf,
Phys. Rev. D 63, 076007 (2001), arXiv: hep-ph/0011185

A. L. Barabanov, Yad. Fiz. 44, 1163 (1986)

P. Lenisa et al., EPJ Tech. Instrum. 6, 2 (2019)

A. Temerbayev and Y. Uzikov, Phys. Atom. Nucl. 78, 35
(2015)

N. Nikolaev, F. Rathmann, A. Silenko et al., Phys. Lett. B
811, 135983 (2020)

[14]
[15]
[16]
[17]

(18]
[19]

[20]
(21]
[22]
(23]
[24]
[25]

[26]

034108-10

Y. Uzikov, M. Platonova, A. Kornev et al., Int. Jour. Mod.
Phys. E https://doi.org/10.1142/S0218301324410039 (2024)
Y. N. Uzikov and A. Temerbayev, Phys. Rev. C 92, 014002
(2015), arXiv: 1506.08303

Y. N. Uzikov and J. Haidenbauer, Phys. Rev. C 94, 035501
(2016), arXiv: 1607.04409

Y. N. Uzikov and M. N. Platonova, JETP Lett. 118, 785
(2023), arXiv: 2311.10841

G. Alberi and G. Goggi, Phys. Rept. 74, 1 (1981)

M. N. Platonova and V. I. Kukulin, Phys. Rev. C 81,
014004 (2010), [Erratum: Phys. Rev. C 94, 069902 (2016)]
M. Beyer, Nucl. Phys. A 560, 895 (1993), arXiv: nucl-
th/9302002

R. A. Arndt, W. J. Briscoe, 1. I. Strakovsky et al., Phys.
Rev. C 76, 025209 (2007), arXiv: 0706.2195

A. Sibirtsev, J. Haidenbauer, H. W. Hammer et al., Eur.
Phys. J. A 45, 357 (2010), arXiv: 0911.4637

O. Selyugin, Symmetry 13, 164 (2021)

0. V. Selyug, arXiv: 2407.01311

Y.-H. Song, R. Lazauskas, and V. Gudkov, Phys. Rev. C
93, 065501 (2016), arXiv: 1602.06837

M. N. Platonova and V. I. Kukulin, Phys. Atom. Nucl. 73,
86 (2010)


https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://doi.org/10.1146/annurev.nucl.49.1.35
https://arxiv.org/abs/9901362
https://arxiv.org/abs/9901362
https://arxiv.org/abs/9901362
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/RevModPhys.91.015001
https://arxiv.org/abs/1710.02504
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.1016/0370-1573(92)90121-F
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://doi.org/10.3367/UFNe.2021.09.039074
https://arxiv.org/abs/2204.00427
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://doi.org/10.1103/PhysRevD.63.076007
https://arxiv.org/abs/0011185
https://arxiv.org/abs/0011185
https://arxiv.org/abs/0011185
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1134/S1063778815010184
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1016/j.physletb.2020.135983
https://doi.org/10.1142/S0218301324410039
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://doi.org/10.1103/PhysRevC.92.014002
https://arxiv.org/abs/1506.08303
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://doi.org/10.1103/PhysRevC.94.035501
https://arxiv.org/abs/1607.04409
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://doi.org/10.1134/S0021364023603044
https://arxiv.org/abs/2311.10841
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1016/0370-1573(81)90019-3
https://doi.org/10.1103/PhysRevC.81.014004
https://doi.org/10.1103/PhysRevC.81.014004
https://doi.org/10.1103/PhysRevC.81.014004
https://doi.org/10.1103/PhysRevC.81.014004
https://doi.org/10.1103/PhysRevC.81.014004
https://doi.org/10.1103/PhysRevC.94.069902
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://doi.org/10.1016/0375-9474(93)90137-M
https://arxiv.org/abs/9302002
https://arxiv.org/abs/9302002
https://arxiv.org/abs/9302002
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://doi.org/10.1103/PhysRevC.76.025209
https://arxiv.org/abs/0706.2195
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://doi.org/10.1140/epja/i2010-11014-1
https://arxiv.org/abs/0911.4637
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://doi.org/10.3390/sym13020164
https://arxiv.org/abs/2407.01311
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://doi.org/10.1103/PhysRevC.93.065501
https://arxiv.org/abs/1602.06837
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114
https://doi.org/10.1134/S1063778810010114

	I INTRODUCTION
	IICALCULATIONOFTHETVPCSIGNALIN\bmddSCATTERING
	III NUMERICAL RESULTS
	IV CONCLUSION
	ACKNOWLEDGMENTS
	APPENDIX: DERIVATION FOR h-type TVPC AMPLITUDES
	References

