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Abstract: We investigate the soft behavior of the tree-level Rutherford scattering process. We consider two types
of  Rutherford  scattering  processes:  One  in  which  a  low-energy  massless  point-like  projectile  (say,  a  spin-  or
spin-  electron) hits a static massive composite target particle carrying various spins (up to spin- ), and one where a
slowly-moving light projectile hits a heavy static composite target. For the first type, the unpolarized cross sections
in the laboratory frame are found to exhibit universal forms in the first two orders of  expansion yet differ at the
next-to-next-to-leading order (though some terms at this order still remain universal or depend on the target spin in a
definite manner). For the second type, at the lowest order in electron velocity expansion, through all orders in ,
the unpolarized cross section is universal (also not sensitive to the projectile spin). The universality partially breaks
down at relative order- ,  though some terms at this order are still  universal or depend on the target spin in a
specific manner. We also employ the effective field theory approach to reproduce the soft behavior of the differen-
tial cross sections for when the target particle is a composite spin-  fermion.
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I.  INTRODUCTION

1909 1911

Rutherford scattering is one of the most classic exper-
iments  in  the  history  of  physics.  Originally,  Geiger  and
Marsden  bombarded  a  gold  foil  with  a  nonrelativistic α
particle  beam in [1].  Shortly  after,  in , Ruther-
ford  introduced  the  revolutionary  concept  of  the  atomic
nucleus and successfully explained the unexpected large-
angle  rebouncing  events  by  simply  exploiting  classical
mechanics[2]. Without exaggeration, the Rutherford scat-
tering experiment heralded the advent of nuclear physics
and quantum mechanics.
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In the late s, a new form of the Rutherford scat-
tering experiment  conducted  by  McAllister  and  Hof-
stadter,  that  is,  bombarding  proton  and  α  targets  with  a

 MeV electron beam, played a pivotal role in unravel-
ing the nuclear structure[3, 4]. Through  elastic scatter-
ing  experiments,  the  electromagnetic  form  factors  (FFs)
of  the  proton  have  been  measured  over  a  large  range  of

 (for comprehensive review see [5, 6]). From their pro-
files at the lower  end, one can infer the proton's gross
features,  such  as  the  charge  radius  and  magnetic  dipole

ep

[7-9].  It  is  interesting to  note  the  decade-long puzzle  re-
garding  the  proton's  charge  radius  [10-12],  that  is,  the
five  standard  discrepancy  between  the  value  extracted
from  elastic  scattering/ordinary hydrogen spectra  and
from muonic hydrogen Lamb shift measurement [13, 14].

1960

To  infer  the  gross  features  of  a  composite  nucleus
from elastic Rutherford scattering, the exchanged photon
necessarily  carries  a  long  wavelength  and  hence  bears
low resolution.  To  this  purpose,  it  is  helpful  to  concen-
trate on the low-energy Rutherford scattering process ex-
emplified by the pioneering Hofstadter's experiment[3]. It
is  worth  mentioning  that  another  basic  QED  process,
Compton scattering, in which a photon beam shines on a
composite  spinning  target  particle,  can  also  be  used  to
probe  the  internal  structure  of  the  atomic  nucleus  [15].
The  angular  distribution  of  Compton  scattering  in  the
laboratory frame  in  the  soft  photon  limit  has  been  thor-
oughly  studied  by  Gell-Mann  and  Low  in  the [16,
17], which turns out to possess some simple and univer-
sal structures. Based on the intuitive multipole expansion
picture,  one  naturally  anticipates  that  the  soft  limit  of
Rutherford  scattering  may  also  exhibit  some  universal

        Received 2 June 2023; Accepted 5 June 2023; Published online 6 June 2023
      * Supported in part by the National Natural Science Foundation of China (11925506, 12475090).
     † E-mail: jiay@ihep.ac.cn
     ‡ E-mail: zhangjiayue@ihep.ac.cn

Chinese Physics C    Vol. 49, No. 3 (2025) 033102

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd

033102-1

http://orcid.org/0000-0001-5594-4816


and recognizable patterns.
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The goal of this study is to comprehensively investig-
ate the soft behavior of two typical categories of Ruther-
ford  scattering,  that  is,  processes  in  which  a  low-energy
massless or a slowly-moving light projectile hits a heavy,
static, composite  spinning  target.  For  simplicity,  we  as-
sume the  projectile  to  be  a  structureless  point  particle,  a
spin-  or  spin-  electron.  For  concreteness,  we  choose
the spin of the composite target  particle to range from 
to . We find in both cases that the differential cross sec-
tions  of  the  Rutherford  scattering  processes  possess  the
universal  form  in  the  first  two  terms  upon  heavy  target
mass  expansion  yet  differ  at  the  next-to-next-to-leading
order (NNLO) (depending on the target spin). We conjec-
ture  that  this  pattern  may  persist  for  a  heavy  target
particle with arbitrary spin.
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The rest of the paper is structured as follows: In Sec-
tion II, we present the expression of the tree-level Ruther-
ford  scattering  amplitude  involving  a  heavy  composite
spinning  target  particle  and  specify  the  parameterization
of  the  electromagnetic  FFs  of  various  target  particles.
Section  III  is  the  main  body  of  the  paper,  where  we
present  the  soft  behavior  of  two  types  of  unpolarized
Rutherford  scattering  cross  sections  up  to  NNLO  in
heavy  target  mass  expansion,  assuming  the  projectile  to
be a point spin-  electron. For the first type of Ruther-
ford scattering, the first two terms in the differential cross
section  upon  heavy  target  mass  expansion  are  universal,
and the NNLO term starts to exhibit spin-dependence, but
with an interesting pattern. For the second type of Ruther-
ford scattering, we observe that the differential cross sec-
tion is universal at the lowest order in the velocity of the
incident  slowly-moving  projectile,  but  to  all  orders  in

expansion.  At  the  next-to-leading  order  (NLO)  in
projectile  velocity,  we  demonstrate  that  the  first  two
terms  in  heavy  target  mass  expansion  remain  universal,
and the NNLO term (  term) exhibits some inter-
esting patterns  of  target  spin  dependence.  In  Section IV,
for both types of Rutherford scattering, we attempt to ap-
ply  heavy  particle  effective  theory  (HPET)  as  well  as
nonrelativistic QED (NRQED) to reproduce the observed
soft  behaviors,  assuming  the  target  to  be  a  composite
spin-  fermion. We summarize the study in Section V.
In  the  appendix,  we  demonstrate  that  the  observed  soft
pattern of  Rutherford  scattering  still  holds  once  the  pro-
jectile is replaced by a point-like spinless electron. 

II.  AMPLITUDE OF RUTHERFORD SCATTER-
ING INVOLVING A HEAVY COMPOSITE

TARGET PARTICLE

e(k)N(p)→ e(k′)N(p′)
To be specific, let us consider the Rutherford scatter-

ing  process ,  where N represents  a
heavy target particle. At the tree-level, Rutherford scatter-
ing is induced by a single photon t-channel exchange, as
depicted in Fig. 1. The scattering amplitude can be writ-
ten as 

M = e2gµν
q2
⟨e− (k′) |Jµ|e− (k)⟩⟨N (p′,λ′) |Jν|N (p,λ)⟩, (1)

Jµ q = k− k′

λ,λ′

where  denotes  the  electromagnetic  current, 
represents  the  momentum  exchange  due  to  the  virtual
photon,  and  denote  the  polarization  indices  for  the
massive spinning  target  particle.  For  simplicity,  we  sup-
press the spin index of the electron.
 
  

eN→ eN

Fig. 1.    Tree-level Feynman diagram of the Rutherford scat-
tering process . The double line represents the heavy
target  particle,  and the  black dot  denotes  the  electromagnetic
vertex given in (2).

 
The electromagnetic  transition  matrix  element  in-

volving the  nucleus  in  (1)  is  generally  a  nonperturbative
object  because  the  heavy  target N is  assumed  to  be  any
massive composite  particle.  However,  this  matrix  ele-
ment can be generally decomposed into a linear combina-
tion  of  independent  electromagnetic  FFs  according  to
Lorentz group representation [18]:

⟨N (p′,λ′) |Jµ|N (p,λ)⟩s=0 = 2PµF1,0

Å
q2

M2

ã
, (2a)

 

⟨N (p′,λ′) |Jµ|N (p,λ)⟩s= 1
2
= ū(p′,λ′)

ï
2PµF1,0

Å
q2

M2

ã
+ iσµνqνF2,0

Å
q2

M2

ãò
u(p,λ), (2b)
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⟨N (p′,λ′) |Jµ|N (p,λ)⟩s=1 =−ε∗α′ (p′,λ′)
ß

2Pµ

ï
gα
′αF1,0

Å
q2

M2

ã
− qα

′
qα

2M2
F1,1

Å
q2

M2

ãò
−
(
gµα

′
qα−gµαqα

′)
F2,0

Å
q2

M2

ã™
εα(p,λ), (2c)

 

⟨N (p′,λ′) |Jµ|N (p,λ)⟩s= 3
2
=− ūα′ (p′,λ′)

ß
2Pµ

ï
gα
′αF1,0

Å
q2

M2

ã
− qα

′
qα

2M2
F1,1

Å
q2

M2

ãò
+ iσµνqν

ï
gα
′αF2,0

Å
q2

M2

ã
− qα

′
qα

2M2
F2,1

Å
q2

M2

ãò™
uα(p,λ), (2d)

 

⟨N (p′,λ′) |Jµ|N (p,λ)⟩s=2 =ε
∗
α′1α

′
2
(p′,λ′)

ß
2Pµ

ï
gα
′
1α1 gα

′
2α2 F1,0

Å
q2

M2

ã
− qα

′
1 qα1

2M2
gα
′
2α2 F1,1

Å
q2

M2

ã
+

qα
′
1 qα1

2M2

qα
′
2 qα2

2M2
F1,2

Å
q2

M2

ãò
−
(
gµα

′
2 qα2 −gµα2 qα

′
2
)

×
ï

gα
′
1α1 F2,0

Å
q2

M2

ã
− qα

′
1 qα1

2M2
F2,1

Å
q2

M2

ãò™
εα1α2 (p,λ). (2e)

P = (p+ p′)/2

εµ uµ εαβ

1/2 1 3/2 2

2s+1

The various electromagnetic FFs are normalized to be
dimensionless.  is  the  average  momentum
of  the  target  particle,  and M is  the  mass  of  the  target
particle. u, , ,  and  denote  the  wave  function  for
the  spin- , , ,  and  particles,  respectively.  Only
keeping the Lorentz structures that obey the current con-
servation, we find that the number of independent electro-
magnetic FFs is  for the target particle with spin s.
Note that the decomposition of the electromagnetic trans-
ition matrix  element  involving  a  charged  particle  carry-
ing various spins has been widely studied [19-21].

F1,0(0) = Z

F1,0(0)+F1,1(0) F2,0(0) F2,0(0)+F2,1(0)

e
2M

e
M2

e
2M3

⟨r2
p⟩ =

3
2M2

[−F1,0(0)+4F′1,0(0)+F2,0(0)]

The  electromagnetic  FFs  in  (2)  encode  the  internal
structure  of  the  composite  target  particle.  In  principle,
they can be extracted from experiments or computed us-
ing nonperturbative  theoretical  tools.  Although  the  con-
crete profiles  of  various  FFs  depend  on  the  specific  tar-
get particle,  their  values  near  the  zero  momentum trans-
fer  characterize  the  electromagnetic  multipole  moments
of the composite target particle. For example, 
denotes  the  total  electric  charge  of  the  target  particle  in
units of e. , , and  are
the electric  quadrupole  moment,  magnetic  dipole  mo-
ment,  and  magnetic  octupole  moment  of  the  composite
target  particle,  in  units  of , ,  and , respect-
ively[22]. The charge  radius  of  a  proton can also  be  ex-

pressed  as 1).  It  is
worth  noting  that  the  commonly  used  electromagnetic
FFs  of  the  proton  are  the  Sachs  FFs[23, 24],  which  are
defined as
 

GE

Å
q2

M2

ã
=

Å
1− q2

4M2

ã
F1,0

Å
q2

M2

ã
+

q2

4M2
F2,0

Å
q2

M2

ã
,

(3a)
 

GM

Å
q2

M2

ã
= F2,0

Å
q2

M2

ã
. (3b)

⟨r2
p⟩ =

6
M2

G′E(0)The proton charge radius is defined by .
 

III.  LOW-ENERGY RUTHERFORD SCATTER-
ING IN HEAVY TARGET MASS EXPANSION

Squaring  amplitude  (1),  averaging  over  spins  in  the
initial state, and summing over the polarizations in the fi-
nal states,  we  can  straightforwardly  obtain  the  unpolar-
ized differential cross sections of Rutherford scattering in
the laboratory frame for various target particle species. In
deriving  the  unpolarized  cross  sections,  the  following
spin sum relations are useful:
 

∑
λ

u(p,λ)ū(p,λ) =
̸p+M
2M

, (4a)

 ∑
λ

εα(p,λ)ε∗α′ (p,λ) = ηαα′ , (4b)

 ∑
λ

uα(p,λ)ūα′ (p,λ)
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= − ̸p+M
2M

Å
gαα′−

1
3
γαγα′ −

2pαpα′
3M2

+
γα′ pα−γα′ pα

3M

ã
, (4c)

 ∑
λ

εα1α2 (p,λ)ε∗α′1α′2 (p,λ)

=ηα1α
′
1
ηα2α

′
2
+ηα1α

′
2
ηα2α

′
1
− 2

3
ηα1α2ηα′1α

′
2
, (4d)

ηαβ ≡ −gαβ+
pαpβ
M2

ū(p,r)u(p, s) = δrs

with . Note the Dirac spinor wave func-
tion is normalized as . 

A.    Massless spin-1/2 projectile
ep

|k| ≪ M

We first consider the  elastic scattering experiment,
with the famous Hofstadter's experiment as the prototype
[3]. In such cases, the incident electron is treated as mass-
less,  and  we  are  concerned  with  the  low-energy  limit

.

pµ = (M,0)

We  focus  on  Rutherford  scattering  in  the  laboratory
frame,  with  the  four-momentum  of  the  target  particle  in
the  initial  state  signified by . The correspond-
ing differential unpolarized cross section is defined by 

dσ
dcosθ

=
1

2|k| ·
1

2M
· k′2

8π|k|M

(
1
2

1
2s+1

∑
spins

|M|2
)
, (5)

|k′| |k| cosθ
where θ denotes the polar angle between the incident and
reflected electron,  and  is  a  function of , ,  and
M: 

|k′| = |k|

1+
|k|
M

(1− cosθ)
. (6)

The full expressions of the unpolarized cross sections
are generally lengthy and appear cumbersome, and there-
fore it is difficult to recognize any clear pattern regarding
the dependence  on  the  heavy  target  particle  spin.  Hope-
fully, once heavy target mass expansion is conducted, the
soft behavior of Rutherford scattering will become trans-
parent and we may readily identify a simple pattern.

k′2/k2

1/M

After  expanding  both  the  squared  amplitude  and
phase space measure (the factor ) in the (5) powers
of , the  differential  Rutherford  scattering  cross  sec-
tions become considerably simpler. We find that the first
two  orders  in  heavy  target  expansion  are  universal,  for
example, independent of the heavy target spin, 

dσ
dcosθ

=
πα2Z2 cos2 θ

2

2k2 sin4
Å
θ

2

ã − πα2Z2 cos2 θ

2

M|k|sin2
Å
θ

2

ã +OÅ 1
M2

ã
. (7)

F1,0 = ZFor clarity, we substitute . The result is intuit-
ively clear: In the soft limit, the long wavelength photon
can  only  feel  the  total  charge  of  the  composite  target
particle  and is  insensitive to  any further  details  about  its
internal structure.

In contrast, the NNLO terms in heavy target mass ex-
pansion vary with different heavy target particles:Å

dσ
dcosθ

ãs

NNLO
=− 4πα2

M2 sin2 θ

2

ß
Θ

Å
s− 1

2

ã
s+1
48s

F2
2,0 (cosθ−3)+

1
4

cos2 θ

2

ï
4F′1,0Z−Θ (s−1)

2
3

F1,1Z

+Θ

Å
s− 1

2

ã
5− (−1)2s

6
F2,0Z+Z2 cosθ− 1

3
(⌈s⌉+ s+3)Z2

ò™
,

Å
s = 0,

1
2
,1,

3
2
,2
ã

(8)

Θ(s) Θ(0) = 1
⌈s⌉

0
F′1,0Z Z2 cosθ F1,1Z

cos2(θ/2)
F′1,0Z Z2 cosθ

F2
1,0(q2/M2)

F2,0Z

1
2/3

where  is  the Heaviside step function with ,
and  denotes the ceiling function mapping s to the least
integer greater  than or equal  to s.  For notational  brevity,
we  neglect  the  argument  in  various  FFs.  We  observe
that  the , ,  and  terms  with  a  prefactor

 are  still  universal,  that  is,  independent  of  the
target  spin.  In fact,  the  and  terms have the
same origin of the leading order (LO) and NLO cross sec-
tions,  which  correspond  to  different  terms  in  the  Taylor
expansion  of  in  the  squared  LO  amplitude
and  phase  space  measure.  The  coefficient  of  the 
term  seems  to  reflect  the  spin-statistic  characteristic  of
the  target  particle.  For  fermions,  the  coefficient  is ,
whereas for bosons, it is .

F2
2,0(cosθ−3)Although  the  coefficients  of  inside  the

1+ s
48s s = 1/2,1,3/2,2

bracket depend on the target particle spin s, they seem to
fit  into the expression  (for ).  It  will
be interesting to see whether this pattern still persists for
higher target spin.

1/2
ep

Owing to tremendous phenomenological interest, it is
interesting  to  specialize  in  the  spin-  target.  Upon
heavy  target  mass  expansion,  the  differential  elastic
scattering cross  section can be expressed in  terms of  the
Sachs FFs: 

dσ
dcosθ

=
πα2 cos2 θ

2

2k2 sin4
Å
θ

2

ã − πα2 cos2 θ

2

M|k|sin2
Å
θ

2

ã − 4πα2

M2 sin2 θ

2
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×
ï

1
16

G2
M (cosθ−3)+

1
4

cos2 θ

2

Å
4G′E + cosθ− 1

2

ãò
, (9)

µp

GM → µp G′E →
M2

6
⟨r2

p⟩
⟨r2

p⟩ µp

or equivalently, expressed in terms of proton charge radi-
us  and  magnetic  dipole  moment  by making  the  re-

placements  and . The  contribu-
tions of  and  begin at NNLO in heavy target mass
expansion,  whose  values  may  be  extracted  by  carefully
studying the angular distributions. 

B.    Light non-relativistic spin-1/2 projectile

k

Next, we  turn  to  the  soft  limit  of  the  original  proto-
type of the Rutherford scattering process, that is, a slowly
moving light particle hits a heavy static target. We again
assume that the projectile is a Dirac fermion, whose mass
and momentum are denoted by m and .

The differential cross section for this type of Ruther-

ford scattering in the laboratory frame is defined by 

dσ
dcosθ

=
1

32πM

ï
p′0+ k′0

Å
1− |k||k′| cosθ

ãò−1 |k′|
|k| |M|

2 . (10)

|k| ≪ m≪ M

v = |k|/m
1/M

The resulting  expressions  are  rather  lengthy.  Fortu-
nately,  we  are  only  interested  in  its  soft  behavior.  Since
there  are  three  widely  separated  scales  in  this  process,
which obey , the appropriate way of extract-
ing  the  soft  behavior  is  to  expand  the  differential  cross
sections in powers of  (velocity of the projectile)
and  simultaneously.  The  necessity  of  performing
double expansion renders this case somewhat more com-
plicated  than  the  preceding  case  discussed  in  Section
IIIA.

1/M
1/k4

Interestingly, at the lowest order in velocity yet to all
orders  in ,  the  differential  cross  sections  scale  as

, which takes a uniform form:Å
dσ

dcosθ

ãs

(v0)
=

2πZ2α2

k4

m2(M+m)2
Ä√

M2−m2 sin2 θ+mcosθ
ä2

M
√

M2−m2 sin2 θ
Ä

M− cosθ
√

M2−m2 sin2 θ+msin2 θ
ä2

=
8πZ2α2m2

k4 sin4 θ

2

− πZ2α2m4

M2k4
+O
Å

m6

M4k4

ã
. (11)

The LO term is the extremely well-known expression
obtained  by  Rutherford  using  classical  mechanics,
dubbed the Rutherford formula.

1/k2
At  NLO  in  velocity  expansion,  the  differential  cross

sections scale as , whose explicit expressions are still
rather  complicated  and  vary  with  different  target  species.
Nevertheless, once heavy target mass expansion is conduc-
ted, a clear pattern emerges: Å

dσ
dcosθ

ãs

(v2)
=

πα2

k2 sin2 θ

2

ïZ2 cos2 θ

2

2sin2 θ

2

−
Z2mcos2 θ

2
M

− Zm2

4M2
f s
NNLO+O

Å
1

M3

ãò
, (12)

where 

f s
NNLO =16F′1,0+Z cosθ−Θ (s−1)

8
3

F1,1

+Θ

Å
s− 1

2

ã
2
[
5− (−1)2s

]
3

F2,0

− 4
3

Å
⌈s⌉+ s+

3
4

ã
Z.

Å
s = 0,

1
2
,1,

3
2
,2
ã

(13)

1/MThe LO and NLO terms in  expansion are univer-
sal. The NNLO terms begin to exhibit target spin depend-

O(v2/M2) F′1,0 F1,1

Z cosθ
F2,0

4
8/3

ence.  However,  even  at ,  the , ,  and
 terms still seem to be universal, that is, independ-

ent  of  the  target  particle  spin.  The  coefficient  of 
seems to reflect the spin-statistic characteristic of the tar-
get  particle.  For  fermions,  the  coefficient  is ,  whereas
for bosons, it is . 

IV.  REPRODUCING THE SOFT BEHAVIOR
FROM EFFECTIVE FIELD THEORY

1/2

The  low-energy  limit  of  Rutherford  scattering  is
largely dictated by a heavy target particle interacting with
a  soft  photon.  Therefore,  it  is  natural  to  expect  that  the
soft behavior can be reproduced by an effective field the-
ory  (EFT)  analogous  to  heavy  quark  effective  theory
(HQET),  which  automatically  incorporates  heavy  target
mass expansion. In this section, we specialize in the case
of a spin-  composite target particle.

Originally, HQET  was  designed  to  describe  a  struc-
tureless heavy quark interacting with soft gluons [25, 26].
Owing  to  the  asymptotic  freedom  property  of  QCD,
Wilson coefficients can be computed in perturbation the-
ory through a perturbative matching procedure.

The key idea of HQET can be readily transplanted to
the case of a heavy composite particle interacting with a
soft photon, as long as the photon wavelength is too long
to  deeply  probe  the  internal  structure  of  the  composite
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target. Consequently, one is generally unable to calculate
various Wilson coefficients  from the top-down perspect-
ive.  The internal  structure  of  the  composite  heavy target
particle is encoded in various Wilson coefficients, which
essentially  represent  various  multipole  moments.  They
can, in principle,  be evaluated by nonperturbative means

or  determined  using  the  bottom-up approach,  for  ex-
ample,  extracted  from  low-energy  Rutherford  scattering
experiments.

Analogous  to  HQET,  we  build  up  an  EFT,  dubbed
HPET, describing a static heavy composite fermionic tar-
get particle interacting with a soft photon:

LHPET = h̄v

Å
iD0+ c2

D2

2M
+ cFe

σ ·B
2M
+ cDe

[∇ ·E]
8M2

+ icS e
σ · (D×E−E×D)

8M2

ã
hv+O(1/M3), (14)

1/M2 hv

vµ = (1,0) Dµ = ∂µ+ iZeAµ

E B
c2 = 1

cF cD cS

|q|/M q

where we  truncate  the  effective  Lagrangian  through  or-
der .  represents the heavy target HPET field, with
the label velocity ,  signifies the
covariant  derivative,  and  denote  the  electric  and
magnetic  field,  the  coefficient  is a  rigorous  con-
sequence of Lorentz symmetry, and the , , and -re-
lated  terms  are  often  referred  to  as  Fermi,  Darwin,  and
spin-orbital terms.  The  organization  of  the  HPET  Lag-
rangian is  governed by powers of ,  with  signify-

ing the photon momentum.
 

1/2

A.    HPET description of a massless spin-1/2 projectile

hitting a static spin-  target
1/M2

e(k)N(p)→ e(k′)N(p′)

In  contrast  with Fig.  1,  up  to  order ,  there  are
five  Feynman  diagrams  in  the  context  of  HPET  for  the
tree-level process . The correspond-
ing amplitude reads

MHPET =−
…

1+ c2
p′2

2M2

e2

q2

ß
−ZūNRuNRū(k′)γ0u(k)+

c2Z
2M

ūNRuNRū(k′)p′ ·γu(k)

− cF

4M
ūNR
[̸
q,γµ

]
uNRū(k′)γµu(k)− cDq2

8M2
ūNRuNRū(k′)γ0u(k)

™
=

e2

q2

ß
ZūNRuNRū(k′)γ0u(k)+

cF

4M
ūNR
[
q̸,γµ

]
uNRū(k′)γµu(k)+

cDq2

8M2
ūNRuNRū(k′)γ0u(k)

™
, (15)

uNR
̸vuNR(v, s) = uNR(v, s) ūNR(v, s)uNR(v, s) = 2v0

c2

cS

q0 ∼ k2/M
1/M2

where  denotes  the  HPET  spinor  wave  function  that
satisfies  and .
Notice  that  the  final  expression  does  not  depend  on .
Moreover,  note that  the contribution from the  term is
proportional  to ;  hence,  it  does  not  need  to  be
considered at the prescribed accuracy of .

Squaring  the  amplitude  in  (15)  and  summing/aver-
aging over polarizations, we find the differential unpolar-
ized cross section obtained from the HPET side: 

dσ
dcosθ

∣∣∣∣
EFT
=
πα2Z2 cos2 θ

2

2k2 sin4 θ

2

−
πα2Z2 cos2 θ

2

M|k|sin2 θ

2

− πα2

8M2 sin2 θ

2

î
Z2 (cos2θ−1)

+ cDZ (cosθ+1)+ c2
F (cosθ−3)

ó
. (16)

Ze
Note that the LO and NLO terms are only sensitive to

the  total  charge  of the  target  particle  and  do  not  de-
pend  on  any  nontrivial  Wilson  coefficients  (hence  they
are insensitive  to  the  target's  internal  structure).  This  in-
dicates  that  these  two  terms  are  solely  dictated  by  the

1/M

|k′|/|k|

leading HPET Lagrangian. Since the leading HPET Lag-
rangian possesses heavy particle spin symmetry, the spin
degree of freedom is completely decoupled at the lowest
order in  expansion. From a technical perspective, the
first  two  terms  arise  solely  from  expanding  the  squared
LO  amplitude  in  (15)  as  well  as  expanding  the  factor

 in the phase space measure in Eq. (10).

cF

O(1/M)

At  first  sight,  one  may  worry  that  the  interference
between the  term and the LO amplitude would nomin-
ally generate a  correction, thus breaking the uni-
versality  at  NLO.  A  closer  examination  reveals  that  this
contribution actually vanishes after summing over polar-
izations. This cancellation is anticipated to persist for oth-
er species of spinning target particles.

1/2

The first two terms in (16) are indeed identical to the
universal  behaviors  revealed  in  (7).  The  EFT  approach
helps us to better understand why they are independent of
the  species  of  the  composite  target  particle,  though  our
HPET Lagrangian only specializes in the spin-  target.

1/MAt  NNLO  in  expansion,  three  terms  emerge,
which stem from different sources. The first term clearly
stems from expanding the squared LO amplitude in com-
bination  with  phase  space  expansion,  which  is  of  the
same origin as the LO and NLO contributions and is anti-
cipated to be universal. The second term comes from the
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cD

cF

cF

F2
2,0(cosθ−3)

interference between the  term and the  LO amplitude,
and  the  last  term  stems  from  the  square  of  the  term.
Concretely,  the  last  two  terms  depend  on  the  composite
target particle's charge radius and magnetic dipole. Inter-
estingly,  the  term  can  be  identified  with  the

 term in  (8).  As  discussed  in  the  paragraph

after  (8),  the  coefficient  of  this  term may depend on the
target spin in a specific manner.

To  verify  that  the  EFT  amplitude  does  capture  the
correct  soft  behavior,  we can perform heavy target  mass
expansion from the full QED amplitude in Eq. (1):

MQED =
e2

q2
ū(k′)γµu(k)ū(p′,λ′)

ï
2PµF1,0

Å
q2

M2

ã
+ iσµνqνF2,0

Å
q2

M2

ãò
u(p,λ)

=
e2

q2
ūγµuūλ

′
NR

…
p′0

M

Å
1− p′ ·γ

2M
− p′2

8M2

ãï
2Pµ

Å
F1,0+F′1,0

q2

M2

ã
+ iσµνqνF2,0

ò
uλNR

=
2Me2

q2

ñ
Zūγ0uūλ

′
NRuλNR+

F2,0

4M
ūγµuūλ

′
NR
[̸

q,γµ
]

uλNR+
q2
(
8F′1,0−F1,0+2F2,0

)
8M2

ūγ0uūλ
′
NRuλNR

ô
, (17)

F1,0

q2/M2

u(p′) =

…
p′0

M

Å
1− p′ ·γ

2M
− p′2

8M2

ã
uNR+O(1/M3)

where we not only expand the FF  to the first order in
,  but  also  expand  the  Dirac  spinor  using

.

2M

Note that the HPET amplitude assumes nonrelativist-
ic normalization for the target particle; therefore, we must
include  an  overall  factor  prior  to  comparing  it  with
the  full  QED  amplitude.  By  equating  (15)  and  (17),  we
are able to identify the relations between the Wilson coef-
ficients  in  HPET  and  the  electromagnetic  FFs  near  the
zero-momentum transfer: 

cF = F2,0, (18a)

 

cD = 2F2,0+8F′1,0−F1,0, (18b)

which are identical to the relations obtained for the struc-
tureless quark in HQET [27].

1/2
Substituting relation  (18)  into  (16),  we  fully  repro-

duce the NNLO contribution for a heavy spin-  target,
as recorded in (8). 

1/2

B.    NRQED+HPET description of a slowly-moving
spin-1/2 projectile hitting a static spin-  target

Next, we turn to the EFT approach to understand the

1/2
1/2

second type of  Rutherford  scattering,  where  a  light  non-
relativistic  particle  hits  a  static  heavy  composite  target.
To  be  specific,  we  specialize  in  a  spin-  structureless
projectile and a spin-  target particle. The treatment of
the static composite fermionic target is identical to that in
Section  IV.A.  It  is  natural  to  apply  NRQED  [28] to  de-
scribe the incident slowly-moving electron.

v2Up to the relative order ,  the electron sector of the
NRQED Lagrangian reads as 

LNRQED =ψ
†
ï
iD0+d2

D2

2m
+d4

D4

8m3
+dFe

σ ·B
2m

+dDe
[∇ ·E]
8m2

+ idS e
σ · (D×E−E×D)

8m2

ò
ψ, (19)

d2 = d4 = 1
d4

dF dD dS

O(v2)

dF = dD = dS = 1

where ψ denotes  a  Pauli  spinor  field  that  annihilates  a
nonrelativistic  electron,  is a  rigorous  con-
sequence of Lorentz invariance, and the  term, together
with  the , ,  and  terms  (referred  to  as  the  Fermi,
Darwin,  and spin-orbital  terms),  represent  the  cor-
rections to the NRQED Lagrangian. At the tree level, the
Wilson coefficients .

O(v2/M2)
eN→ eN

Our  starting  point  is  the  HPET  Lagrangian  (14)  and
the NRQED Lagrangian (19). It is convenient to work in
Coulomb  gauge.  Up  to ,  the  relevant  tree-level
EFT amplitude for  reads as

MEFT =
e2

q2
ξ†
ï
1+

d2

4m2
(k2+k′2)− dD

8m2
|k′−k|2− idS

4m2
σ · (k×k′)

ò
ξ ūλ

′
NR

î
−Z+

(cD−2c2Z)p′2

8M2

ó
uλNR

− 1
q2

Å
δi j− qiq j

q2

ã
ξ†
ß

(ki+ k
′i)
ï

d2

2m
+

d2
2 −d4

8m3
(k2+k′2)

ò
+

idF

2m

Å
1+d2

k2+k′2

4m2

ã[
σ× (k′−k)

]i

 

− dD

16m3
(k′i− ki)(k′2−k2)− idS

16m3
(k′2−k2)

[
σ× (k+k′)

]i
™
ξ ūλ

′
NR

î
− c2Z

2M
p′ j− i

cF

2M
σ jl p′l

ó
uλNR, (20)

where the first line represents temporal photon exchange, and the remaining lines represent transverse photon exchange.
ξ denotes the two-component spinor wave function.
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After some simplification, (20) reduces to
 

MEFT =
e2

q2

ï
−Z+

(cD−2c2Z)p′2

8M2

ò
ξ†
ï

1+
d2

4m2

(
k2+k′2

)
− dD

8m2
|k′−k|2− idS

4m2
σ · (k×k′)

ò
ξūλ

′
NRuλNR−

cFe2

4Mq2
ξ†

×
ß

(ki+ k′i)
ï

d2

2m
+

d2
2 −d4

8m3
(k2+k′2)

ò
+

idF

2m
[
σ× (k′−k)

]i− idS

16m3
(k′2−k2)

[
σ× (k′−k)

]i
™
ξ× ūλ

′
NR

î
γi,γ ·q

ó
uλNR. (21)

Squaring the amplitude in (21),  and summing/averaging over  various spins,  we obtain the differential  unpolarized
Rutherford scattering cross section in the context of EFT:
 

dσ
dcosθ

∣∣∣∣
EFT
=
πα2m2Z2

2k4 sin4 θ
2

− πα
2m4Z2

M2k4
+

πα2Z
2k2 sin2 θ

2

ß
Z (dD cosθ−dD+2)

2sin2 θ
2

− m
M

(dD cosθ−dD+2)− m2

2M2
[Z(2+dD−4c2)+Z cosθ(2−dD)+2cD]

™
. (22)

dSThe  term in (21) does not contribute to the squared amplitude because its interference with the LO amplitude in
velocity expansion only contains a single Pauli matrix and hence vanishes upon summing over polarization.

c2 = dD = 1

Z cosθ F′1,0
Z cosθ(2−dD)+2cD 1/2

Substituting  in (22), and utilizing the relations given in (18), we exactly reproduce (11), which encodes
the LO and NLO terms in heavy target expansion, and (13), which encapsulates the NNLO term. (13) indicates that the

 and  terms in NNLO correction are universal, for example, independent of the target spin. This may indicate
that structures such as  arise ubiquitously in an EFT calculation for heavy targets other than spin-
fermions.

To verify that the EFT amplitude indeed reproduces the correct soft behavior, we conduct both nonrelativistic and
heavy target mass expansion from the full QED amplitude in (1).

Working again in the Coulomb gauge, and employing the following relation between the relativistic electron spinor
and nonrelativistic electron spinor:
 

u(k) =
1√

k0+m

((
k0+m

)
ξ

k ·σξ

)
, ū(k) =

1√
k0+m

Ä(
k0+m

)
ξ†− ξ†k ·σ

ä
,

O(v2/M2)we expand the full QED amplitude through :
 

MQED =−
e2

q2
ū(k′)γ0u(k)ūλ

′
NR

ï
2ZP0+

P0

4M2

(
8F′1,0q2+Zq2

)
+ i

p′ ·γ
2M

σ0iqiF2,0

ò
uλNR

− e2

q2

Å
δi j−

qiq j

q2

ã
ūγiuūλ

′
NR

ï
2ZP j+

1
2
[̸

q,γ j
]

F2,0+
P j

4M2

(
8F′1,0q2+Zq2

)ò
uλNR

=
2Me2

q2
2m
ï
−Z+

p′2

8M2

Å
2F2,0+8F′1,0−3Z

ãò
ξ†
ñ

1+
|k+k′|2

8m2
− i

4m2
σ · (k×k′)

ô
ξūλ

′
NRuλNR

− F2,0e2

2q2
2mξ†

ß
1

2m
(
ki+ k′i

)
+

i
2m
[
σ× (k′−k)

]i− i
16m3

(
k′2−k2

)[
σ× (k′−k)

]i
™
ξūλ

′
NR
[
γi,γ ·q

]
uλNR. (23)

(2M)(2m)

d2 = d4 = dF = dD = dS = 1

After  including  the  normalization  factor ,
employing the relations for the heavy target Wilson coef-
ficients in (18),  and taking ,  we
find that the EFT amplitude (21) exactly agrees with the
full QED amplitude (24). 

V.  SUMMARY

In this study, we conduct a comprehensive investiga-
tion of the soft behavior of the tree-level Rutherford scat-
tering  process.  We  consider  two  classes  of  Rutherford
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1/2 0
scattering experiments: One in which a low-energy point-
like massless projectile (for example, a spin-  or spin-
electron)  bombards  a  static  massive  composite  spinning
target particle (for example, an atomic nucleus), and one
where a slowly-moving light structureless projectile hits a
static heavy composite spinning target. We consider vari-
ous composite target particles with spin up to 2.

1/M

1/M
O(v2/M2)

The soft limit of the differential Rutherford cross sec-
tions in the laboratory frame in both cases exhibits some
universal pattern. For the first type of Rutherford scatter-
ing process, given a specific projectile, the first two terms
in the differential cross section are universal upon heavy
target  mass  expansion,  whereas  the  universality  starts  to
break  down  at  NNLO.  Nevertheless,  many  terms  at
NNLO still remain spin-independent or have some defin-
ite spin-dependence pattern. For the second type, we must
perform both  nonrelativistic  and  heavy  target  mass  ex-
pansion to infer the correct soft limit. At the lowest order
in projectile velocity expansion, but to all  orders in 
expansion,  the  differential  cross  section  has  a  universal
form (insensitive to the projectile spin). At NLO in velo-
city expansion, the first two terms in the differential cross
section  in  expansion  are  still  universal.  The

 piece starts to partially violate the universality.
Despite  this,  some  terms  at  this  order  still  remain  target
spin independent.

F2,0

O(1/M2) O(v2/M2)
It is of special interest that the  term (magnetic di-

pole  of  the  target  particle)  at  (or  for
the second type of Rutherford scattering) seems to reflect
a peculiar spin-statistics feature. Its coefficient keeps one
constant for the fermionic target and another constant for
the bosonic target. It is interesting to verify this observa-
tion  by  investigating  target  particles  with  even  higher
spin.

We also attempt to apply the EFT approach to under-
stand  the  soft  pattern  of  the  Rutherford  scattering  cross

1/2

sections,  taking  the  target  particle  as  a  composite  Dirac
fermion  for  concreteness.  Some  useful  insight  is  gained
from the  EFT  perspective.  However,  since  we  exclus-
ively  consider  the  spin-  target particle,  the  EFT  ap-
proach itself  is unable to account for the specific pattern
of target spin dependence at NNLO in heavy target mass
expansion  observed  in  this  study.  Further  exploration  is
needed to understand this issue. 

ACKNOWLEDGMENTS

We  are  grateful  for  useful  discussions  with  Zhewen
Mo, Jichen Pan and Weizhi Xiong. 

APPENDIX A: RUTHERFORD SCATTERING
WITH MASSLESS SPINLESS PROJECTILE

We  can  repeat  our  investigation  in  Section  III.A  by
replacing  the  projectile  with  a  massless  spin-0  electron,
which  is  described  by  scalar  QED.  The  electromagnetic
vertex involving a scalar electron is simply given by 

⟨e(k′)|Jµ|e(k)⟩ = − (kµ+ k′µ) . (A1)

1/M

Upon heavy target mass expansion, we again observe
that the  unpolarized  cross  sections  exhibit  some  univer-
sal  feature.  Concretely,  the  LO and  NLO pieces  in 
expansion are independent of the target particle spin: 

dσ
dcosθ

=
πα2Z2

2k2 sin4
Å
θ

2

ã − πα2Z2

M|k|sin2
Å
θ

2

ã +OÅ 1
M2

ã
. (A2)

The universality becomes partially violated at NNLO.
For various target particles, the NNLO contributions areÅ

dσ
dcosθ

ãs

NNLO
=− 4πα2

M2 sin2 θ

2

ï
F′1,0Z−Θ

Å
s− 1

2

ã
s+1
48s

F2
2,0 (cosθ+1)+Θ

Å
s− 1

2

ã
5− (−1)2s

24
F2,0Z

+
5

16
Z2 cosθ−Θ (s−1)

1
6

F1,1Z− 1
12

Å
⌈s⌉+ s+

15
4

ã
Z2
ò
.

Å
s = 0,

1
2
,1,

3
2
,2
ã

(A3)

1/2 F′1,0Z Z2 cosθ
F1,1Z

F′1,0Z Z2 cosθ

F2
1,0(q2/M2)

F2,0Z

1/4 1/6

Similar  to  the  pattern  indicated  in  (8)  for  a  massless
spin-  projectile,  we  observe  that  the , ,
and  terms  are  independent  of  the  target  spin.  The

 and  terms actually have the same origin of
the LO and NLO cross sections, which correspond to dif-
ferent terms in the Taylor expansion of  in the
squared  LO  amplitude  and  phase  space  measure.  The
coefficient of the  term seems to reflect the spin-stat-
istic characteristic of the target particle. For fermions, the
coefficient is , whereas for bosons, it is .

F2
2,0(cosθ+1)

−1+ s
48s s = 1/2

Although  the  coefficients  of  inside  the
square  brackets  explicitly  depend  on  the  target  spin s,

they seem to be expressed as , at least for ,
1, 3/2,  2.  It  will  be  interesting  to  see  whether  this  para-
meterization persists for an arbitrary s.

1/2
Analogous  to  what  is  done  in  Section  III.A,  for  a

spin-  composite  target  particle,  the  HPET-based cal-
culation yields the following unpolarized cross section:
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dσ
dcosθ

=
πα2Z2

2k2 sin4 θ

2

− πα2Z2

M|k|sin2 θ

2

+
πα2

4M2 sin2 θ

2
×
î
−2cDZ+ c2

F(cosθ+1)+5Z2(1− cosθ)
ó
. (A4)

Reassuringly, this EFT result exactly agrees with that
obtained from (A3). 

APPENDIX B: RUTHERFORD SCATTERING
WITH NONRELATIVISTIC SPINLESS

PROJECTILE

1/M
1/2

We  can  repeat  our  investigation  in  Section  III.B  by
replacing the projectile  with a  light  slowly-moving spin-
less electron. At the lowest order in electron velocity, but
to all  orders in , the resulting unpolarized cross sec-
tion is identical to (11), which is obtained for a spin-
projectile. This  is  well  anticipated  because  the  spin  de-
gree of freedom decouples in the nonrelativistic limit.

v2At  relative  order- , after  heavy  target  mass  expan-
sion,  the  differential  unpolarized  cross  section  becomes
particularly simple: Å

dσ
dcosθ

ã
(v2)
=

πα2

2k2 sin2 θ

2

ï
Z2

sin2 θ

2

− 2mZ2

M

− 4m2Z
M2

f̃ s
NNLO+O

Å
1

M3

ãò
, (B1)

where 

f̃ s
NNLO =2F′1,0+Θ

Å
s− 1

2

ã
5− (−1)2s

12
F2,0−Θ (s−1)

1
3

F1,1

+
Z
4

cosθ− 1
6

Å
⌈s⌉+ s+

2
3

ã
Z.Å

s = 0,
1
2
,1,

3
2
,2
ã

(B2)

O(v2/Mn) n = 0,1
O(v2/M2)

F′1,0 F1,1 Z cosθ
F2,0

Clearly,  the  ( ) terms remain univer-
sal. At , the universality becomes partially viol-
ated. However, the , , and  terms still do not
depend on the target particle spin. The coefficient of 
seems to reflect the spin-statistic characteristic of the tar-

1/2
1/3

get particle. For fermions, the coefficient is , whereas
for bosons, it is .

v2

Similar to Section IVB, we can combine NRQED and
HPET to  study  the  soft  behavior  of  this  type  of  Ruther-
ford scattering. Since the incident electron is assumed to
be spinless, it is natural to work with scalar NRQED plus
HPET.  Up  to  the  relative  order- ,  the  scalar  NRQED
Lagrangian reads as 

LsNRQED = Q†
Å

iD0+d2
D2

2m
+d4

D4

8m3

ã
Q, (B3)

d2 = d4 = 1
with Q signifying the field that annihilates a nonrelativist-
ic  scalar  electron.  Again,  is a  rigorous  con-
sequence of Lorentz symmetry.

v2/M2

Based  on  scalar  NRQED  and  HPET,  we  are  able  to
obtain the  following  unpolarized  Rutherford  cross  sec-
tion, which is accurate to the relative order- : 

dσ
dcosθ

=
πα2m2Z2

2k4 sin4 θ

2

− πα
2m4Z2

M2k4
+

Zπα2

2k2 sin2 θ

2

×

 Z

sin2 θ

2

− 2mZ
M
− m2 (−2c2Z+ cD+Z cosθ+Z)

M2

 .
(B4)

Reassuringly,  this  EFT  result  exactly  reproduces  the
soft limit obtained from full QED, (B2).

We can  further  verify  that  the  EFT amplitude  repro-
duces the correct soft behavior, which is deduced by con-
ducting both nonrelativistic and heavy target mass expan-
sion from the full  QED amplitude in (1).  Working again
in Coulomb  gauge,  and  using  the  following  electromag-
netic matrix element involving a spinless electron: 

⟨k′|J0|k⟩ = −1, (B5a)

 

⟨k′|J|k⟩ = (k+k′)
ï

d2

2m
− d4

8m3
(k2+ |k′|2)

ò
, (B5b)

v2/M2
we can  readily  obtain  the  expanded  Rutherford  amp-
litude  through  order- ,  which  is  indeed  compatible
with the EFT amplitude.
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