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Abstract: We study 1+1 dimensional relativistic non-resistive magnetohydrodynamics (MHD) with longitudinal

boost invariance and a shear stress tensor. Several analytical solutions describing the fluid temperature evolution un-

der a given equation of state (EoS) £ = 3p are derived. Extending the Victor-Bjorken ideal MHD flow to include

non-zero shear viscosity, we first obtain two perturbative analytical solutions for the first-order (Navier-Stokes) ap-

proximation. For small, power-law evolving external magnetic fields, our stable solutions show that both magnetic

field and shear viscosity cause fluid heating with an early temperature peak, consistent with numerical results. In the

second-order (Israel-Stewart) theory, our numerical results show that the combined presence of magnetic field and

shear viscosity leads to a slow cooling rate of fluid temperature, with initial shear stress significantly influencing

temperature evolution of the medium.
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I. INTRODUCTION

Heavy-ion collisions offer a unique opportunity to ex-
plore the properties of hot, dense nuclear matter - quark-
gluon plasma (QGP)- created at RHIC and LHC [1, 2].
Recent research has revealed that these collisions gener-
ate extremely strong magnetic fields, ranging from 10'® to
10" Gauss, due to the rapid motion of positively charged
spectators [3—5]. These intense magnetic fields are expec-
ted to significantly influence the QGP dynamics [5—12].
The combination of strong magnetic fields and quantum
anomalies can induce specialized transport phenomena
known as anomalous transports. One such phenomenon is
the chiral magnetic effect (CME) [13—22], which pre-
dicts charge separation in a chirality-imbalanced medium.
Additionally, a chiral current can be induced by the mag-
netic field, leading to the chiral separation effect (CSE)
[23, 24]. Together, these effects are expected to generate
a density wave known as the "chiral magnetic wave"
(CMW), which may disrupt the elliptic flow degeneracy
between = [25]. Over the past decade, experimental col-
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laborations at RHIC and LHC have made significant ef-
forts to detect signals of the CME, CSE, and CMW, at-
tracting considerable attention in studying hot, dense nuc-
lear matter under strong magnetic fields [26—32].
However, it is still a challenge to extract the signals from
the huge backgrounds caused by the collective flows.

The evolution of the QGP, primarily driven by pres-
sure gradients, has been well-described by relativistic hy-
drodynamic, explaining experimentally measured har-
monic flow and global polarization observed in non-cent-
ral nucleus-nucleus collisions [33—46]. To fully under-
stand the effects of strong magnetic fields on the QGP,
solving the (3+1)-dimensional relativistic magnetohydro-
dynamics (MHD) equations is necessary [47—49], as they
account for the magnetic field's dynamic coupling with
the QGP fluid. Lattice-QCD calculation indicates that the
QGP has a finite temperature-dependent electrical con-
ductivity (o) [50, 51]. However, the interaction of the
initial magnetic field with the QGP, as well as its sub-
sequent evolution, remains unclear and is currently under
active investigation [52—55]. The relative significance of
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an external magnetic field on fluid evolution can be eval-
uated using the dimensionless ratio o = B?/T*, which
compares magnetic-field energy density to QGP temper-
ature. When o > 1, the magnetic field's influence on flu-
id evolution becomes substantial and must be considered
[56—58].

In recent works, the influence of electromagnetic
fields on the quark-gluon plasma (QGP) fluid in special
relativistic systems has been investigated within the hy-
drodynamic framework [59]. Previous studies examined
the 1+1 dimensional flow using the longitudinally boost-
invariant Bjorken flow model within the MHD frame-
work without dissipative effect [56—58, 60]. These stud-
ies incorporated a transverse and time-dependent homo-
geneous magnetic field while neglecting dissipative ef-
fects such as viscosity and thermal conduction. Notably,
in ideal MHD, the energy density evolution follows the
same decay rate as the Bjorken flow, attributed to the
"frozen-flux theorem" [56]. Later, nonzero magnetization
was introduced into the MHD framework [57], the longit-
udinal expansion effects were analyzed [61, 62], and self-
similar rotating solutions were derived within the context
of MHD [63].

Various studies have also analyzed the stability and
causality of relativistic dissipative fluid dynamics within
the frameworks of both standard and modified Israel-
Stewart (IS) theories, in the presence of a magnetic field
[64—68]. It has been shown that a straightforward exten-
sion of non-relativistic viscous fluid formulations (also
known as Navier-Stokes theory) to the relativistic regime
leads to acausal and linearly unstable behavior. These is-
sues were subsequently addressed using the IS theory,
which provides a causal and stable second-order formal-
ism. These studies have systematically enhanced under-
standing of relativistic non-resistive magnetohydro-
dynamics (MHD).

In this study, we extend previous work by incorporat-
ing shear viscosity into the MHD equations within the
Azwinndini-Bjorken viscous flow framework [69, 70],
and solve them both analytically and numerically. Start-
ing from the 1+1 dimensional relativistic non-resistive
MHD [64], which includes shear viscosity and a magnet-
ic field, we derive a series of novel solutions for non-res-
istive MHD. Our results indicate that for small, power-
law evolving magnetic fields, the analytical solutions re-
main stable and demonstrate that both the magnetic field
and shear viscosity contribute to fluid heating, with an
early temperature peak that aligns with numerical find-
ings. In the context of the second-order (Isracl-Stewart)
theory, we find that the combined presence of a magnetic
field and shear viscosity leads to a slower cooling rate of
the fluid temperature. Furthermore, we emphasize that
our assumptions and solutions are not only straightfor-
ward but also readily adaptable to other MHD studies.

This paper is organized as follows. In Sec. II, we in-

troduce the MHD framework with dissipative effects. In
Sec. 111, we present solutions for MHD based on first-or-
der (NS) theory. In Sec. IV, we show the results for MHD
in the presence of second-order (IS) theory. Finally, we
summarize and conclude in the Sec. V. Throughout this
study, u* =7<1,7> is the four-velocity field that satis-
fies w'u,=1 and the spatial projection operator
A = g — 'y is defined using the Minkowski metric
g =diag(1,—-1,-1,-1). It is note-worthy that the ortho-
gonality relation A*"u, = 0 is satisfied.

II. RELATIVISTIC VISCOUS NON-RESISTIVE
MAGNETOHYDRODYNAMIC

In this work, we consider the causal second order the-
ory for relativistic fluids by Israel-Stewart (IS) in the
presence of a magnetic field, as given in Refs. [64, 71].
The total energy-momentum tensor of the viscous fluid is
expressed as

T = (e+p+1+E*+ Bu'u’

1 1
- +H+7E2+782) ald
(” 27 27 )8

—E'E" - BB’ —u'€"PE,B,up

—u' e PE,Bug + 1, (D)

where ¢ and p are the energy density and pressure, re-
spectively; u* is the four velocity field; and #*" and IT are
the shear viscous tensor and bulk viscous pressure, re-
spectively. The magnetic field and electric field four vec-
tors are

1
B = S uFyp B =P, )

which satisfies #*E, =0 and #*B, = 0 meaning that both
E* and B* are spacelike. The modulus B“B, = -B* and
E*E, = —E*. Here, e is the Levi-Civita tensor satisfy-
ing €% = —g,3 = +1, F* is the Faraday tensor satisfy-
ing F* =(0"A"—0"A"). In the non-resistance limit, the
electrical conductivity o, is infinite. In this limit, in or-
der to keep the electric charge current j* = o, E* be finite,
we assume the E¥ — 0. Then, the relevant Maxwell's
equations which govern the evolution of magnetic fields
in the fluid is d,(B*u’ — B"u") = 0. Thus, the energy-mo-
mentum tensor simplifies as shown in Refs. [56, 64]

1
T = (e+p+11+ Bu'u’ — (p+H+ EBZ> Fad
—B*B" + 7. 3)

The space-time evolution of the fluid and electric-
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magnetic fields are described by the energy-momentum
conservation,

8,T" =0. (4)

To close the system of equations, we must choose the
Equation of State (EoS) for the thermodynamic quantit-
ies. In the hot limit with high temperature, we assume a
conformal fluid such that &=3p, where ¢*=1/3. For
simplicity, we neglect the magnetization of the QGP [57],
which implies isotropic pressure and no modification of
the Equation of State (EoS) of the fluid due to magnetic
field.

Since we assume longitudinal boost invariance for the
fluid, it is convenient to introduce Milne coordinates,
defined as ¢ = tcoshn, and z = tsinhn,, where 7 = Vi — 72
is the proper time and n,=0.5In[(t+2z)/(t—z)] is the
space-time rapidity. The fluid velocity can be expressed
as

u" = (coshn;,0,0,sinhn,) = (1,0,0,z/1), Q)

where y = coshn; is the Lorentz contraction factor.

Following the Refs. [56, 57, 61, 64], we consider that
a simple homogeneous magnetic field obeys a power-law
decay in proper time, as follow:

79’@):73’0(7:)(1, (6)

where a is the decay constant and a > 0, 7 is the initial
proper time, and By = B(ty) is the initial magnetic field
strength .

The energy conservation equation is derived by pro-
jecting the energy-momentum conservation law 9,7*" = 0
along the fluid four-velocity u,. In the Landau-Lifshitz
frame, one obtains

1
u,0,T"" =D (s+ EBZ) + (e+p+Bz)H—7r’“’0'W —T110

d(e+iB? 2
_ ( 2 )+8+p+B _lﬂ_nl
or T T T

=0, @)

where D =u-0=0/dt, 0= 0" = V,u* = 1/7 is the expan-
sion factor and 7 = 7% — 73 [69, 70].

Similarly, the projection of the energy-momentum
equation onto the direction orthogonal to u*,

(gﬂv - uyuv)aa T = Oa (8)

yields the momentum-conservation equation

B? ou*
% (p+H+—> —(e+p+I+BH L
2 or

uy _

- ANV, P + 1 o 0, )

where V# =A"9, is the gradient operator. The last three
terms vanish due to longitudinal boost invariance and
u* = =0 in transverse direction [56, 70]. Note that for
u=n,, it reads

6‘; <p+H+%BZ> =0, (10)

thus indicating that all thermodynamical variables de-
pend only on 7 and are otherwise uniform in space. Since
the velocities in the x- and y-directions are initially zero,
they remain zero at later times.

Since we fouce on the non-resistive viscous hydro-
dynamics, the second order Israel-Stewart (IS) theory
treats viscous stresses II, 7*” as independent dynamical
variables. Their evolution equations are given by (e.g.,
see Ref. [70]),

oIl I 11 1 d 11
e _M|By-+T— (@)}—fﬁ (11)
or ™m 2B T or\T BoT
ot o 11 { 1 0 (ﬁzﬂ
=" B +T— | =
or T 28> ﬁz‘r or\T
1 [~ 1 1
L {M Law] L, (12)
ﬁz 3 T
where the relaxation times 7y and 7, are
T ={Bo, Tr=210. (13)

Here, ¢ and n are the bulk and shear viscosity coeffi-
cients, respectively. B, and 8, are the transport coeffi-
cients. In the final term of Eq. (12), A = A* for 0 <,
v <1, and is zero otherwise (due to the fact that there is
only one non-vanishing spatial component in the four-ve-
locity).

For convenience, some useful equations and relations
of thermodynamics can be written as [70]:

1
p =T, p= cfs: 38, n= b, T3,

n_ b { b
= b T3’ -_—=—, —=—,
§=b s 4a; s 4da
B(z) = O—Tg, T(TO) = T09 T = T/TO’ T(TO) = ls
_(a-1)o 1 b 47
a= 12611 ’ - T() 9611 B 9T0 S.

(14)

€
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Here, T is the normalized, dimensionless temperature,
and Ty is the temperature at the initial proper time 7,. In
order to more effectively isolate and highlight the heat-
ing processes, we employ uniform normalization condi-
tions T, = T(1o) = 0.65 GeV, 75 = 0.6 fm/c, and T (1) = 1
for all cases. The pre-7, solutions (7 < 1,) are analytic-
ally continued to expose solution branch structure, an es-
sential step for analyzing the non-monotonic 7—depend-
ence that emerges under finite magnetic field and viscos-

ity.
21 p
=11 —N; | — 15
. (6+2 f) 90 (15)

is a constant determined by the number of quark flavors
and the number of gluon colors [70], s is the entropy
density, and

0.342
(1+Ns/6)a?In(e;")’

by =(1+1.Ny) (16)

Here, N; is the number of quark flavors, taken as 3, and
a, is the strong fine structure constant, taken in the range
of 0.4-0.5 [70].

For a conformal fluid (i.e., a system of massless
particles), the bulk viscosity ¢ =0 since the bulk viscos-
ity does not apply to such systems [70]. Accordingly, we
omitted the bulk viscosity contribution in the present
work.

III. ANALYTIC SOLUTIONS

A. Analytical solution for the ideal MHD
Let us begin by examining the 1+1 dimensional ideal
MHD flow (Victor-Bjorken flow [56]), starting from Eq.
(7). By neglecting the contribution from shear viscosity,
the energy conservation equation can be written as

1 2)
6(84‘53 g+p+B2
+ =0,
or T
oT (l—a)O'Tg(To>2“1 T
—t——|—) —+=—=0,
or 12a,T3 T T 37
oT (1—61)0’(‘1'0)2“1 T
— —|—) —+=—=0. 17
67+12a1T3 T T+3T (7
(a-1o

For convenience, we define the parameter € = Da
1

which depends on the strength parameter o and decay ex-
ponent a of the magnetic field. With this definition, the
energy conservation equation Eq. (17) is simplified to

E+3T ™ \r

o T ¢ (70)2“1:0. (18)

T T

The solution of Eq. (18) is

Po (@) o2 (- (@) o

In the upper panel of Fig. 1, we plot the normalized
dimensionless temperature T as a function of proper time
7 for a =2, considering different values of the magnetic
field parameter € with initial proper time 7, = 0.6 fm/c.
We observe that for positive € (corresponding to a > 1),
the normalized temperature T decays more slowly as ¢
increases. This is because the energy density is "heated
up" by the rapid decay of the magnetic field [56]. Addi-
tionally, a larger initial magnetic field (determined by o)
leads to a slower decay of 7.

We observe that Eq. (19) exhibits divergent behavior
at different values of a, which determine the strength of
the magnetic field. To illustrate this, we present the fol-
lowing solutions under specific limits:

Case-A For a = 1, we have ¢ =0, which indicates the
limit of infinite conductivity (or the ideal MHD limit),
and thus of maximal magnetic induction. We obtain a

1.1
1.0~
0.9
0.8
e~
0.7
0.6 -
Eq.(19), a=2, €=0.0
0.5
1.0 15 20 25 3.0 35 4.0
T [fmic]
11
\\
1.0R™
5 - a=1.0, Eq.(20)
0.9 - - a=22.0, Eq.(19)
--a=—, Eq.(22
08 . 5 Ea(22)
. \ —— a-o0, Eq.(24)
0.7 Tl
NN
~ .
0.6 ~
~N
Eq.(19), 0=10.0, =00 ~
0.5 =
1.0 15 20 25 30 35 4.0
T [fmic]
Fig. 1.  (color online) Evolution of normalized temperature

T =T/Ty for a magnetic field as a function of proper time rfor
varying initial magnetic field (upper panel) and different val-
ues of magnetic field decay parameter a (lower panel).
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solution of the ideal MHD; the solution type is as the
same as the Victor-Bjorken flow [56],

= (@) (20)

T

Case-B In the limit « — %, we find
. 6¢ ( To 2“—%> o To
1 1_(7) -7 (7) 21
aljrgl 3a-2 T 9a, n T @0

2
After collecting terms, the solution for ¢ — 3 is

1

() (@] e

For 7> 7y, the logarithmic term is negative, reducing T
and leading to a faster temperature decrease (as shown in
Fig. 1, lower panel, magenta line).

Case-C In the limit a — oo and 7 > 7y, we find

Jim 06 (1_@)%_;) =L (23)

a—e0 3q—2 T a

This, results in the solution

T:(TT(’)%<1+6‘;)£. (24)

One finds a super-fast decay of the magnetic field (as
a — o) results to a slow decay of temperature and poses
an upper limit (see Fig. 1, lower panel, purple line). This
a-dependent magnetic field behavior is partly consistent
with existing magnetic field evolution models, particu-
larly for a > 1 regimes.

B. Analytical solution for Navier-Stokes approxima-
tion viscous hydrodynamic

In this section, we present a well-developed solution
for first-order Navier-Stokes viscous flow (Azwinndini-
Bjorken flow) [69]. Starting from the energy conserva-
tion equation (Eq. (7)) and by setting the magnetic field
contribution to zero (e = 0), we obtain

0
deerr L ploy,
or T T T

Lor.r_omo &
or 3t 94,737 12a\T37
of T 1 ( b, b, ) 1

E)

= —+
or 31 T()

+
901 12611

— =0, (25)

T2

4 1
where 7= gg, M=¢-, p=b,T3, and ¢ =b,T>. For sim-
T T
lici 1 1 b 4 n

6H=——- = ——
plicity, we let & ToOa, 9T, s

coefficient ¢ = 0; then, Eq. (25) can be written as

, where bulk viscosity

6T T €
“i—-Zco 2
BT+3T 72 0 (26)

The solution of above Eq. (26) is

=) 00 e

This solution type is as same as the Azwinndini-Bjorken
solution [70]. Note that a nonvanishing shear viscosity
parameter €, makes the temperature cooling rate smaller.

In Fig. 2, we present the normalized dimensionless
temperature 7 as a function of proper time 7, consider-
ing various shear viscosity. We find with a positive shear
viscosity, while e increases from 0 to 2, T decreases
more slowly compared to the ideal fluid case. Addition-
ally, there is a peak in T in the case of NS approximation
when € # 0.

N
P4
(2}
m

o)

~
N
~N

.
n

1
o
)

1 //'

U~ K,
1
g
1
05} ;
i
i
i
i
i
0.2%=

05 10 15 20 25 30 35 40

7 [fm/c]
Fig. 2.  (color online) Evolution of normalized temperature

T =T/Ty as a function of proper time = for different values of
shear viscosity e.

C. Perturbative analytical solution for the NS approx-
imation of viscous MHD - I

In this section, we employ the nonconserved charges
method [58] to solve the energy conservation equation
and derive a perturbative solution that accounts for both
magnetic field () and shear viscosity (e,).

The energy conservation equation for a fluid with
non-zero shear viscosity and non-zero magnetic field un-
der longitudinal boost invariance takes the form:

£+7~’ € (To
or 3t T3

—)Zal—ﬂzo. 28)

T T T2
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(a—1)o

4 .
and & = T s with specific ranges

a
[0, 0.5] and [O, i GeV''], respecotively, ensuring perturb-
ative validity. One cannot get the analytical solution of
the above equation directly. However, a solution can be
obtained using a perturbative method.
In Ref. [58], a nonconserved charge method is used to
solve the equation for

Here, € =

d f@ _ d
af(7)+m7 =f(0) dT/l(T), 29

where m is a constant and A(7) is a known function. The
general solution of Eq. (29) is:

f@=fEewi@-1@l(2)", G0

where 7 is the initial proper time and f(7y) given by the
initial value at 7.

We first rewrite the energy conservation Eq. (28) as
follow:

—T+-—=T—2, (31)

1
where m = 3 and

d €] To 2a ] 1 €
4, 8 (m)"l 1 .
dr 14 \t/) 1 TT (32)

Using Egs. (29)—(30), the formal solution of Eq. (31) is

T = T (tg)exp[A (1) = A(10)] (%) - (%) L@, 63

with the condition T (p) = 1 and by introducing the vari-
ables

x (1) =exp[A(T) — A(1p)]. (34)

With the variables x(r), we have dx(7) = xdA(r) and we
can rewrite the Eq. (32) in the form of

T

=—, 35
T xT‘1'2 (35)

d €] (To)zal 1 €
—X=X= +
dr T4
where x (1) = 1.
We assume the magnetic field value ¢ as perturba-
tion and solve them in powers of ¢. In the order of
O (€), we have

d le < 1 )3 s
—x=x=—=g—) 3, 36
de xT 72 € 70 T (36)
then the solution of zero-order can be written as
3 23
x0=1+ﬂ{1—(@) } 37)
279 T

In the first order of O (¢), we have

d 2a-3 1)3 _:
—x:i(ﬁ) %+62(—) 3, (38)

dr X3t \r1

then we obtain

T 2a—% T
€ To
x1:x0+/ 73(—) d71=x0+/
70 x(Tl) T T 70 |: 362
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36 3196 47T

To
=1+——

To

{

27 T 2219 +36)’

(2-3a) [210 36 (

-y
x [270-3e <<TTO

362

2/3 5
-1 F (1,3 -2;3a-1;, ——
) >] . “ a 36+ 271

) o |:—9Cl2 Q1o+36) +3(a-1)Ba-4)
T

T
<

To

2/3 2/3
) ) +6(4-3a)e (E) (270 +36)
T T

70\ 2 2
+94(a-4)6 (7) X (270 +36) +21a (270 + 36)* — 10270 + 36)

- 3
+12(a—-1)(Ba—-4)7r Ba-2),F, (1,3a—2;3a— | P—_—

Here, ,F;(a,b;c;z) is the hypergeometric function, I'(z) is
the Gamma function, and »F, (a,b;c;z) is the regularized
hypergeometric function.

Consequently, the perturbative solution of Eq. (28) is
given by

To

1/3
) X1,
T

Tasi = (2 (40)

where x; is defined in Eq. (39). This solution remains
stable when ¢ is small. We will prove this in the next
Sec. IV.A.

In Fig. 3, we present the normalized temperature
Tus-1 (given by Eq. (40)) as a function of proper time, for
different initial magnetic field strengths (¢;) and a fixed
shear viscosity (& = 1). The magnetic field decay para-
meter is set to a =2, and the initial proper time is 7y = 0.6
fm/c. We observe that as ¢, increases from 0.05 to 0.2,
the temperature decreases more slowly compared to the
ideal MHD case. Furthermore, for non-zero magnetic
fields, the fluid absorbs energy in excess of the decay

2.00
1.75 - €=0.0, &=0
1.50 - - ¢=0.05, =1
’ - - €=0.10, e=1
1.25 —— €1=0.20, &=1
t~ 1.00 S
0.75f
i
i
0.50 L
05 10 15 20 25 3.0 35 4.0
T [fm/c]
Fig. 3. (color online) Evolution of the normalized temperat-

ure Txs_1 (Eq. (40)) as a function of proper time  for varying
initial magnetic field (€ ), with a fixed shear viscosity value
e =1, compared to the ideal MHD. The magnetic field decay
parameter is a = 2.

36+ 271

) +(270+36) [2 (5-3a)To+ 3aez} } ,
(39)

caused by the expansion, and leads to a peak for proper
times 7 < 0.6 fm/c [56].

D. Perturbative analytical solution for the NS approx-
imation of viscous MHD - 11

In the previous subsection-III.C, we introduced a per-
turbative method that can be utilized to derive an analyt-
ical solution for the NS approximation of viscous fluid
dynamical equations under the assumption that the mag-
netic field is small (¢ being a small parameter). In this
section, we present another perturbative solution for vis-
cous non-resistive MHD flow within the NS approxima-
tion, assuming that both €, and ¢, are small parameters.

The energy conservation equation (Eq. (28)) for vis-
cous MHD flow under the NS approximation is

()

Here, we assume that ¢ is a small parameter. To the lin-
ear order in ¢, the temperature 7' can be expressed as

2a

T

o T e

To
PR + Pa—
or 3t 12

= e (& (41)

T:T0+61T1+612T2+..., (42)
Substituting Eq. (42) into Eq. (41), we obtain
a(T0+61T1+612T2+...)+ T0+€]T1+€]2T2+... 8
or 37 72
2a 1
_ Nelf. (E) z (43)
(T0+61T1+61 T2+...)3 T T

For simplicity, we ignore terms higher than O(e?).
Consequently, Eq. (43) reduces to

6(T0+61T])+T0+61T| 2
or 37 72
€] To\ 2 1

(44)

(%)

T eseliiy\t/) T
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By combining the like terms in Eq. (44), we obtain

M T _a
or 3t
N 3 (45)
oaly) ali _ € (@)2"1
or 3r (T3+3eT3T) \ 7 T

The analytical solution to the first equation in Eq. (45) is

e ()G ) e

Putting T, into the second equation of Eq. (45), we ar-
rive at

T, T 1 2a
or 3t (T3+3T3T) \ 7 T

To obtain an analytical solution of Eq. (47), we approx-
imate 73(1+36,Ty/T)) =~ Ty’ = (1o/7), where ¢ and ¢, are
small parameter. We note that this approximation intro-
duces significant limitations, which will be discussed
later in Fig. 5. Accordingly, Eq. (47) reduces to

HTI f] To 2a-1 1
—+—=(— -. 4
or * 3t ( T ) T (48)

We obtain an analytical solution of Eq. (48) as follows:

@ e @) e

Combining the zero-order (T,) and first order terms
(T)), we obtain the following perturbative analytical solu-
tion:

~,

Tns—2 = To+€1 T
- () 32 ()
+4f%a(y4m+3(?)hﬁ)]. (50)

The above solution Eq. (50) exhibits divergent behavior
for different values of the magnetic field decay paramet-
er a. We illustrate following three particular limits as we
studied in subsection-III.A.

Case-A For a=1, we obtain a solution same as the NS
approximation for viscous flow.

e (@) h220-2))] o

Case-B For a — % and 7 > 7o, we obtain

foa=(3) 3 (-() )2

3a-1)
(52)

Case-C For a — o and 7 > 15, we assume the initial
magnetic field strength parameter o is a first order infin-
itesimal quantity, specifically O(1/a), associated with a.
We find that even the value of ¢ align with the small per-
turbation method, but the magnetic field effect is super
small, and the approximate solution regress to the vis-
cous solution. Alternatively, if we consider o as a
second-order small quantity (O(1/a?)), the magnetic field
effects become too negligible to achieve our desired ef-
fect.

In Fig. 4, we present the normalized temperature as a
function of proper time for various magnetic decay rates
(a), with a fixed initial value of the magnetic field
(e, =0.1) and shear viscosity (& =0.2). One finds for
0 <a < 1, the third term in T in Eq. (52) is negative, res-
ulting in faster decay compared to both the ideal MHD
case and the a =1 case (as described in Eq. (51)). Fur-
thermore, when a > 1, the third term of 7 in Eq. (50) is
always positive, results in a slower decay compared to the
ideal MHD case.

IV. NUMERICAL SOLUTION OF VISCOUS MHD
FLOW

In this section, we present the numerical solution of
viscous non-resistive magnetohydrodynamics with longit-
udinal boost invariance using both the first order Navier-
Stokes (NS) approximation and the second order Muller-

— Ideal MHD
- - Eq.(50), a=2
—— Eq.(51), a=1

€,=0.1, ,=0.2

0.5
0.2 I
0.1 |
05 10 15 20 25 3.0 35 4.0
T [fm/c]
Fig. 4. (color online) Evolution of normalized temperature

Txs-2 (Egs. (50)—(52)) as a function of proper time = for dif-
ferent values of magnetic decay parameter a with fixed initial
magnetic field (e =0.1) and fixed shear viscosity value
(&2 =0.2), compared to the ideal MHD.
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Israel-Stewart (IS) approximation.

A. First order Navier-Stokes approximation

We begin with the energy conservation equation un-
der the first order NS approximation, expressed as

—-Z=o.

T (53)

54—37 ™\t

BT T €] (To)za 1 €
T

Using the initial condition 7 = 0.65 GeV and 7y, =0.6
fm/c, we obtain the numerical solution of above Eq. (53)
quickly.

In Fig. 5 we present the normalized temperature 7 as
a function of proper time 7 for different magnetic field €,
fixed shear viscosity &, and compare it with the previous
perturbative analytical solutions in Egs. (40) and (50).
The initial proper time sets 7o = 0.6fm/c and the magethe
magnetic field decay parameter a=2.

In the upper left panel of Fig. 5, with parameters
a=2, ¢=0.02, and ¢ =1. The initial magnetic field
strength is given by B} =0.24a,T;. We observe that the
perturbative analytical solution Tys_, aligns very closely
with the numerical results, whereas the solution Txs_, is

(a) - NS Numerical
-- Eq.(40), Tns-1
—=Eq.(50), Tns-2

N

a=2, €=0.02, e,=1

05 10 15 20 25 3.0 35 4.
T [fm/c]

(c) - NS Numerical
2l a=2,6=01, =1 -- Eq.(40), Tys1
—= Eq.(50), Tns-2

05 10 15 20 25 3.0

T [fm/c]
Fig. 5.

3.5 4.0

found to be in close to and slightly higher than the numer-
ical solution.

In the upper right panel of Fig. 5, for the same value
for a =2 but with ¢ =0.05 and ¢, = 1, the initial strength
of magnetic field is calculated as B3 = 0.6a,T;. Here, the
solution Tys_; agrees well with the numerical results,
whereas Tys_, exceeds the numerical solution by approx-
imately 5%.

In the lower panel of Fig. 5, with the magnetic field
parameter € = 0.1 (left) and ¢ =0.5 in the right panel.
We find that the analytical solution Tys_; remains con-
sistent with the numerical solution. However, Tns_» devi-
ates significantly from the numerical solution as ¢
grows, indicating that this second perturbative solution
becomes less stable compared to the analytical solution
and numerical solution.

We summarize the differences between the two per-
turbative solutions (Egs. (40) and (50)) as follows: (1)
Whene < 0.05, both analytical solutions (Eqgs. (40) and
(50)) align well with the numerical solution, capturing the
key features of temperature evolution; (2) The solution
Tns-1 (Eq. (40)) remains robust for small €, with minim-
al influence from the shear viscosity €.

(b) - NS Numerical
2] a=2,€=005 =1 -- Eq.(40), Tns-
—= Eq.(50), Tns-2

05 10 15 20 25 3.0 35 4.0
T [fm/c]
(d) - NS Numerical
2l 4=2,6=056=1 -- Eq.(40), Tns_1
ST — —=Eq.(50), Tns-2
S T
1 !'
th~ !
1
il
i
05[ i
il
i
]
'
i
N
0.2~
05 10 15 20 25 3.0 35 4.0
T [fm/c]

(color online) Evolution of the normalized temperature T as a function of proper time r, comparing two perturbative analytic-

al solutions with numerical results. The normalized temperatures 7 are presented for various values of the magnetic field parameter ¢,
with a fixed shear viscosity (e = 1) and a magnetic field decay parameter a = 2.
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B. Second order Israel-Stewart approximation

In the second order theory, the bulk viscous pressure
IT and shear stress tensor 7 have to be determined from
the second order transport equations. Based on Refs. [69,
70], the energy conservation equation and viscosity evol-
ution equations can be written as:

0(e+1B? +p+B> 1 1
(e+35) exprB 1 gl (54)

or T T T

on_ o 11 [ 1 ﬁ(@)}_il
B HBOT+T(9‘1' T BoT’

(55)

e )

For massless particles, the relaxation coefficient is
B> =3/(4p) and the relaxation time becomes 7,, which is
then calculated as 7, =278, [70]. As discussed in previ-
ous sections, since we are considering a system of mass-
less particles and utilizing the equation of state € =3p,
this leads to the absence of bulk viscosity, and therefore,
it will not be included in subsequent discussions.

Following Ref. [70], the value of initial shear stress
(viscosity) my (defined as my = )’ —73%) assume to con-
trol by the initial pressure py. For simplicity, we assume
an initial condition where ny = b3py = a, b3 Ty, with b; be-
ing a constant. We further define a normalized fluid shear
viscosity 7 as 7 = n/my, and make it a dimensionless para-
meter. With this setup, the energy conservation equation
reduces to

1
,BZ)
6(8+2 )

or B

om _« 1{1

i L P

¢~3+p+B2 1

)

+on
aT T To b37“rT
(97 3‘1' T3 (?) 127 ° (57)

In addition, the shear viscosity equation reduces to

on r 1 {1 1,0 (ﬁzﬂ 211

T, £ 2

or T, 2 Lt B, or 367

on 2na,T* n {1 s 0 ( 1 )} 8a;T* 1
= _—=- A e -,

or RIZVEE or 9 1

Lo _ 2a\TyT7 5{1 l@%sf“
Z o 3b, 2l TT o) 9ths (58)

From Egs. (57) and (58), the energy conservation
equation and shear viscosity equation can be written as

oT _ T 61 70)2a 1 b37~TT

ot 3t T ( T/ T * 127° (59)
67r 261|TOT7~T Vs |:1 1 6T:| 8T4

o 3b, 2l “Tor * Oths’ (60)

We numerically solved these second order (IS) ap-
proximation fluid differential equations, Eqgs. (59) and
(60), using fixed initial conditions and compared the
second order (IS) results with those from ideal MHD and
first order (NS) theory.

In the upper panel of Fig. 6, we present the normal-
ized temperature 7 as a function of proper time 7t for
ideal MHD, first order (NS) solution and second order
(IS) with a zero magnetic field. The shear viscosity e, is
& = 1. The initial condition for m, is my=0.1p, where
b3 = 0.1. In this figure a comparison between the perfect
fluid approximation, the first order theory, and the second

2 eBy=0.0, €,=0.0 - Ideal MHD
a=2, e=1 -— NS, Eq.(53)
—— IS, Eqs.(59-60)
1
05

0.2 Without magnetic field

0.1
05 10 15 20 25 3.0 35 4.0
t[fmic]
2 - ldeal MHD
a=2, €,=0.5, e,=1 ~ NS, Eq.(53)

—= 1S, Egs.(59-60)

05| i
:
i

0.2 i
With magnetic field g=6a 4

0.1
05 10 15 20 25 3.0 35 4.0

t[fm/c]
Fig. 6. (color online) Evolution of normalized temperature 7

(Egs. (53), (59), (60)) as a function of proper time 7, compar-
ing results from ideal MHD, first-order (NS) theory, and
second-order (IS) theory. Simulations are shown for different
initial magnetic field strengths (e ) with a fixed shear viscos-
ity value e = 1 and magnetic field decay parameter a = 2.

114104-10



1+1 dimensional relativistic viscous non-resistive magnetohydrodynamics with longitudinal...

Chin. Phys. C 49, 114104 (2025)

order theory is clear. One finds that considering a non-
zero shear viscosity makes the fluid cool down more
slowly compared to the ideal MHD. Ones sees that there
is a peak in Tin the first-order (NS) theory, and no such
peak appears in the second-order (IS) theory.

In the lower panel of Fig. 6, we plot the normalized
temperature 7 as a function of proper time r under three
scenarios: ideal MHD, first-order (NS) approximation,
and second-order (IS) approximation, each incorporating
non-zero magnetic field and shear viscosity. The specific
parameters are set as follows: magnetic field decay para-
meter a =2, magnetic field strength parameter € = 0.5,
and shear viscosity parameter e, = 1. The initial condi-
tion for the shear stress is specified as 7y = 0.1p,, corres-
ponding to b; = 0.1. The results indicate that the presence
of a magnetic field leads to a slower cooling rate of the
fluid compared to the case where only shear viscosity is
considered. Furthermore, both the first-order and second-
order theories exhibit a peak in T at very early times in
the system's evolution. The cooling rate of temperature in
the second-order IS theory is slower than that in ideal
MHD but faster than in the first-order NS theory.

In Fig. 7, we present the normalized temperature T as
a function of proper time 7 based on the second-order
(IS) theory, highlighting the influence of different initial
conditions for my. The magnetic field decay parameter ¢
is set to 0.5 and the magnetic field decay parameter a is 2.
We compare four different initial conditions for my:
0.1pg, 0.5pg, 1po and 2p,, where p, is the initial pres-
sure of the fluid. We find that increasing m, (or equival-
ently, increasing the coefficient b;) leads to a slower
cooling rate, suggesting that the initial shear stress signi-
ficantly impacts the thermal evolution of the fluid. Addi-
tionally, in all cases, there is a peak in T observed at
early times, which is a characteristic of viscous non-res-

- 7TO=O.1p0
- - 7T0:0.5p0
—= 15=1.0po

a=2, €1=0.5, e,=1

U~
0.5
0.2
05 10 15 20 25 3.0 35 4.0
t[fm/c]
Fig. 7. (color online) Evolution of normalized temperature 7

(59, 60) from second-order (IS) theory as a function of proper
time 7 for different initial value of shear viscosity =y with
fixed initial magnetic field ¢ = 0.5, shear viscosity parameter
& = 1, and magnetic field decay parameter a = 2.

istive magnetohydrodynamics. This peak arises due to the
non-zero magnetic field heated up the fluid, which influ-
ence the fluid's cooling behavior. In physical QGP sys-
tems, 7y is typically smaller than the pressure pg, as sup-
ported by both microscopic theoretical models and exper-
imental analyses.

V. CONCLUSIONS

Motivated by the exploration of strong magnetic
fields and shear viscosity in relativistic heavy-ion colli-
sions, we investigated the evolution of flow temperature
in a 1+1 dimensional viscous, non-resistive magneto-
hydrodynamic flow with an EOS &=3p. Our idealized
setup, which focuses on longitudinally boost-invariant
flow with a transverse magnetic field and constant shear
viscosity, yields various analytical solutions.

This work generalize the Victor-Bjorken ideal MHD
flow [56, 57] and the Azwinndini-Bjorken dissipative
flow [69, 70] to scenarios incorporating both non-zero
shear viscosity and a magnetic field. Specifically, the
analytical solution reduces to the Bjorken flow in the ab-
sence of both magnetic field and shear viscosity, to the
Victor-Bjorken type solution when only a magnetic field
is present, and to the Azwinndini-Bjorken solution when
only shear viscosity is present. With both magnetic field
and first-order (Navier-Stokes) shear viscosity, we de-
rived two new perturbative solutions and compared them
with numerical results. We also obtained numerical solu-
tions for different initial shear stress values m, in the
second-order (Israel-Stewart) theory. Although simpli-
fied, our findings provide insights into the fluid dynam-
ics in high energy regions.

We further analyzed cases with arbitrary shear viscos-
ity and a small magnetic field evolving according to a
power-law in proper time with exponent a. For initial
magnetic field strengths (B3) smaller than 6a,T; and for
proper time 7 > 0.6 fim/c, our analytical solution is stable.
We observe that larger magnetic fields () with decay
parameter a > 1 lead to fluid reheating, which manifests
as an early-time temperature peak. The peak's magnitude
depends on both the magnetic field strength and shear
viscosity. At later times, the temperature asymptotically
decreases that is the same as in the Azwinndini-Bjorken
flow. We also consider the case where the shear viscosity
and magnetic field are both small. The analytical solu-
tion in this case is consistent with the numerical results
while the magnetic field is pretty small (¢ <0.02), but
deviates to become 5% greater than the numerical results
while € > 0.05.

Finally, we presented numerical results for the
second-order (Israel-Stewart) theory. We found that the
presence of magnetic field and shear viscosity leads to a
slower cooling rate of the fluid temperature compared to
the case with shear viscosity alone. Moreover, the initial
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shear stress 7 in the longitudinal boost-invariant fluid
plays a significant role in determining its temperature
evolution.
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